
Th
ès

e
de

 d
oc

to
ra

t
B
N
N
T
:
2
0
1
8
S
A
C
LT
0
0
3

Combined Complexity
of Probabilistic Query

Evaluation

Thèse de doctorat de l’Université Paris-Saclay
préparée à Télécom ParisTech

École doctorale n◦ 580 STIC
Spécialité de doctorat : informatique

Thèse présentée et soutenue à Télécom ParisTech, le 12 octobre 2018, par

Mikaël Monet

Composition du jury :

Antoine Amarilli
Maître de Conférences, Télécom ParisTech Directeur de thèse
Florent Capelli
Maître de Conférences, Université de Lille Examinateur
Georg Gottlob
Professor, University of Oxford Rapporteur
Benny Kimelfeld
Associate Professor, Technion Rapporteur
Dan Olteanu
Professor, University of Oxford Examinateur
Pierre Senellart
Professeur, ENS, Université PSL Directeur de thèse
Cristina Sirangelo
Professeure, Université Paris-Diderot Présidente
Emmanuel Waller
Maître de Conférences, Université Paris Sud 11 Examinateur

Abstract

Query evaluation over probabilistic databases (probabilistic query evaluation or PQE)
is known to be intractable in many cases, even in data complexity, i.e., when the
query is fixed. Although some restrictions of the queries and instances have been
proposed to lower the complexity, these known tractable cases usually do not apply
to combined complexity, i.e., when the query is not fixed. My thesis investigates the
question of which queries and instances ensure the tractability of PQE in combined
complexity.

My first contribution is to study PQE of conjunctive queries on binary signatures,
which we rephrase as a probabilistic graph homomorphism problem. We restrict
the query and instance graphs to be trees and show the impact on the combined
complexity of diverse features such as edge labels, branching, or connectedness. While
the restrictions imposed in this setting are quite severe, my second contribution
shows that, if we are ready to increase the complexity in the query, then we can
evaluate a much more expressive language on more general instances. Specifically,
we show that PQE for a particular class of Datalog queries on instances of bounded
treewidth can be solved with linear complexity in the instance and doubly exponential
complexity in the query. To prove this result, we use techniques from tree automata
and knowledge compilation. The third contribution is to show the limits of some
of these techniques by proving general lower bounds on knowledge compilation and
tree automata formalisms.

L’évaluation de requêtes sur des données probabilistes (probabilistic query evalua-
tion ou PQE) est généralement très coûteuse en ressources et ce même à requête fixée.
Bien que certaines restrictions sur les requêtes et les données aient été proposées
pour en diminuer la complexité, les résultats existants ne s’appliquent pas à la
complexité combinée, c’est-à-dire quand la requête n’est pas fixe. Ma thèse s’intéresse
à la question de déterminer pour quelles requêtes et données l’évaluation probabiliste
est faisable en complexité combinée.

La première contribution de cette thèse est d’étudier PQE pour des requêtes
conjonctives sur des schémas d’arité 2. Nous imposons que les requêtes et les données
aient la forme d’arbres et montrons l’importance de diverses caractéristiques telles
que la présence d’étiquettes sur les arêtes, les bifurcations ou la connectivité. Les
restrictions imposées dans ce cadre sont assez sévères, mais la deuxième contribution
de cette thèse montre que si l’on est prêts à augmenter la complexité en la requête,
alors il devient possible d’évaluer un langage de requête plus expressif sur des données
plus générales. Plus précisément, nous montrons que l’évaluation probabiliste d’un
fragment particulier de Datalog sur des données de largeur d’arbre bornée peut
s’effectuer en temps linéaire en les données et doublement exponentiel en la requête. Ce
résultat est prouvé en utilisant des techniques d’automates d’arbres et de compilation
de connaissances. La troisième contribution de ce travail est de montrer les limites
de certaines de ces techniques, en prouvant des bornes inférieures générales sur la
taille de formalismes de représentation utilisés en compilation de connaissances et en
théorie des automates.

iii

Remerciements

Je souhaite remercier tous ceux qui, de près ou de loin, ont contribué à faire de ma
thèse une expérience intéressante et enrichissante.

Commençons par les deux personnes que je tiens le plus pour responsables du
succès de cette aventure : mes deux directeurs de thèse, Pierre et Antoine. Lorsque je
commençais mon stage de Master avec Pierre il y a un peu plus de trois ans, je n’avais
aucune idée d’où je mettais les pieds. La principale raison pour laquelle j’avais choisi
ce stage était qu’il se déroulait en partie à Singapour. Le lieu m’avait l’air exotique
et le sujet vaguement intriguant, mais surtout je n’avais toujours pas purgé les deux
mois à l’étranger que mon cursus aux Mines requérait. À part ça, je ne connaissais
essentiellement rien au monde de la recherche, et rien à la théorie des bases de données.
Pierre et Antoine m’ont introduit au domaine et à la communauté, et de manière
générale ont su m’encadrer à la perfection. Ils ont toujours été disponibles lorsque
j’avais besoin de conseils, que ce soit sur des questions de recherche, d’enseignement,
d’informatique pratique (Linux, LATEX...), d’administratif, d’anglais, de carrière, de
cuisine, de tourisme... J’ai énormément appris à leur côté et ai beaucoup apprécié
travailler avec eux. Je resterai toujours impressionné par leur efficacité visiblement
sans limites, leur culture générale dense et variée, leur professionnalisme, et leur
bienveillance ; Pierre, Antoine, vous êtes pour moi de véritables modèles.

Je remercie également mes (autres) co-auteurs : Silviu Maniu, avec qui nous avons
beaucoup discuté tentacules, Pierre Bourhis, qui m’a souvent donné de précieux avis
sur la recherche, et Dan Olteanu, qui m’a invité faire un stage de trois mois avec lui
à Oxford qui m’a beaucoup plu.

Cette thèse n’aurait pas pu être soutenue sans l’accord des membres de mon
jury, qui ont bénévolement accepté la responsabilité de juger ces trois ans de travail.
Je les remercie tous pour leur temps, et (un peu) plus particulièrement mes deux
rapporteurs, Benny et Georg, qui ont méticuleusement relu le manuscrit et m’ont
donné l’occasion de l’améliorer. Je sais en effet à quel point relire et commenter un
texte d’informatique théorique peut être long et laborieux.

Quand ce n’était pas la science qui me poussait hors de mon lit pour aller à
Télécom le matin, c’était souvent la perspective de discussions stimulantes et parfois
improbables avec les membres de l’équipe. Je pense évidemment à Jean-Benoît (sans
qui cette thèse serait sans doute trop grosse), Oana, Luis, Marie, Marc, Miyoung,
Pierre-Alexandre, Julien, Fabian, Nicoleta, Jacob, Ziad, Atef, les deux Thomas,
Mostafa, Katerina, Quentin, Maroua, Camille, Mauro, Jean-Louis, Jonathan, et à
tous ceux qui sont passés plus brièvement à DBWeb. L’ambiance de cette équipe
était exceptionnelle.

Je remercie aussi mes (autres) amis, ceux que j’ai vu régulièrement pendant ma
thèse tout comme ceux que je vois plus rarement. Yvon, Denis, Thibaut, Emmanuel,
Adrien, Gaël, Julien, Damien, Éléonore, Antoine, Alexandre, Myriam, Maxence,
Camille, Claire, Jean-Charles, Charles, Laurent, Mélanie, Nicolas, Pierre, Pablo et
Solange (Oxford c’était cool en grande partie grâce à vous !), Quentin, Loïc, Benoît,
Emmanuel, les deux Tom, Caroline, Maëlig, Pierre, Olivier, et Théo : il y aurait
beaucoup à raconter et j’oublie certainement des noms, et même si cela n’a pas

v

forcément de rapport avec cette thèse je tiens à vous dire que suis content de vous
avoir rencontrés et de côtoyer chacun de vous.

Un peu moins personnellement, j’accorde une pensée à Télécom et Inria pour
avoir financé ma thèse et les nombreux voyages que j’ai eu la chance de faire dans ce
cadre : Singapour, San Francisco, Nice, Chicago, Oxford, Venise, Stockholm, Londres,
Vienne, Cali, et Bucarest.

Je suis reconnaissant envers toute ma famille pour leur soutient inébranlable
depuis ma naissance. Je pense en particulier à mes parents, qui ont toujours fait en
sorte que je ne manque de rien, qui m’ont donné des racines et des ailes, et qui m’ont
aussi donné une merveilleuse petite sœur, Marlène. Contrairement aux amis, pas
besoin de lister le reste de la famille ici, normalement ils savent qui ils sont :) Merci
à vous d’être présents dans ma vie. Avoir eu l’occasion lors de ma soutenance de
vous raconter un peu mieux ce que j’ai fait pendant ces trois ans m’a rempli de joie.

Enfin, je m’adresserai à celle qui partage ma vie depuis maintenant quatre ans.
Nelly, je suis heureux d’avoir traversé cette étape à tes côtés, et c’est en grande partie
grâce à toi que j’en suis arrivé au bout en un seul morceau. Tous ces voyages ont
plus de sens lorsque tu es avec moi, et j’attends avec impatience le début de notre
nouvelle aventure au Chili !

Table of Contents
Abstract iii

Remerciements v

Table of Contents vii

General Introduction 1
Limits of Combined Tractability of PQE 4
Fixed-Parameter Tractability of Provenance Computation 6
From Cycluits to d-DNNFs and Lower Bounds 8
d-DNNFs for Safe Queries . 10
Structure of the Thesis . 12

1 Background and General Preliminaries 13
1.1 Relational Databases, Graphs, Hypergraphs 13
1.2 Query Languages . 15
1.3 Tuple-Independent Databases . 17
1.4 Complexity Classes . 19
1.5 Trees, Treewidth, Pathwidth . 21
1.6 Tree Automata and Tree Encodings 23
1.7 Provenance and Knowledge Compilation Circuit Classes 26

2 Limits of Combined Tractability of PQE 31
2.1 Introduction . 31
2.2 Preliminaries on Probabilistic Graph Homomorphism 34
2.3 Disconnected Case . 37
2.4 Labeled Connected Queries . 42
2.5 Unlabeled Connected Queries . 50

3 Fixed Parameter Tractability of Provenance Computation 57
3.1 Introduction . 57
3.2 Approaches for Tractability . 59
3.3 Conjunctive Queries on Treelike Instances 61
3.4 CFG-Datalog on Treelike Instances 65
3.5 Translation to Automata . 78
3.6 Provenance Cycluits . 80
3.7 Proof of Translation . 90

4 From Cycluits to d-DNNFs and Lower Bounds 107
4.1 Introduction . 107
4.2 Preliminaries on Tree Decompositions 110
4.3 Upper Bound . 111
4.4 Proof of the Upper Bound . 113
4.5 Application to PQE of CFG-Datalog 122
4.6 Lower Bounds on OBDDs . 124
4.7 Lower Bounds on (d-)SDNNFs . 129
4.8 Application to Query Lineages . 133

vii

Conclusion and Perspectives 141
Summary . 141
Open Questions and Directions for Future Work 142
Perspectives . 143

Appendix: résumé en français 145
Limites de la tractabilité combinée de PQE 149
Tractabilité à paramètre fixé du calcul de provenance 150
Des cycluits aux d-DNNFs et bornes inférieures 153
Structure de la thèse . 155

Self-References 157

Other References 159

General Introduction

The field of database research in computer science emerged from the need to store,
access and query information. The foundations of this domain arguably lie in the
relational model, introduced by Edgar Codd in the late sixties [Codd 1970] and
based on the well-established formalism of first-order logic. The relational model
owes its success to its genericity: it provides a way of thinking about data that is
abstract enough to be used in many different contexts. This success can be observed
through the everyday usage of Relational Database Management Systems (RDBMSs)
all around the world, such as Oracle, MySQL, PostgreSQL, and many others.

Traditional database research and RDBMSs tend to assume that the data is
reliable and complete. Yet, data uncertainty naturally appears in many real-life
situations. This uncertainty in data can come in various forms. For instance, when
information is automatically extracted from arbitrary web pages, uncertainty can
be introduced due to the inherent ambiguity of natural language processing. In
road monitoring systems, uncertainty may come from the lack of recent information
about traffic [Hua and Pei 2010]: is the road congested? is there a diversion? Due to
hardware limitations, in the field of experimental sciences, measurement errors also
occur in many databases [Asthana, King, Gibbons, and Roth 2004]. Even when crisp
data can be obtained, it can still be the case that we do not trust who retrieved it or
how it came to us. Querying these databases without considering this uncertainty
can lead to incorrect answers. For some of these scenarios, specific algorithms have
been developed to deal with the uncertainty, but these greatly depend on the domain
of application and thus do not form a unified framework. One first attempt to
generically capture data uncertainty in RDBMSs is the notion of NULLs. However,
NULLs can only represent missing or unknown values, and certainly cannot represent
quantitative uncertainty about tuples.

To address this challenge, probabilistic databases [Suciu, Olteanu, Ré, and Koch
2011] have been introduced. Their goal is to generically capture data uncertainty
and reason about it, much like the relational model was introduced to generically
work with non-probabilistic data. A natural way to capture database uncertainty
is to explicitly represent all possible states of the data, i.e., all possible databases,
called the possible worlds, and associate to each world a probability value. The
probability that a probabilistic database satisfies a given Boolean query is then
the sum of the probabilities of the possible worlds that satisfy this query. This
is the probabilistic query evaluation problem, or PQE: given a Boolean query Q
and a probabilistic database D, compute the probability that D satisfies Q. The
problem with this approach is that there can be exponentially many such possible
worlds, so that it is not feasible in practice to represent the data and to query it
in this way. Nevertheless, we can efficiently represent uncertain data if we make
some independence assumptions: for instance, each tuple could be annotated with
a probability to be present or absent, independently of the other tuples. This
is the framework of tuple-independent databases [Lakshmanan, Leone, Ross, and
Subrahmanian 1997; Dalvi and Suciu 2007], abbreviated as TID. More elaborate
probabilistic representation systems also exist [Barbará, Garcia-Molina, and Porter

1

GENERAL INTRODUCTION

1992; Ré and Suciu 2007; Green and Tannen 2006; Huang, Antova, Koch, and
Olteanu 2009; Suciu, Olteanu, Ré, and Koch 2011], but in this thesis we will only
work with the TID model, because it will already be quite challenging.

Unfortunately, even when we can efficiently represent probabilistic data (using
independence assumptions), we may not be able to efficiently query it. For instance,
consider the following conjunctive query qhard : ∃xy R(x) ∧ S(x, y) ∧ T (y). It is
intractable to compute its probability on arbitrary TID instances [Dalvi and Suciu
2007]. Specifically, this problem is #P-hard, where #P is the complexity class of
counting problems whose answer can be expressed as the number of accepting paths
of a nondeterministic polynomial-time Turing machine. For instance, a typical #P-
complete problem is #SAT, that of counting the number of satisfying assignments of
a propositional formula [Valiant 1979].

To address the intractability of PQE on TID instances, three general approaches
have been proposed. The first one is to slightly relax the problem by asking to
compute approximations of the resulting probabilities. To do this, it is always
possible to resort to Monte-Carlo sampling [Fishman 1986; Ré, Dalvi, and Suciu
2007; Jampani et al. 2008], which provides an additive approximation of the query
probability. This is of limited use, however, when probabilities are very low: the
running time of Monte-Carlo sampling is quadratic in the desired precision, so we
cannot use it in cases where we want a high precision. In this thesis, we will not be
interested in approximate probability computation, so we focus on the other two
approaches. Our point of view is that one first has to understand the difficulties of
exact probability computation in order to determine if approximating methods are
needed.

The two other approaches follow a general idea in computer science: when faced
with the hardness of a problem, imposing restrictions on the input might recover
tractability. Beyond their theoretical interest, such restrictions are also relevant
in practice. Indeed, in real-life applications the input is generally not completely
arbitrary but instead has some kind of structure or respects some properties that
an algorithm could take advantage of. In our case, the first approach exploits the
structure of the query, while the second exploits that of the data:

• Restricting the queries. Dalvi and Suciu [Dalvi and Suciu 2012] have
shown a complete characterization of the unions of conjunctive queries (UCQs)
for which PQE is tractable to evaluate on TID instances: a UCQ is either
safe and PQE is PTIME, or it is not safe and PQE is #P-hard. However, as
it turns out, many simple queries are already hard to evaluate, such as qhard
above.

• Restricting the instances. Recent work from our group [Amarilli, Bourhis,
and Senellart 2015] has shown that, when the TID instances are taken to
be of bounded treewidth, then we can evaluate in linear time the probability
of any fixed Monadic Second-Order (MSO) query Q. MSO is an extension
of first-order logic where quantification over sets of elements is allowed. In
particular, it can express any UCQ.

Treewidth is a graph measure that describes how far an instance is to being a
tree. Bounding the treewidth of instances is a well-known natural criterion to ensure
the tractability of many problems that are NP-hard on arbitrary instances.

2

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

These two approaches focus on what is called the data complexity, i.e., the
complexity of the problem as a function of the size of the input database, considering
the query to be fixed. Yet, in practice, the queries are not fixed but are also given
as input by the user, so the complexity also needs to be reasonable in the query.
A better measure is thus the combined complexity, that is, the complexity of the
problem as a function of the sizes of both the data and the query. For this measure,
the algorithm of [Dalvi and Suciu 2012] is superexponential [Suciu, Olteanu, Ré,
and Koch 2011], and that of [Amarilli, Bourhis, and Senellart 2015] is not even
elementary [Thatcher and Wright 1968; Meyer 1975]. Hence, even when PQE is
tractable in data complexity, the task may still be infeasible because of unrealistically
large constants that depend on the query.

At first glance, it seems unreasonable to want a tractable combined complexity
for PQE, because already in the non-probabilistic setting the combined complexity
is usually not tractable. For instance, evaluating an arbitrary Boolean conjunctive
query (CQ) on an arbitrary database is an NP-complete problem. However, in the
non-probabilistic case, some research has been done to try to isolate cases where
query evaluation is tractable in combined complexity. For example, Yannakakis’s
algorithm can evaluate α-acyclic queries on non-probabilistic instances with tractable
combined complexity [Yannakakis 1981]. For these reasons, I believe that it is also
important to achieve a good understanding of the combined complexity of PQE, and
to isolate cases where PQE is tractable in combined complexity. This motivates the
main question studied in this thesis: for which classes of queries and instances does
PQE enjoy reasonable combined complexity?

To achieve reasonable combined complexity, the idea of this thesis is to impose
restrictions on both the queries and the instances considered. We briefly outline here
the main contributions of this thesis, before presenting them in more detail in the
rest of the introduction:

1. I have studied PQE of conjunctive queries on binary signatures, which we can
rephrase as a probabilistic graph homomorphism problem. We restrict the
query and instance graphs to be trees and show the impact on the combined
complexity of diverse features such as edge labels, branching, or connectedness.
This yields a surprisingly rich complexity landscape, but where tractable cases
are sadly very limited.

2. I showed that, in the non-probabilistic setting, the evaluation of a particular
class of Datalog queries on instances of bounded treewidth can be solved in
time linear in the product of the instance and the query. To show this result
we used techniques from tree automata and provenance computation, and
we introduced a new provenance representation formalism as cyclic Boolean
circuits. Our result captures the tractability of such query classes as two-way
regular path queries and α-acyclic conjunctive queries, and has connections to
PQE, as we explain in the next point.

3. The third contribution is to show how we can apply the results of the second
contribution to PQE by transforming these cyclic circuits into a class of Boolean
circuits with strong properties from the domain of knowledge compilation,
namely, deterministic decomposable negation normal forms (d-DNNFs), on
which we can efficiently perform probabilistic evaluation. This allows us to

3

GENERAL INTRODUCTION

solve PQE for our class of Datalog queries (from the last point) on instances of
bounded treewidth with a complexity linear in the data and doubly exponential
in the query, in contrast with the nonelementary bound in combined complexity
from [Amarilli, Bourhis, and Senellart 2015] for MSO queries. More generally,
we study the connections between different circuit classes from knowledge
compilation, and we also point to the limits of some of these techniques by
proving lower bounds on knowledge compilation formalisms.

4. Unrelated to the combined complexity of PQE, I have also worked on the
compilation of safe queries from [Dalvi and Suciu 2012] to d-DNNFs and
conducted experiments that suggest that a certain class of safe queries can
indeed be compiled efficiently to such circuits.

Although we decided to present our PhD research in the context of probabilistic
databases, the scope of our contributions is not restricted to PQE. For instance, our
work on the evaluation of Datalog on treelike instances implies new results on the
combined complexity of non-probabilistic query evaluation and on the computation
of provenance information. Our third contribution has applications in the field of
knowledge compilation, and our first contribution has links with constraint satisfaction
problems.

We now present our contributions in more details in the last four sections of this
introduction.

Limits of Combined Tractability of PQE
In Chapter 2 of the thesis we study the combined complexity of PQE for conjunctive
queries on TID instances. Conjunctive queries form one of the simplest query
language for relational databases. They correspond to the basic SQL queries build
from the SELECT, FROM, and WHERE directives. Our goal is to isolate cases with
very strong tractability guaranties, namely, polynomial-time combined complexity.
Remember that this is not possible in general because already in data complexity
PQE can be #P-hard on arbitrary instances even for some simple conjunctive queries
(such as the query qhard mentioned above). Hence we will need to impose restrictions
on the problem.

The first general restriction that we will make is to restrict our attention to
binary schemas, where every relation has arity two. This is a natural restriction
that is common in the world of graph databases or knowledge bases. For example a
knowledge base stores information in the form of triples such as (Elvis,Likes, donuts).
This triple can be seen as a fact Likes(Elvis, donuts) on the arity-two predicate Likes.
This way of storing information can also be seen as a graph where edges carry labels;
for instance here we would have two nodes, “Elvis” and “donuts”, and one directed
edge between the first node and the second, labeled by “Likes”. Hence for simplicity
of exposition, we will phrase the problem in terms of graphs. Given a directed query
graph G and a (directed) instance graph H, where each edge is annotated by a label,
we say that H satisfies G if there exists a homomorphism from G to H (intuitively,
a mapping from the nodes of G to the nodes of H that respects the structure of
G). Now, given a directed query graph and a probabilistic instance graph, where
each edge is annotated by a probability (and by a label), we must determine the

4

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

R S S T

R S S T R

Figure 1 – Examples of labeled one-way path (top) and two-way path (bottom)

Figure 2 – Examples of unlabeled downward tree (left) and polytree (right)

probability that the instance graph satisfies the query graph. This is defined as the
total probability mass of the subgraphs of H which satisfy G, assuming independence
between edges.

Our second general restriction is to impose the query and instance graphs to
have a tree shape. That is, we will restrict them to be polytrees, i.e., directed graphs
whose underlying undirected graphs are trees. As we will see, however, even this
restriction does not suffice to ensure tractability, so we study the impact of several
other features:

• Labels, i.e., whether edges of the query and instance can be labeled by a finite
alphabet, as would be the case on a relational signature with more than one
binary predicate.

• Disconnectedness, i.e., allowing the graphs to be disconnected or not.

• Branching, i.e., allowing graphs to branch out, instead of requiring them to be
a path.

• Two-wayness, i.e., allowing edges with arbitrary orientation, instead of requiring
all edges to have the same orientation.

We accordingly study the combined complexity of PQE for labeled graphs and
unlabeled graphs, and when the query and instance graphs are in the following classes,
that cover the possible combinations of the characteristics above: one-way and
two-way paths, downward trees and polytrees, and disjoint unions thereof. Figures 1
and 2 show some examples of a one-way path and a two-way path with labels, and
of a downward tree and a polytree without labels.

Results. Our results completely classify the combined complexity of PQE for all
combinations of instance and query restrictions that we consider, both in the labeled
and in the unlabeled setting. In particular, we have identified four incomparable
maximal tractable cases, reflecting various trade-offs between the expressiveness that
we can allow in the queries and in the instances:

• in the unlabeled case, arbitrary queries on downward tree instances;

5

GENERAL INTRODUCTION

• in the labeled case, one-way path queries on downward tree instances;

• in the labeled case, connected queries on two-way path instances;

• in the unlabeled case, downward tree queries on polytree instances;

These tractability results all extend to disconnected instances, and other cases not
captured by these restrictions are shown to be #P-hard. The (somewhat sinuous)
tractability border is described in Tables 2.1, 2.2, and 2.3 on pages 39, 43, and 51.
The proofs use a variety of technical tools: automata-based compilation to d-DNNF
lineages as in [Amarilli, Bourhis, and Senellart 2015], β-acyclic lineages using [Brault-
Baron, Capelli, and Mengel 2015], the X-property for tractable CSP from [Gutjahr,
Welzl, and Woeginger 1992], graded DAGs [Odagiri and Goto 2014], as well as various
coding techniques for hardness proofs.

Unfortunately, these results show that the combined complexity of PQE quickly
becomes intractable, for the strong notion of tractability that we had considered.
However, this does not rule out more general tractability results for PQE if we impose
a less restrictive notion of tractability.

Fixed-Parameter Tractability of Provenance Com-
putation
We now lower our expectations regarding the complexity in the query, since we realized
that cases where PQE is tractable in combined complexity are very restricted. We
would like to find a more expressive query language and classes of instances for
which the combined complexity is tractable in the data and “reasonable” in the
query, this being motivated by the fact that the data is usually much bigger than
the queries. To reach this goal, we will first focus on the combined complexity of
provenance computation on non-probabilistic relational databases. Indeed, a common
technique to evaluate queries on probabilistic databases is the intensional approach:
first compute a representation of the lineage (or provenance) of the query on the
database, which intuitively describes how the query depends on the possible database
facts; then use this lineage to compute probabilities efficiently. Hence in Chapter 3
of the thesis we will focus on the computation of provenance information, with the
hope that the lineages that we will obtain can be used in the probabilistic case.

Our starting point is the work of Courcelle, as initially presented in [Courcelle
1990] and summarized in [Flum, Frick, and Grohe 2002], which shows that for any
fixed Boolean MSO query Q and constant bound k, we can evaluate Q in linear
time on instances whose treewidth is bounded by k. Intuitively, instances of bounded
treewidth can be decomposed into small “parts” that are themselves connected
following the structure of a tree (we talk of a tree decomposition). As we already
mentioned, bounding the treewidth of instances is a natural criterion to ensure that
many problems that are hard on arbitrary instances become tractable. The proof of
Courcelle’s result is as follows: the query Q is translated into a tree automaton A,
independently from the data but depending on the treewidth parameter k and the
query. The instance I of treewidth 6 k is then transformed into what is called a tree
encoding T , which is just a tree decomposition encoded with a finite alphabet so
as to be processable by a tree automaton. The automaton A is designed to ensure

6

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

that T is accepted by A iff Q holds on I (written I |= Q), so that we can evaluate
Q on I in linear-time data complexity. Moreover, [Amarilli, Bourhis, and Senellart
2015] shows how to use these automata to compute provenance circuits, again in
linear-time data complexity. However, this tells little about the combined complexity.
Indeed the complexity of computing the automaton is nonelementary in the MSO
query, making it the bottleneck of the whole process. Hence the questions that we
investigate in Chapter 3: Which queries can be efficiently translated into automata?
For these queries, can we efficiently compute provenance information?

Results. We will use the framework of parameterized complexity theory [Flum and
Grohe 2006] in order to better understand what makes the translation to automata
intractable. Parameterized complexity theory is a branch of complexity theory
introduced in the nineties by Downey and Fellows (see, e.g., [Downey and Fellows
1992]) to study the complexity of a problem depending on some input parameter.
In our case, rather than restricting to a fixed class of “efficient” queries, we study
parameterized query classes, i.e., we define an efficient class of queries for each value
of the parameter. We further make the standard assumption that the signature is
fixed; in particular, its arity is constant. This allows us to aim for low combined
complexity for query evaluation, namely, fixed parameter tractability with linear-time
complexity in the product of the input query and instance, which we call FPT-bilinear
complexity.

The translation of restricted query fragments to tree automata on treelike instances
has already been used in the context of guarded logics and other fragments, to decide
satisfiability [Benedikt, Bourhis, and Vanden Boom 2016] and containment [Barceló,
Romero, and Vardi 2014]. To do this, one usually establishes a treelike model property
to restrict the search to models of low treewidth (but dependent on the formula),
and then translate the formula to an automaton, so that the problems reduce to
emptiness testing. Inspired by these fragments, we consider the language of clique-
frontier-guarded Datalog (CFG-Datalog), and show an efficient FPT-linear (in the
query) translation procedure for this language, parameterized by the body size of
rules. This implies FPT-bilinear combined complexity of query evaluation on treelike
instances (parameterized by the body size and the treewidth bound). We show
how the tractability of this language captures the tractability of such query classes
as two-way regular path queries [Barceló 2013] and α-acyclic conjunctive queries.
Regular path queries are an important building block of query languages for graph
databases, while the class of α-acyclic queries [Yannakakis 1981] is the main known
class of conjunctive queries to enjoy tractable combined complexity on arbitrary
instances.

Instead of the bottom-up tree automata used in [Courcelle 1990; Flum, Frick, and
Grohe 2002], and later in [Amarilli, Bourhis, and Senellart 2015] (which extended the
result of Courcelle to probabilistic evaluation, but still in data complexity), we use
the formalism of alternating two-way automata. These automata are more succinct
than bottom-up automata, hence the translation to them is more efficient. In fact,
we prove that bottom-up tree automata are not succinct enough even to translate
α-acyclic conjunctive queries efficiently.

We can use our CFG-Datalog language to understand what make the translation
to automata efficient for conjunctive queries. For conjunctive queries, we show that
the treewidth of queries is not the right parameter to ensure efficient translation: we

7

GENERAL INTRODUCTION

prove that bounded-treewidth conjunctive queries cannot be efficiently translated
to automata at all, so we cannot hope to show combined tractability for them via
automata methods. By contrast, CFG-Datalog implies the combined tractability
of bounded-treewidth queries with an additional requirement (interfaces between
bags must be clique-guarded), which is the notion of simplicial decompositions
previously studied by Tarjan in [Tarjan 1985]. CFG-Datalog can be understood as
an extension of this fragment to disjunction, clique-guardedness, stratified negation,
and inflationary fixpoints, that preserves tractability.

We then focus on the computation of provenance information for our Datalog
fragment on bounded-treewidth instances. As we mentioned, [Amarilli, Bourhis,
and Senellart 2015] showed how to compute provenance Boolean circuits from the
bottom-up tree automata used by Courcelle. However, for our alternating two-way
automata, the computation of provenance as Boolean circuits is not straightforward
anymore. For this reason, we introduce a notion of cyclic provenance circuits, that
we call cycluits. These cycluits are well-suited as a provenance representation for
alternating two-way automata that encode CFG-Datalog queries, as they naturally
deal with both recursion and two-way traversal of a treelike instance. While we
believe that this natural generalization of Boolean circuits may be of independent
interest, it does not seem to have been studied in detail. We show that cycluits can
be evaluated in linear time. We further show that the provenance of an alternating
two-way automata on a tree can be represented as a cycluit in FPT-bilinear time,
generalizing results on bottom-up automata and circuits from [Amarilli, Bourhis,
and Senellart 2015].

This implies we can compute in FPT-bilinear time the provenance cycluit of a
CFG-Datalog query on a treelike instance (parameterized by the query body size
and instance treewidth). We will then be able to use these cycluits for probabilistic
evaluation, following the intensional approach to PQE.

From Cycluits to d-DNNFs and Lower Bounds
In Chapter 4 of the thesis we will investigate the connections between various
provenance representations that can be used by the intensional approach for PQE,
and outline the consequences for Chapter 3. We recall that the intensional approach
consists of two steps. First, compute a representation of the lineage (or provenance)
of the query on the database. The provenance of a Boolean query on a database is
a Boolean function with facts of the database as variables that describes how the
query depends on these facts. It can be represented with any formalism that is used
to represent Boolean functions: Boolean formulas, Boolean circuits, binary decision
diagrams, etc. Second, compute the probability of this Boolean function, which is
precisely the probability that the probabilistic database satisfies the query. This
can be seen as a weighted version of model counting (here, counting the number of
satisfying assignments of a Boolean function). In order for this second step to be
tractable, the representation formalism cannot be arbitrary. The field of knowledge
compilation studies (among others) which formalisms allow tractable weighted model
counting, the properties of these formalisms and the links between them. Thus,
to evaluate queries on probabilistic databases, we can use knowledge compilation
algorithms to translate circuits (or even the cycluits that we computed in Chapter 3)
to tractable formalisms; conversely, lower bounds in knowledge compilation can

8

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

identify the limits of the intensional approach.
In this part of the thesis, we study the relationship between two kinds of tractable

circuit classes in knowledge compilation: width-based classes, specifically, bounded-
treewidth and bounded-pathwidth circuits; and structure-based classes, specifically,
OBDDs (ordered binary decision diagrams [Bryant 1992], following a variable order)
and d-SDNNFs (structured deterministic decomposable negation normal forms [Pi-
patsrisawat and Darwiche 2008], following a v-tree). Circuits of bounded treewidth
can be obtained as a result of practical query evaluation [Jha, Olteanu, and Suciu
2010; Amarilli, Bourhis, and Senellart 2015], whereas OBDDs and d-DNNFs have
been studied to show theoretical characterizations of the query lineages they can
represent [Jha and Suciu 2011]. Both classes enjoy tractable probabilistic compu-
tation: for width-based classes, using message passing [Lauritzen and Spiegelhalter
1988], in time linear in the circuit and exponential in the treewidth; for OBDDs
and d-SDNNFs, in linear time by definition of the class [Darwiche 2001]. Hence the
question that we study in Chapter 4: Can we compile width-based classes efficiently
into structure-based classes?

Results. We first study how to perform this transformation, and show correspond-
ing upper bounds. Existing work has already studied the compilation of bounded-
pathwidth circuits to OBDDs [Jha and Suciu 2012; Amarilli, Bourhis, and Senellart
2016]. Accordingly, we focus on compiling bounded-treewidth circuits to d-SDNNF
circuits. We show that we can transform a Boolean circuit C of treewidth k into
a d-SDNNF equivalent to C in time O(|C| × f(k)) where f is singly exponential.
This allows us to be competitive with message passing (also singly exponential in k),
while being more modular. Beyond probabilistic query evaluation, our result implies
that all tractable tasks on d-SDNNFs (e.g., enumeration [Amarilli, Bourhis, Jachiet,
and Mengel 2017] and MAP inference [Fierens et al. 2015]) are also tractable on
bounded-treewidth circuits.

We can then use this result to lift the combined tractability of provenance
computation for CFG-Datalog on bounded-treewidth databases to probabilistic
evaluation. Indeed, the treewidth of the constructed provenance cycluit is linear in
the size of the Datalog query. However, we cannot directly apply our transformation
from bounded-treewidth Boolean circuits to d-SDNNFs, because here we have a
cycluit. Hence the first step is to transform this cycluit into a circuit, while preserving
a bound on the treewidth of the result. We show that a cycluit of treewidth k can
be converted into an equivalent circuit whose treewidth is singly exponential in k, in
FPT-linear time (parameterized by k). We can then apply our transformation to
this circuit, which in the end shows that we can compute a d-SDNNF representation
of the provenance of a CFG-Datalog query Q of bounded rule-size on an instance I
of bounded treewidth with a complexity linear in the data and doubly exponential
in the query. This d-SDNNF then allows us to solve PQE for Q on I with the
same complexity. While the complexity in the query is not polynomial time, we
consider that it is a reasonable one, given that our language of CFG-Datalog is quite
expressive (at least, much more so than the very restricted classes of CQs that we
study in Chapter 2).

Second, we study lower bounds on how efficiently we can convert from width-based
to structure-based classes. Our bounds already apply to a weaker formalism of width-
based circuits, namely monotone conjunctive normal form (CNF) and disjunctive

9

GENERAL INTRODUCTION

normal form (DNF) formulas of bounded width. We connect the pathwidth of
CNFs/DNF formulas with the minimal size of their OBDD representations by showing
that any OBDD for a monotone CNF or DNF must be of width exponential in the
pathwidth of the formula, up to factors depending in the formula arity (maximal
size of clauses) and degree (maximal number of variable occurrences). Because it
applies to any monotone CNF/DNF, this result generalizes several existing lower
bounds in knowledge compilation that exponentially separate CNFs from OBDDs,
such as [Devadas 1993] and [Bova and Slivovsky 2017, Theorem 19]. We also prove
an analogue for treewidth and (d-)SDNNFs: again up to factors in the formula arity
and degree, any d-SDNNF (resp., SDNNF) for a monotone DNF (resp., CNF) must
have size that is exponential in the treewidth of the formula.

To prove our lower bounds, we rephrase pathwidth and treewidth to new notions
of pathsplitwidth and treesplitwidth, which intuitively measure the performance of a
variable ordering or v-tree. We also use the disjoint non-covering prime implicant
sets (dncpi-sets), a tool introduced in [Amarilli, Bourhis, and Senellart 2016; Amarilli
2016] and that can be used to derive lower bounds on OBDD width. We show how
they can also imply lower bounds on d-SDNNF size, using the recent communication
complexity approach of [Bova, Capelli, Mengel, and Slivovsky 2016].

We then apply our lower bounds to intensional query evaluation on relational
databases. We reuse the notion of intricate queries of [Amarilli, Bourhis, and Senellart
2016], and show that d-SDNNF representations of the lineage of these queries have
size exponential in the treewidth of any input instance. This extends the result
of [Amarilli, Bourhis, and Senellart 2016] from OBDDs to d-SDNNFs. As in [Amarilli,
Bourhis, and Senellart 2016], this result shows that, on arity-2 signatures and under
constructibility assumptions, treewidth is the right parameter on instance families to
ensure that all queries (in monadic second-order) have tractable d-SDNNF lineage
representations.

d-DNNFs for Safe Queries
As a last contribution, I have studied the connections between the intensional
approach and the safe UCQs [Dalvi and Suciu 2012]. We make no assumption on
the shape of the input data and only care about data complexity. As we already
mentioned, when Q is a union of conjunctive queries (UCQ), a dichotomy result is
provided by the celebrated result of [Dalvi and Suciu 2012]: either Q is safe and
PQE is PTIME, or Q is unsafe and PQE is #P-hard. The algorithm to compute
the probability of a safe UCQ exploits the first-order structure of the query to find a
so-called safe query plan (using extended relational operators that can manipulate
probabilities) and can be implemented within a RDBMS. This approach is referred
to as extensional query evaluation, or lifted inference.

This is different from the intensional query evaluation that we have followed
so far, where one first computes a representation of the lineage/provenance of the
query Q on the database I, and then performs weighted model counting on the
lineage to obtain the probability. To ensure that model counting is tractable, we use
the structure of the query to represent the lineage in tractable formalisms from the
field of knowledge compilation, such as read-once Boolean formulas, free or ordered
binary decision diagrams (FBDDs, OBDDs), deterministic decomposable normal
forms (d-DNNFs), decision decomposable normal forms (dec-DNNFs), deterministic

10

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

decomposable circuits (d-Ds), etc. The main advantage of this approach compared to
lifted inference is that the provenance can help explain the query answer (this is also
true for non-probabilistic evaluation, as provenance is defined for non-probabilistic
data). Moreover, having the lineage in a tractable knowledge compilation formalism
can be useful for other applications: we can for instance easily recompute the query
result if the tuple probabilities are updated, or we can compute the most probable
state of the database if we assume that the query is satisfied.

A natural question is to ask if the extensional and the intensional approaches are
equally powerful. What we call the q9 conjecture, formulated in [Jha and Suciu 2013;
Dalvi and Suciu 2012], states that, for safe queries, extensional query evaluation is
strictly more powerful than the knowledge compilation approach. Or, in other words,
that there exists a query which is safe (i.e., that can be handled by the extensional
approach) whose lineages on arbitrary databases cannot be computed in PTIME in
a knowledge compilation formalism that allows tractable weighted model counting
(i.e., cannot be handled by the intensional approach). Note that the conjecture
depends on which tractable formalism we consider. The conjecture has recently been
shown in [Beame, Li, Roy, and Suciu 2017] to hold for the formalism of dec-DNNFs
(including OBDDs and FBDDs), which captures the execution of modern model
counting algorithms. Another independent result [Bova and Szeider 2017] shows that
the conjecture also holds when we consider the formalism of d-SDNNFs. However
the status of the conjecture is still unknown for more expressive formalisms, namely,
d-DNNFs and d-Ds. Indeed, it could be the case that the conjecture does not hold
for such expressive formalisms, which would imply that the reason why PQE is
PTIME for safe queries is because we can build deterministic decomposable circuits
in PTIME for them.

Results. I have investigated whether we can disprove the conjecture for the classes
of d-DNNFs and d-Ds. More specifically, we focus on a class of queries (the so-called
H-queries) that was proposed in [Jha and Suciu 2013; Dalvi and Suciu 2012] to
separate the two approaches, and that was used to prove the conjecture for dec-
DNNFs [Beame, Li, Roy, and Suciu 2017] and d-SDNNFs [Bova and Szeider 2017].
We develop a new technique to build d-DNNFs and d-Ds in polynomial time for the
H-queries, based on what we call nice Boolean functions. Because we were not able
to prove that this technique works for all safe H-queries, we test this technique with
the help of the SAT solver Glucose [Audemard and Simon 2009] on all the H queries
up to a certain size parameter, that we generated automatically (amounting to about
20 million nontrivial queries). We found no query on which it does not work, hence
we conjecture that our technique can build d-Ds for all safe H-queries. Interestingly,
we found a few queries for which we can build d-Ds with a single internal negation
at the very top, whereas we do not know if we can build d-DNNFs.

In order to compute all these H-queries, we had to solve a task of independent
interest, namely, computing explicitly the list of all monotone Boolean functions
on 7 variables, up to equivalence. This task had previously been undertaken by
Cazé, Humphries, and Gutkin in [Cazé, Humphries, and Gutkin 2013] and by
Stephen and Yusun in [Stephen and Yusun 2014]. We reused parts of the code
from [Cazé, Humphries, and Gutkin 2013] and confirmed the number of such functions:
490 013 148.

11

GENERAL INTRODUCTION

Structure of the Thesis
We first give technical preliminaries in Chapter 1. We then move on to the content
of the thesis, starting with our work on the combined complexity of probabilistic
graph homomorphism in Chapter 2. We continue in Chapter 3 with the evaluation
of CFG-Datalog on bounded-treewidth non-probabilistic instances. Last, we show in
Chapter 4 how to lift these results to probabilistic evaluation and also how to derive
lower bounds on knowledge compilation formalisms. We then conclude.

The last contribution of my PhD research is not included in the thesis but was
published at AMW’2018 [Monet and Olteanu 2018]. Chapters 2 to 4 of this thesis
can be read independently, except for Section 4.5 in Chapter 4, which depends on
Chapter 3.

12

Chapter 1

Background
and General Preliminaries

We give in this chapter the definitions of the main concepts used throughout this
thesis. Most of the concepts that are specific to some chapter are defined in the
corresponding chapter rather than here.

1.1 Relational Databases, Graphs, Hypergraphs
Relational databases. A relational signature σ is a finite set of relation names
(or relational symbols) written R, S, T , . . . , each with its associated arity written
arity(R) ∈ N. The arity arity(σ) of σ is the maximal arity of a relation in σ. A σ-
instance I (or σ-database, or simply instance or database when the signature is clear
from context) is a finite set of facts (or tuples) on σ, i.e., R(a1, . . . , aarity(R)) with
R ∈ σ (sometimes simply noted R(a)), and where ai is what we call an element.
The active domain dom(I) consists of the elements occurring in I, and the size of I,
denoted |I|, is the number of tuples that I contains.

Example 1.1.1. Table 1.1 shows an example of relational instance I on signature
σ = {R, S, T} with arity(R) = arity(S) = 2 and arity(T) = 3. The active domain of
I is dom(I) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and its size is |I| = 11. C

A subinstance of I is a σ-instance that is included in I (as a set of tuples). An
isomorphism between two σ-instances I and I ′ is a bijective function f : dom(I)→
dom(I ′) such that for every relation name R, for each tuple (a1, . . . , aarity(R)) ∈

Table 1.1 – Example relational database

R

3 7
3 4
5 4
2 5
9 10
7 8

S

3 7
7 9
11 9
2 6

T

1 2 3

13

CHAPTER 1. BACKGROUND AND GENERAL PRELIMINARIES

dom(I)arity(R), we haveR(a1, . . . , aarity(R)) ∈ I if and only ifR(f(a′1), . . . , f(a′arity(R))) ∈
I ′. When there exists such an isomorphism, we say that I and I ′ are isomorphic:
intuitively, isomorphic databases have exactly the same structure and differ only
by the name of the elements in their active domains. A homomorphism between
two σ-instances I and I ′ is a function h : dom(I) → dom(I ′) such that for every
tuple R(a1, . . . , aarity(R)) ∈ I, we have R(h(a′1), . . . , h(a′arity(R))) ∈ I ′. Hence, an
isomorphism is simply a homomorphism that is bijective and whose inverse is also a
homomorphism.

Graphs. In this thesis we consider various definitions of graphs, depending on
what we need:

• Let σ be a finite non-empty set of labels. A directed graph with edge labels
from σ is a triple G = (V,E, λ) with V a set of vertices, with E ⊆ V 2 a set of
edges, and with λ : E → σ a labeling function. We often write a R−→ b for an
edge e = (a, b) with label λ(e) = R.

• A directed unlabeled graph G = (V,E) consists of a set V of vertices and a set
E ⊆ V 2 of edges, which we write a→ b . We can equivalently see a directed
unlabeled graph as a directed labeled graph whose set of labels contains only
one element.

• An undirected labeled (resp., unlabeled) graph is just like a directed labeled
(resp., unlabeled) graph, except that we have a→ b ∈ E iff b→ a ∈ E. In the
unlabeled case, we sometimes write the edges {a, b} ∈ E.

Note that we do not allow multi-edges: there is at most one edge a→ b between
two elements a and b, and this edge has a unique label λ(e) in the case of a labeled
graph. We will sometimes only write “graph” when the kind of graph is clear from
context. All the graphs that we consider in this thesis are finite, meaning that V
(hence E) is a finite set.

Observe that a directed labeled graph can be seen as a relational instance in which
all relational symbols have arity 2. These databases are in fact called graph databases
and play an important role in many applications (social media, transportation
networks, etc.).

Hypergraphs. Hypergraphs are a generalization of undirected unlabeled graphs
where an edge can contain more than two vertices. Formally, a hypergraphH = (V,E)
consists of a set V of vertices and a set E ⊆ 2V of hyperedges (or simply edges) which
are subsets of V . For a node v of H, we write E(v) for the set of edges of H that
contain v. The arity of H, written arity(H), is the maximal size of an edge of H.
The degree of H, written degree(H), is the maximal number of edges to which a
vertex belongs, i.e., maxv∈V |E(v)|. As with graphs, all hypergraphs that we will
consider are finite. Given a σ-instance I on signature σ, we define the hypergraph
associated to I as the hypergraph H = (V,E), whose set of vertices V is dom(I) and
such that for every subset e of dom(I), e is in E if and only if I has a fact containing
exactly the elements of e.

Example 1.1.2. Figure 1.1 displays the hypergraph associated to the relational
instance I from Example 1.1.1. C

14

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

1

2

4

5

6

7

8 9

10

11

3

Figure 1.1 – Hypergraph associated to the relational instance from Example 1.1.1.

As we will see later, one often imposes restrictions on the structure of relational
databases by restricting the shape of their associated hypergraphs.

Gaifman graph. The Gaifman graph (or primal graph) of a relational instance I
is the undirected unlabeled graph G whose set of vertices is dom(I) and where two
elements are connected by an edge if and only if they co-occur (appear together) in
a fact. Observe that each fact of I induces a clique in the primal graph.

1.2 Query Languages
We study query evaluation for several query languages that are subsets of first-order
logic (e.g., conjunctive queries) or of second-order logic (e.g., Datalog), without
built-in relations. In this thesis, we only consider queries that are constant-free,
and Boolean, so that an instance I either satisfies a query Q (I |= Q) or violates
it (I 6|= Q). The query evaluation problem is the problem of determining if a given
Boolean query is satisfied by a given relational instance. Its combined complexity
is the complexity of the problem when both Q and I are given as input, whereas
its data complexity is the complexity of the problem assuming that Q is fixed, and
the only input is I (hence the data complexity may depend on Q). We recall that a
constant-free Boolean query Q cannot differentiate between isomorphic instances,
i.e., for any two isomorphic relational instances I and I ′, we have I |= Q if and only
if I ′ |= Q.

First-order queries. We refer to [Abiteboul, Hull, and Vianu 1995] for the seman-
tics of first-order queries and for the definitions of basic notions such as existential
and universal quantification, free and bound variables, etc. A class of queries that
will play an important role in Chapter 2 is the class of Boolean conjunctive queries.
A Boolean conjunctive query (CQ) Q on a relational signature σ with variables V
is an existentially quantified conjunction of atoms with no free variables, where
an atom is a fact on σ using variables from V as elements. Hence a Boolean CQ

15

CHAPTER 1. BACKGROUND AND GENERAL PRELIMINARIES

can equivalently be seen as a relational instance, whose domain elements are the
variables, and whose facts are the atoms. A σ-instance I satisfies Q when there
exists a homomorphism from Q to I. A Boolean conjunctive query with disequalities
(CQ6=) on a signature σ is a Boolean conjunctive query on σ that can contain special
disequality atoms of the form x 6= y. A σ-instance I satisfies the CQ 6= Q when there
exists a homomorphism h from the σ-atoms of Q to I such that for every disequality
atom x 6= y of Q, we have h(x) 6= h(y).

A Boolean union of conjunctive queries (UCQ) is a disjunction of Boolean CQs,
and a Boolean union of conjunctive queries with disequalities (UCQ 6=) is a disjunction
of Boolean CQ6=s. A σ-instance I satisfies a Boolean UCQ Q (resp., UCQ6=) if Q
contains a Boolean CQ (resp., CQ6=) that is satisfied by I.

Stratified Datalog. In Chapter 3 we will work with the stratified Datalog query
language, whose semantics we briefly recall here. We first recall the definition of
(unstratified) Datalog. A Datalog program P (without negation) over relational
signature σ (called the extensional signature) consists of:

• an intensional signature σint disjoint from σ (with the arity of σint being possibly
greater than that of σ);

• a 0-ary goal predicate Goal in σint;

• a set of rules of the form R(x) ← ψ(x,y), where the head R(x) is an atom
with R ∈ σint, and the body ψ is a CQ over σint t σ where each variable of x
must occur.

The semantics P (I) of P over an input σ-instance I is defined by a least fixpoint
of the interpretation of σint: we start with P (I) ··= I, and for any rule R(x)← ψ(x,y)
and tuple a of dom(I), when P (I) |= ∃yψ(a,y), then we derive the fact R(a) and
add it to P (I), where we can then use it to derive more facts. We have I |= P iff we
derive the fact Goal(). The arity of P is max(arity(σ), arity(σint)), and P is monadic
if σint has arity 1.

Datalog with stratified negation [Abiteboul, Hull, and Vianu 1995] allows negated
intensional atoms in bodies, but requires P to have a stratification, i.e., an ordered
partition P1 t · · · t Pn of the rules where:

(i) Each R ∈ σint has a stratum ζ(R) ∈ {1, . . . , n} such that all rules with R in
the head are in Pζ(R);

(ii) For any 1 6 i 6 n and σint-atom R(z) in a body of a rule of Pi, we have
ζ(R) 6 i;

(iii) For any 1 6 i 6 n and negated σint-atom R(z) in a body of Pi, we have
ζ(R) < i.

The stratification ensures that we can define the semantics of a stratified Datalog
program by computing its interpretation for strata P1, . . . , Pn in order: atoms in
bodies always depend on a lower stratum, and negated atoms depend on strictly lower
strata, whose interpretation was already fixed. We point out that, although a Datalog
program with stratified negation can have many stratifications, all stratifications
give rise to the same semantics [Abiteboul, Hull, and Vianu 1995, Theorem 15.2.10].
Hence, the semantics of P , as well as I |= P , are well-defined.

16

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Example 1.2.1. The following stratified Datalog program, with σ = {R} and
σint = {T,Goal}, tests if there are two elements that are not connected by a directed
R-path. The program has two strata, P1 and P2. The stratum P1 contains the
following two rules:

• T (x, y)← R(x, y)

• T (x, y)← R(x, z) ∧ T (z, y)

And P2 contains the rule:

• Goal()← ¬T (x, y) C

Graph query languages. We will also consider in Chapter 3 some query classes
that are specific to graph databases. We define here two-way regular path queries
(2RPQs) and conjunctions of 2RPQs (C2RPQ) [Calvanese, De Giacomo, Lenzeniri,
and Vardi 2000; Barceló 2013], two well-known query languages in the context of
graph databases and knowledge bases.

We assume that the signature σ contains only binary relations. A (non-Boolean)
regular path query (RPQ) qL(x, y) is defined by a regular language L on the alphabet
Σ of the relation symbols of σ. Its semantics is that qL has two free variables x and
y, and qL(a, b) holds on an instance I for a, b ∈ dom(I) precisely when there is a
directed path π of relations of σ from a to b such that the label of π is in L. A two-way
regular path query (2RPQ) is an RPQ on the alphabet Σ± ··= Σ t {R− | R ∈ Σ},
which holds whenever there is a path from a to b with label in L, with R− meaning
that we traverse an R-fact in the reverse direction. A C2RPQ q = ∧n

i=1 qi(zi, z′i) is
a conjunction of 2RPQs, i.e., a conjunctive query made from atoms qi(zi, z′i) that
are 2RPQs (zi and z′i are not necessarily distinct). The graph of q is the unlabeled
undirected graph having as vertices the variables of q and whose set of edges is
{{zi, z′i} | 1 6 i 6 n, zi 6= z′i}. A C2RPQ is acyclic if its graph is acyclic. A
strongly acyclic C2RPQ (SAC2RPQ) is an acyclic C2RPQ that further satisfies: 1)
for 1 6 i 6 n, we have zi 6= z′i (no self-loops); and 2) for 1 6 i < j 6 n, we have
{zi, z′i} 6= {zj, z′j} (no multi-edges).

A Boolean 2RPQ (resp., Boolean C2RPQ) is a 2RPQ (resp., C2RPQ) which is
existentially quantified on all its free variables.

We can express Boolean 2RPQs and C2RPQs as Datalog queries; for instance
see Proposition 3.4.16.

1.3 Tuple-Independent Databases
As we already mentioned in the introduction, one way to work with uncertain
data would be to explicitly represent all possible states of the data (called the
possible worlds) and associate to each world a probability value. The probability
that a Boolean query satisfies a probabilistic database would then be the sum of the
probabilities of the possible worlds that satisfy the query. The problem with this
approach is that this is not a very compact way of storing the data, so that it is not
feasible in practice to represent the data and query it in this way. Nevertheless, we
can efficiently represent uncertain data if we make some independence assumptions:
each tuple has a probability to be present or absent independently of the other tuples.

17

CHAPTER 1. BACKGROUND AND GENERAL PRELIMINARIES

Likes Prob.

Bob tiramisu 0.9
Mary tiramisu 0.2
Mary flapjack 0.5
Tom meringue 0.6

Table 1.2 – Dessert preferences

Tuple-independent databases. We will consider in this thesis the most com-
monly used model for probabilistic databases: the tuple-independent model, where
each tuple is annotated with a probability of being present or absent, assuming
independence across tuples. Formally, a tuple-independent database (TID) is a pair
(I, π) consisting of a relational instance I and a function π mapping each tuple t ∈ I
to a rational probability π(t) ∈ [0; 1]. A TID instance (I, π) defines a probability
distribution Pr on I ′ ⊆ I, defined by

Pr(I ′) ··=
∏
t∈I′

π(t)×
∏

t∈I\I′
(1− π(t)).

Given a Boolean query Q and a TID instance (I, π), the probability that Q is satisfied
by (I, π) is then defined as

Pr((I, π) |= Q) ··=
∑

I′⊆I s.t. I′|=Q
Pr(I ′).

The probabilistic query evaluation problem (PQE) asks, given a Boolean query Q and
a TID instance (I, π), the probability that Q is satisfied by (I, π). As in the case of
query evaluation, the combined complexity of PQE is the complexity of PQE when
both Q and (I, π) are given as input, whereas its data complexity is the complexity
of the problem assuming that Q is fixed, and the only input is (I, π) (hence the data
complexity may depend on Q).

Example 1.3.1. An example of TID instance is given in Table 1.2, describing who
likes which dessert. A possible world of this instance would be that Mary likes
flapjacks, Tom likes meringue and the other facts are absent. This possible world
has probability (1− 0.9)× (1− 0.2)× 0.5× 0.6 = 0.024. An interesting query on this
TID would be: what is the probability that there exist two different people liking the
same dessert? This can be expressed as the probability of the Boolean conjunctive
query with disequalities ∃p1p2d Likes(p1, d) ∧ Likes(p2, d) ∧ p1 6= p2. The answer is
the sum of the probabilities of the possible worlds in which the query is true, which
can easily seen to be 0.9× 0.2 = 0.18. C

One weakness of the TID model is that is cannot represent arbitrary probability
distributions. For instance, there is no TID instance for which there is a possible
world where Tom likes meringue and for which in every possible world where Tom
likes meringue, Bob also likes meringue. However, as we will soon see in Chapter 2,
PQE on TID instances is already quite challenging. More elaborate probabilistic
representation systems [Barbará, Garcia-Molina, and Porter 1992; Ré and Suciu 2007;
Green and Tannen 2006; Huang, Antova, Koch, and Olteanu 2009; Suciu, Olteanu,
Ré, and Koch 2011] exist (block-independent databases (BID), probabilistic c-tables
(pc-tables), etc.).

18

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

1.4 Complexity Classes
In this thesis, the upper bounds on running times are given assuming the RAM
model [Aho and Hopcroft 1974]. This detail is not important when we simply
state that a problem can be solved in polynomial time (PTIME), but it has its
importance in many places where we want to obtain linear-time algorithms. We
use the RAM model instead of Turing machines as the former is closer to modern
computer architecture than the latter. We will also assume that arithmetic operations
are performed in unit time. This hypothesis will be important when we work with
probabilities in order to obtain linear-time complexity. If we do not make this
hypothesis then the complexities become polynomial-time.

Although most problems we are interested in are function problems, that is
problems that compute a certain output given an input, in contrast with decision
problems that simply accept or reject an input, we will not insist on the difference
and will often simply write that a problem “is in PTIME”, instead of writing “is
in P” or “is in FP”.

Besides “classical” complexity classes (e.g., P, NP, EXPTIME, etc.), two arguably
less common complexity classes will be of particular interest to us: the class of
counting problems #P and the class of fixed-parameter tractable problems. We briefly
introduce them here.

Counting complexity classes. A counting problem is a problem whose goal is
to count things. For example, we might want to count the number of satisfying
valuations (see Section 1.7) of a Boolean formula ϕ, which is the problem known as
#SAT, or we might want to count the number of subinstances of a database that
satisfy a given Boolean conjunctive query. #P (pronounced “sharp P”) is the class
of counting problems that is the counting analog of the decision complexity class NP.
It was introduced in 1979 by Valiant to study counting complexity classes [Valiant
1979]. A counting problem is in #P if it can be expressed as the number of accepting
paths of a nondeterministic polynomial-time Turing machine. For example, one can
easily see that #SAT is in #P: the machine first guesses a valuation and then checks
and accepts in PTIME if ϕ is true under this valuation. In fact, #SAT is even
#P-complete (we will talk more about this in Section 1.7). We use here the notion
of polynomial-time Turing reduction (with an oracle to the problem we reduce to),
which is standard when working with #P.

In a database context, one can also see that counting the number of subinstances
of a database that satisfy a fixed Boolean CQ Q is in #P: the machine first guesses
a subinstance and then checks and accepts in PTIME if this subinstance satisfies Q.
Imagine now that we want to compute the probability that a TID (I, π) satisfies the
fixed Boolean CQ Q. This is not a counting problem since the answer is generally
a rational, not an integer. Hence, technically speaking, we cannot say that this
problem is in #P. However we can easily see that it is in FP#P (i.e., solvable by
a polynomial-time Turing machine with access to oracles in #P). Informally, the
machine first modifies the rational probabilities of the tuples so that they all have
the same denominator d. The machine then uses its oracle tape to call in unit
time another machine that computes a #P problem. This other machine guesses
a subinstance and checks if this subinstance satisfies the query in PTIME. If it
is the case, then it nondeterministically creates a number of runs that equals the

19

CHAPTER 1. BACKGROUND AND GENERAL PRELIMINARIES

integer weight of the subinstance (the product of the nominators of the modified
probabilities of the tuples in the subinstance). The first machine then uses the
number of accepting paths of the oracle machine to compute the final probability:
it simply has to divide this number of accepting paths by d. Although probability
computation problems are not counting problems, when proving the hardness of
probabilistic query evaluation problems (mainly in Chapter 2), we will always use the
notion of #P-hardness, i.e., we reduce from #P-complete problems, such as #SAT.

Parameterized complexity classes. Parameterized complexity theory [Flum and
Grohe 2006] is a branch of complexity theory introduced in the nineties by Downey
and Fellows [Downey and Fellows 1992] to better understand the complexity of a
problem depending on some input parameter. The practical motivation is that,
sometimes, some natural parameter of the input is small and one would like to use
that fact to derive faster algorithms. Indeed, the complexity of the problem can
depend in various ways on a given parameter, as illustrated by the following two
simple problems:

Example 1.4.1. Our first example comes from the study of the evaluation of Boolean
conjunctive queries on relational databases. Here, a natural parameter can be the
size of the conjunctive query. A trivial brute-force algorithm can solve this problem
in time O(|I||Q|): for each variable of Q test all possible assignments to an element
of I and check if the mapping produced is an homomorphism. We see that the role
of the query and that of the database are not the same in the complexity of this
algorithm. Another example is the following problem: given an undirected unlabeled
graph G, find a set C of nodes of G that covers G (i.e., for every edge e of G we
have e ∩ C 6= ∅). Imagine that we want to decide if there exist such a covering set
of size at most k, for some small k ∈ N. For instance we might want to cover the
corridors of a museum with k security cameras, ensuring that each corridor can be
seen by at least one camera. One can solve this problem in time O(2k × |G|) (using
a bounded search tree algorithm), and again we see that the role of the parameter
k and that of |G| are different. Moreover in these two examples, even though for
some fixed value of the parameter the problem is PTIME, the parameter (|Q| in the
first example and k in the second) does not interact in the same way with the input
(I and G). For big enough databases and small parameters, we see that a constant
factor of 2k is better than an exponent of |I||Q|. C

Thus, parameterized complexity theory can intuitively be understood as the
study of how nicely (or badly) parameters influence the complexity of the problem.
A typical “nice” case would correspond to the notion of fixed-parameter tractability
(FPT): a problem on input I parameterized by k is fixed-parameter tractable (or
just FPT) if its running time is of the form O(f(k) × |I|c) for some computable
function f and integer c ∈ N. Observe that calling the problem FPT is more
informative than saying that it is in PTIME for fixed k, as we are further imposing
that the polynomial degree c does not depend on k. This follows the distinction in
parameterized complexity between FPT and the class XP of parameterized problems
which are PTIME for each fixed value of k. We will say that a problem is FPT-linear
when the exponent c is equal to 1. Hence, the second problem from our example is
FPT-linear when parameterized by k.

20

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

In this thesis, we will simply use parameterized complexity theory as a definitional
framework to state asymptotic running times, even though it can be used for more,
such as showing that some problems are not likely to be FPT (for instance, the
evaluation of a Boolean CQ on a database is unlikely to be FPT when parameterized
by the size of the query); see [Flum and Grohe 2006].

FPT-bilinearity. In Chapter 3 we study the query evaluation problem for a query
class Q and instance class I: given an instance I ∈ I and query q ∈ Q, check if I |= q.
More precisely, we will study cases where I and Q are parameterized: given infinite
sequences I1, I2, . . . and Q1,Q2, . . ., the query evaluation problem parameterized by
kI, kq applies to IkI and Qkq . We will call the parameterized problem FPT-bilinear if
there is a computable function f such that the problem can be solved with combined
complexity O (f(kI, kQ) · |I| × |q|).

1.5 Trees, Treewidth, Pathwidth
Trees. We will consider various forms of trees in the thesis. Most generally, a
tree T is a finite undirected unlabeled graph that has no cycles and that is connected
(i.e., there exists exactly one path between any two different nodes). We will often
abuse notation and write n ∈ T to mean that n is a node of T . A tree T is rooted if
it has a distinguished node r called the root of T . Given two adjacent nodes n1, n2
of a rooted tree T with root r, if n1 lies in the (unique) path from r to n2, we say
that n1 is the parent of n2 and that n2 is a child of n2. Hence a node n can have
many children but at most one parent (and none if n is the root). A node n′ is a
descendant of a node n in a rooted tree if n 6= n′ and n lies on the path from n′ to
the root. A leaf of T is a node that has no children, and an internal node of T is a
node that is not a leaf. A rooted tree is binary if all nodes have at most two children,
and it is full if all nodes are leaves or have exactly two children. A rooted tree is
ordered if the children of any node n follow a certain linear order. In the case of a
rooted ordered binary full tree, we often refer to the first child of an internal node as
its left child, and to the second child as its right child.

Given a rooted tree T and a node n ∈ T , the subtree of T rooted at n, denoted Tn,
is the rooted tree with root n whose nodes are n and all the descendant of n in T ,
and where two nodes are adjacent if they are adjacent in T . In particular, if n is the
root of T , then we have Tn = T . For a subtree U of T , we denote by Leaves(U) the
leaves of U .

We will also work with trees whose nodes are labeled. Letting Γ be a set of labels,
a Γ-tree 〈T, λ〉 consists of a tree T together with a labeling function λ that associates
to each node of T a label in Γ.

Treewidth. Treewidth [Robertson and Seymour 1984] is a measure quantifying
how far a graph is to being a tree, which we use to restrict instances and conjunctive
queries. For example a tree has treewidth 1, a cycle has treewidth 2, and a k-clique
has treewidth k − 1. Though historically treewidth was first defined for graphs
and the definition was later extended to hypergraphs, we choose to directly give
the definition for hypergraphs, as it will be more convenient for us. Treewidth
can be defined by using the notion of tree decomposition of a hypergraph. A tree

21

CHAPTER 1. BACKGROUND AND GENERAL PRELIMINARIES

1,2,3

3,7

2,6

7,8 7,9

9,10 9,11

2,3,5

3,4,5

Figure 1.2 – Tree decomposition of the hypergraph from Example 1.1.2.

decomposition of the hypergraph H = (V,E) is a tree T , whose nodes b (called bags)
are labeled by a subset λ(b) of V (i.e., a 2V -tree 〈T, λ〉) and which satisfies:

(i) for every hyperedge e ∈ E, there is a bag b ∈ T with e ⊆ λ(b);

(ii) for all v ∈ V , the set of bags {b ∈ T | v ∈ λ(b)} is a connected subtree of T .

We will often call λ(b) the domain of the bag b, and we even sometimes make no
difference between b itself and its domain. The width of a tree decomposition T is
the size of its largest bag minus one, i.e., maxb∈T |λ(b)| − 1. The treewidth of H is
then the smallest k such that I has a tree decomposition of width k.

The treewidth of a graph G is the treewidth of G when seen as a hypergraph, and
the treewidth of a relational instance I is the treewidth of its associated hypergraph.

Example 1.5.1. Figure 1.2 shows a tree decomposition of the hypergraph H from
Example 1.1.2 (hence a tree decomposition of the instance in Example 1.1.1). The
width of this tree decomposition is 2. Moreover, the width of any tree decomposition
of H is at least 2, since the hyperedge {1, 2, 3} must be contained in a bag. Hence,
the treewidth of H is 2. C

It is known that the treewidth of an instance is the same as the treewidth of its
primal graph.

The definition of treewidth might seem complex when first encountered, but
bounding the treewidth it is a well-known natural criterion to ensure the tractability
of many problems that are NP-hard on arbitrary instances. An intuitive way to
understand tree decompositions is that they decompose the instance in such a way
as to be able to use divide and conquer algorithms. When S is a set of relational
instances (or hypergraphs, or graphs), we say that S is treelike if there exists k ∈ N
such that the treewidth of each element in S is less than k.

22

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

It is NP-hard to determine the treewidth of a hypergraph [Arnborg, Corneil, and
Proskurowski 1987], but we can compute a tree decomposition in linear time when
parameterizing by the treewidth:

Theorem 1.5.2 ([Bodlaender 1996]). Given a hypergraph H and an integer k ∈ N
we can check in FPT-linear time parameterized by k if H has treewidth 6 k, and if
yes output a tree decomposition of H of width 6 k.

Pathwidth. Pathwidth is defined in the same way as treewidth, except that the
decomposition is restricted to be a path (i.e., each node has at most one child). It
intuitively measures how far an instance is to being a path.

1.6 Tree Automata and Tree Encodings
Bottom-up tree automata. One of the simplest formalisms for tree automata is
that of bottom-up nondeterministic tree automata. A bottom-up nondeterministic
tree automaton running on rooted, full, binary and ordered Γ-trees (or Γ-bNTA) is a
tuple A = (Q,F, ι,∆), where:

(i) Q is a finite set of states;

(ii) F ⊆ Q is a subset of accepting states;

(iii) ι : Γ→ 2Q is an initialization function determining the possible states of a leaf
from its label;

(iv) ∆ : Γ×Q2 → 2Q is a transition function determining the possible states of an
internal node from its label and the states of its two children.

Given a (rooted, full, binary and ordered) Γ-tree 〈T, λ〉, we define a run of A on 〈T, λ〉
as a function ϕ : T → Q such that:

(i) ϕ(l) ∈ ι(λ(l)) for every leaf l of T ;

(ii) ϕ(n) ∈ ∆(λ(n), ϕ(n1), ϕ(n2)) for every internal node n of T with left child n1
and right child n2.

The bNTA A accepts 〈T, λ〉 if it has a run on T mapping the root of T to a state
of F .

Tree encodings. Throughout this thesis, we will often show that some problem is
tractable on treelike instances using the following scheme:

1. Build a tree automaton A running on tree decompositions of width 6 k (for k
the treewidth bound) such that for every instance I and tree decomposition
〈T, λ〉 of width 6 k of I, A accepts 〈T, λ〉 iff I satisfies the problem;

2. Use Theorem 1.5.2 to compute a tree decomposition 〈T, λ〉 of width 6 k of I;

3. Check if 〈T, λ〉 is accepted by A.

23

CHAPTER 1. BACKGROUND AND GENERAL PRELIMINARIES

However, this scheme does not work as-is: the labels of a tree decomposition are not
from a finite alphabet (because we do not know dom(I) in advance), whereas tree
automata run on trees labeled by a finite alphabet. The notion of tree encoding is
here to address this issue. Intuitively, a tree encoding is just a tree decomposition
encoded with a finite alphabet so as to be processable by a tree automaton. There
are many ways to design such an encoding. We present here the tree encodings used
in [Amarilli, Bourhis, and Senellart 2015].

Informally, having fixed the signature σ, for a fixed treewidth k ∈ N, we define a
finite tree alphabet Γkσ such that σ-instances of treewidth 6 k can be translated in
FPT-linear time (parameterized by k), following the structure of a tree decomposition,
to a (rooted full ordered binary) Γkσ-tree, which we call a tree encoding. Formally:

Definition 1.6.1. Let σ be a signature, and let k ∈ N. We define the domain
Dk = {a1, . . . , a2k+2} and the finite alphabet Γkσ whose elements are pairs (d, s), with
d being a subset of up to k + 1 elements of Dk, and s being a σ-instance consisting
at most one σ-fact over some subset of d (i.e., dom(s) ⊆ d): in the latter case, we
will abuse notation and identify s with the one fact that it contains. A (σ, k)-tree
encoding is simply a rooted, binary, ordered, full Γkσ-tree 〈E, λ〉. C

The fact that 〈E, λ〉 is rooted and ordered is merely for technical convenience
when running bNTAs, but it is otherwise inessential.

Example 1.6.2. The tree depicted in black in Figure 1.3 is a ({R, S, T}, 2)-tree
encoding. For now, ignore the annotations in red and green; the link with Exam-
ple 1.1.1 will be explained later. The domain D2 is {a, b, c, d, e, f}, but we only use
{a, b, c, d}. C

A tree encoding 〈E, λ〉 can be decoded to an instance I with the elements of Dk
being decoded to new instance elements. Informally, we create a fresh instance
element for each occurrence of an element ai ∈ Dk in an ai-connected subtree of E,
i.e., a maximal connected subtree where ai appears in the first component of the
label of each node. In other words, reusing the same ai in adjacent nodes in 〈E, λ〉
means that they stand for the same element, and using ai elsewhere in the tree
creates a new element. Formally:

Definition 1.6.3. Let 〈E, λ〉 be a (σ, k)-tree encoding, where, for each node n of
E, we write λ(n) = (dn, sn). A set S of bag decoding functions for 〈E, λ〉 consists of
one function decn with domain dn for every node n of E. We say that S is valid if S
satisfies the following condition: for every a ∈ Dk and nodes n1, n2 of E such that
a ∈ dn1 and a ∈ dn2 , we have decn1(a) = decn2(a) if and only if n1 and n2 are in the
same a-connected subtree of 〈E, λ〉. C

Example 1.6.4. Consider again the tree encoding 〈E, λ〉 in Figure 1.3. For each
node n ∈ E, let decn be the function that is defined by the green annotations next
to n. Then one can check that S = {decn | n ∈ E} is a valid set of bag decoding
functions for 〈E, λ〉. C

We can use a valid set of bag decoding functions S to decode a tree encoding
〈E, λ〉 to a σ-instance:

24

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Definition 1.6.5. Let 〈E, λ〉 be a (σ, k)-tree encoding, where, for each node n of E,
we write λ(n) = (dn, sn), and let S be a valid set of bag decoding functions for 〈E, λ〉.
The σ-instance decS(〈E, λ〉) is defined as follows. The elements of decS(〈E, λ〉) are
{decn(a) | n ∈ E, a ∈ dn}. The facts of decS(〈E, λ〉) are {R(decn(a)) | n ∈ E, sn =
R(a)}. C

Example 1.6.6. Continuing Example 1.6.4, consider again the tree encoding 〈E, λ〉
and valid set S of decoding functions for 〈E, λ〉. Then, computing decS(〈E, λ〉) yields
the instance from Example 1.1.1. C

A tree encoding can have multiple valid sets S of bag decoding functions. However,
the choice of S does not matter since they all decode to isomorphic instances:

Lemma 1.6.7 ([Amarilli, Bourhis, and Senellart 2015]). Let 〈E, λ〉 be a tree encoding,
and S1, S2 be two valid sets of bag decoding functions of 〈E, λ〉. Then decS1(〈E, λ〉)
and decS2(〈E, λ〉) are isomorphic.

Hence, we will now write dec(〈E, λ〉), forgetting the subscript S, since we are not
interested in distinguishing isomorphic instances (and since there always exists at
least one valid set of bag decoding functions, for every tree encoding). Furthermore,
it is easy to see that dec(〈E, λ〉) has treewidth 6 k, as a tree decomposition for it
can be constructed from 〈E, λ〉. Conversely, for any instance I of treewidth 6 k, we
can compute a (σ, k)-encoding 〈E, λ〉 such that dec(〈E, λ〉) is I (up to isomorphism).
We say that 〈E, λ〉 is a tree encoding of I:

Definition 1.6.8. Let I be a σ-instance, and 〈E, λ〉 be a (σ, k)-tree encoding (for
some k ∈ N). We say that 〈E, λ〉 is a tree encoding of I if dec(〈E, λ〉) is I, up to
isomorphism. C

Informally, given I of treewidth 6 k, we can construct a (σ, k)-tree encoding 〈E, λ〉
of I from a tree decomposition of I as follows: copy each bag of the decomposition
multiple times so that each fact can be coded in a separate node; arrange these
copies in a binary tree to make the tree encoding binary; make the tree encoding full
by adding empty nodes. We can easily show that this process is FPT-linear for k, so
that we will use the following claim (see [Amarilli 2016] for our type of encodings):

Lemma 1.6.9 ([Flum, Frick, and Grohe 2002]). The problem, given an instance I
of treewidth 6 k, of computing a tree encoding of I, is FPT-linear parameterized
by k.

We sum up this discussion about tree encoding with the full example.

Example 1.6.10. Remember that Figure 1.3 presents a tree encoding 〈E, λ〉 for
k = 2 and the signature σ from Example 1.1.1. Remember we can decode 〈E, λ〉 by
the mappings drawn in green, obtaining this way the instance I from Example 1.1.1.
Hence 〈E, λ〉 is a tree encoding of I. Moreover, we recall that any valid way of
decoding 〈E, λ〉 would yield an instance isomorphic to I. We point out a few details
that can help understand how these encodings work. The elements “a” in bags α
and β are decoded to distinct instance elements, since α and β are not in a same
a-connected subtree of the tree encoding. Bags like γ, that contain elements but no
fact, are usually used in order to help making the tree encoding binary. Empty bags
like δ can be used in order to make the tree encoding full. C

25

CHAPTER 1. BACKGROUND AND GENERAL PRELIMINARIES

∅

∅

∅

∅

T(a,b,c)

a,b,c a →1
b →2
c →3

c,d

R(c,d)
c →3
d →7

a,b

R(a,b)
a →9
b →10

a,b

S(b,a)
a →9
b →11

b,d

S(b,d)
b →2
d →6

a,b

R(b,a)
a →5
b →2

b,c,d

R(c,d)

b →2
c →3
d →4

a,b,d

R(a,d)

a →5
b →2
d →4

c,d

S(c,d)
c →3
d →7

a,d

R(d,a)
a →8
d →7

α
a,d

S(d,a)
a →9
d →7

β

a,b,c

∅

a →1
b →2
c →3

γ

∅

∅δ

Figure 1.3 – Tree encoding of the relational instance from Example 1.1.1.

1.7 Provenance and Knowledge Compilation Cir-
cuit Classes

Boolean circuits and functions. A (Boolean) valuation of a set V is a function
ν : V → {0, 1}. A Boolean function ϕ on variables V is a mapping that associates to
each valuation ν of V a Boolean value in {0, 1} called the evaluation of ϕ according
to ν.

A (Boolean) circuit C = (G,W, goutput, µ) is a directed acyclic graph (G,W)
whose vertices G are called gates, whose edges W are called wires, where goutput ∈ G
is the output gate, and where each gate g ∈ G has a type µ(g) among var (a variable
gate), NOT, OR, AND. The inputs of a gate g ∈ G are the gates g′ ∈ G such that
(g′, g) ∈ W ; the fan-in of g is its number of inputs. We require NOT-gates to have
fan-in 1 and var-gates to have fan-in 0. The treewidth of C, and its size, are those of
the graph (G,W). The set Cvar of variable gates of C are those of type var. Given
a valuation ν of Cvar, we extend it to an evaluation of C by mapping each variable
g ∈ Cvar to ν(g), and evaluating the other gates according to their type. We recall the
convention that AND-gates (resp., OR-gates) with no input evaluate to 1 (resp., 0).
The Boolean function on Cvar captured by the circuit is the one that maps ν to the
evaluation of goutput under ν. Two circuits are equivalent if they capture the same
function.

Provenance and lineages. Provenance is a handy tool to solve query evaluation
problems where the answer is more complex than yes or no. Intuitively, the provenance
of a query Q on a relational database I is a representation of how the query result

26

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

depends on the input data:
The (Boolean) provenance of a query Q on an instance I is the Boolean function ϕ

whose variables are the facts of I, which is defined as follows: for any valuation ν of
the facts of I, we have ϕ(ν) = 1 iff the subinstance {F ∈ I | ν(F) = 1} satisfies Q.

Hence, provenance can help explain the query results. We can represent Boolean
provenance as Boolean formulas [Imielinski and Lipski 1984; Green, Karvounarakis,
and Tannen 2007], or (more recently) as Boolean circuits [Deutch, Milo, Roy, and
Tannen 2014; Amarilli, Bourhis, and Senellart 2015]. The provenance of Q on I is also
sometimes called the lineage of Q on I. In this thesis, we will mainly be interested
in provenance for its role in intensional query evaluation, i.e., an intermediate object
that can be constructed during the process of solving PQE to help us compute the
final probability.

Probability of a Boolean function. Given a set of variables V and a probability
assignment π mapping each variable X in V to a rational probability π(X) ∈ [0, 1],
we define the probability π(ν) of a valuation ν : V → {0, 1} as

π(ν) :=
 ∏
X∈V, ν(X)=1

π(X)
 ∏

X∈V, ν(X)=0
(1− π(X))

 .
The probability Pr(ϕ, π) of Boolean function ϕ on variables V with probability

assignment π is then the total probability of the valuations that satisfy ϕ. Formally:

Pr(ϕ, π) :=
∑

ν satisfies ϕ
π(ν)

Provenance can then be used in PQE to obtain the probability of the query.
Indeed, it is clear from the definitions that, given a TID (I, π) and Boolean query Q, if
ϕ is the provenance of Q on I, then the probability of ϕ with probability assignment π
is precisely Pr((I, π) |= Q). This is the intensional approach to PQE.

Unfortunately, in general, it is intractable to compute the probability of a
Boolean function represented as a formula or circuit. Specifically, we define the
Boolean formula probability computation problem (resp., Boolean circuit probability
computation problem) to be the following: the input is a Boolean formula (resp., a
Boolean circuit) on a set of variables V together with a probability assignment π,
and the output is the probability of the Boolean function represented by the formula
(resp., circuit). Then, both these problems are #P-hard, as they generalize the
problem #SAT: choosing π so that every variable is mapped to probability 1

2 we see
that the number of satisfying valuations of ϕ is exactly 2|V | × Pr(ϕ, π). To ensure
that computing this probability is tractable, we can sometimes use the structure of
the query and data to represent the lineage in tractable formalisms from the field of
knowledge compilation.

Knowledge compilation circuit classes. We now introduce a few circuit classes
from knowledge compilation. For a gate g in a Boolean circuit C, we write Vars(g)
for the set of variable gates of Cvar that have a directed path to g in C. An AND-
gate g of C is decomposable if for every two input gates g1 6= g2 of g we have
Vars(g1) ∩ Vars(g2) = ∅. We call C decomposable if each AND-gate is. An OR-gate
g of C is deterministic if there is no pair g1 6= g2 of input gates of g and valuation

27

ν of Cvar such that g1 and g2 both evaluate to 1 under ν. A Boolean circuit is
deterministic if each OR-gate is.

Restricting to deterministic decomposable Boolean circuits (d-Ds) is already suffi-
cient to ensure that probability computation can be performed efficiently (specifically,
in linear time in the input circuit, as we assumed that arithmetic operations take
unit time). Indeed, one can simply transform the d-D into an arithmetic circuit by
converting AND gates to ×, OR gates to +, NOT to 1− x (where x is the value of
the only input of the gate), and variable gates by the value mapped by π. One can
then evaluate in linear time this arithmetic circuit (by a bottom-up pass), and the
determinism and decomposability restrictions ensure that we are indeed computing
the probability of the Boolean function that the circuit captures.

In addition to decomposability and determinism, knowledge compilation also
studies more restricted versions of Boolean circuits. The most common restriction
is that of being a negation normal form (NNF). A Boolean circuit C is in negation
normal form if the inputs of NOT-gates are always variable gates. A stronger
requirement than decomposability is structuredness. A v-tree [Pipatsrisawat and
Darwiche 2008] over a set V is a rooted ordered full binary tree T together with an
injective mapping ι from V to Leaves(T). For simplicity, for every variable v ∈ V ,
we identify the leaf l of T such that ι(v) = l with the variable v, and we call a leaf l
of T unlabelled when l does not correspond to a variable. We say that T structures
a Boolean circuit C (and call it a v-tree for C) if T is over the set Cvar and if, for
every AND-gate g of C with inputs g1, . . . , gm and m > 0, there is a node n ∈ T that
structures g, i.e., n has m children n1, . . . , nm and we have Vars(gi) ⊆ Leaves(Tni) for
all 1 6 i 6 m. We call C structured if some v-tree structures it. Note that structured
Boolean circuits are always decomposable, and their AND-gates have at most two
inputs because T is binary.

The main structured class of circuits that we study in Chapter 4 are deterministic
structured decomposable NNFs, which we denote d-SDNNF for brevity as in [Pipatsri-
sawat and Darwiche 2008]. One can use d-SDNNFs to provide efficient enumeration
algorithms [Amarilli, Bourhis, Jachiet, and Mengel 2017].

Note that decomposability and structuredness are syntactic conditions, whereas
determinism is a semantic condition: in general, checking if an OR gate of a Boolean
circuit is deterministic is co-NP complete.

Knowledge compilation also studies a different kind of tractable formalisms for
Boolean functions, called binary decision diagrams. We define here ordered binary
decision diagrams (OBDDs). An OBDD on a set of variables V = {v1, . . . , vn} is
a rooted DAG O whose leaves are labeled by 0 or 1, and whose internal nodes are
labeled with a variable of V and have two outgoing edges labeled 0 and 1. We require
that there exists a total order v = vi1 , . . . , vin on the variables such that, for every
path from the root to a leaf, the sequence of the variables that label the internal
nodes of the path is a subsequence of v and does not contain duplicate variables. The
OBDD O captures a Boolean function on V defined by mapping each valuation ν to
the value of the leaf reached from the root by following the path given by ν. The
size |O| of O is its number of nodes, and the width w of O is the maximum number
of nodes at every level, where a level is defined for a prefix of v as the set of nodes
reached by enumerating all possible valuations of this prefix. Note that we clearly
have |O| 6 |V | × w.

Notice that an OBDD can be seen as a restricted kind of d-SDNNF.

28

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

DNFs and CNFs. We also study other representations of Boolean functions,
namely, Boolean formulas in conjunctive normal form (CNFs) and in disjunctive
normal form (DNFs). A DNF (resp., CNF) ϕ on a set of variables V is a disjunction
(resp., conjunction) of clauses, each of which is a conjunction (resp., disjunction)
of literals on V , i.e., variables of V (a positive literal) or their negation (a negative
literal). A monotone (or positive) DNF (resp., monotone/positive CNF) is one where
all literals are positive, in which case we often identify a clause to the set of variables
that it contains. Monotone DNFs and CNFs ϕ are isomorphic to hypergraphs: the
vertices are the variables of ϕ, and the hyperedges are the clauses of ϕ. We often
identify ϕ to its hypergraph. In particular, the pathwidth and treewidth of ϕ, and its
arity (arity(ϕ)) and degree (degreeϕ), are defined as that of its hypergraph.

29

Chapter 2

Limits of Combined Tractability
of PQE

This chapter of my thesis presents my work with Antoine Amarilli and Pierre Senellart
on the combined complexity of probabilistic query evaluation (PQE) phrased as a
probabilistic graph homomorphism problem. The results presented here were published
at PODS’2017 [Amarilli, Monet, and Senellart 2017].

2.1 Introduction
This chapter begins our study of the combined complexity of PQE, focusing on the
case of conjunctive queries on tuple-independent databases. As we have already
discussed in the introduction, almost all works on PQE so far have focused on
data complexity, and have explored the general intractability of PQE in this sense.
Indeed, while non-probabilistic query evaluation of fixed queries in first-order logic
has polynomial-time data complexity (specifically, AC0 [Abiteboul, Hull, and Vianu
1995]), the PQE problem is #P-hard already for some fixed conjunctive queries [Dalvi
and Suciu 2007]. Specifically, Dalvi and Suciu have shown a celebrated dichotomy
on unions of conjunctive queries: some are safe queries, enjoying PTIME data
complexity (specifically, linear [Ceylan, Darwiche, and Van den Broeck 2016]), and
all other queries are #P-hard [Dalvi and Suciu 2012]. In another direction, Amarilli,
Bourhis, and Senellart have shown a dichotomy on instance families for fixed monadic
second-order queries, with tractable data complexity for bounded-treewidth families
[Amarilli, Bourhis, and Senellart 2015], and intractability otherwise under some
assumptions [Amarilli, Bourhis, and Senellart 2016].

However, even when PQE is tractable in data complexity, the task may still be
infeasible because of unrealistically large constants that depend on the query. For
instance, the approach in [Amarilli, Bourhis, and Senellart 2015] is nonelementary in
the query, and the algorithm for safe queries in [Dalvi and Suciu 2012] is generally
super-exponential in the query [Suciu, Olteanu, Ré, and Koch 2011]. For this reason,
we believe that it is also important to achieve a good understanding of the combined
complexity of PQE, and to isolate cases where PQE is tractable in combined com-
plexity; similarly to how, e.g., Yannakakis’s algorithm can evaluate α-acyclic queries
on non-probabilistic instances with tractable combined complexity [Yannakakis 1981].
This motivates the question studied in this chapter: For which classes of queries and
instances does PQE enjoy tractable combined complexity?

31

CHAPTER 2. LIMITS OF COMBINED TRACTABILITY OF PQE

Related work. Surprisingly, the question of achieving combined tractability for
PQE does not seem to have been studied before. To our knowledge, the only
exception is in the setting of probabilistic XML [Kimelfeld and Senellart 2013],
where deterministic tree automata queries were shown to enjoy tractable combined
complexity [Cohen, Kimelfeld, and Sagiv 2009].

Questions of combined tractability have also been studied in the setting of
constraint satisfaction problems (CSP), following a well-known connection between
CSP and the conjunctive query evaluation problem in database theory, or the study
of the graph homomorphism problem (see, e.g., [Grohe 2007]). We can then see the
restriction of PQE to conjunctive queries as a probabilistic, or weighted, variant of
these problems, but we are not aware of any existing study of this variant. In the
graph homomorphism setting, a related but different problem is that of counting
graph homomorphisms [Bulatov 2013]: but this amounts to counting the number
of matches of a query in a database instance, which is different from counting the
possible worlds of an instance where the query has some match, as we do. A more
related problem is #SUB [Curticapean and Marx 2014], which asks, given a query
graph G and an instance graph H, for the number of subgraphs of H which are
isomorphic to G. When all facts are labeled with 1/2, our problem asks instead
for the number of subgraphs of H to which G admits a homomorphism. A further
difference is that we allow arbitrary probability annotations, amounting to a form of
weighted counting; in particular, facts can be given probability 1.

Problem statement. Inspired by the connection to graph homomorphism and
CSP, in this chapter we investigate the probabilistic query evaluation problem for
conjunctive queries on tuple-independent instances, over arity-two signatures. To
our knowledge, we are the first to focus on the combined complexity of conjunctive
query evaluation on probabilistic relational data. For simplicity of exposition, we
will phrase our problem in terms of graphs: given a query graph and a probabilistic
instance graph, where each edge is annotated by a probability, we must determine the
probability that the query graph has a homomorphism to the instance graph, i.e., the
total probability mass of the subgraphs which ensure this, assuming independence
between edges. We always assume the query and instance graphs to be directed.

As we will see, the problem is generally intractable, so we will have to study
restricted settings. We accordingly study this problem under assumptions on the
query and input graphs. One general assumption that we will make is to impose
tree-likeness of the instance. In fact, we will generally restrict it to be a polytree,
i.e., a directed graph whose underlying undirected graph is a tree. As we will see,
however, even this restriction does not suffice to ensure tractability, so we study the
impact of several other features:

• Labels, i.e., whether edges of the query and instance can be labeled by a finite
alphabet, as would be the case on a relational signature with more than one
binary predicate.

• Disconnectedness, i.e., allowing disconnected queries and instances.

• Branching, i.e., allowing graphs to branch out, instead of requiring them to be
a path.

32

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

• Two-wayness, i.e., allowing edges with arbitrary orientation, instead of requiring
all edges to have the same orientation (as in a one-way path, or downward
tree).

We accordingly study our problem for labeled graphs and unlabeled graphs, and
when query and instance graphs are in the following classes, that cover the possible
combinations of the above characteristics: one-way and two-way paths, downward
trees and polytrees, and disjoint unions thereof.

Results. This chapter presents our combined complexity results for the probabilistic
query evaluation problem in all these settings. After introducing the preliminaries and
defining the problem in Section 2.2, we first study the impact of disconnectedness in
instances and queries in Section 2.3. While we can easily show that disconnectedness
does not matter for instances (Lemma 2.3.7), we show that disconnectedness of
queries has an unexpected impact on complexity: in the labeled case, even the
simplest disconnected queries on the simplest kinds of instances are intractable
(Proposition 2.3.3): this result is shown via the hardness of counting edge covers
in bipartite graphs. The picture for disconnected queries is more complex in the
unlabeled case (see Table 2.1): indeed, the problem is still hard when allowing
two-wayness in the query and instance (as it can be used to simulate labels, see
Proposition 2.3.4), but disallowing two-wayness in the instance ensures tractability
of all queries. This latter result (Proposition 2.3.6) is established by showing that all
queries then essentially collapse to a one-way path: we do so by assigning a level
to all vertices of the query using a notion of graded DAGs [Odagiri and Goto 2014;
Schröder 2016].

We then focus on connected queries, and first study the labeled setting in
Section 2.4; see Table 2.2 for a summary of results. We show that disallowing instance
branching ensures the tractability of all connected queries (Proposition 2.4.10), and
that disallowing branching in the query and two-wayness in the instance and query
also does (Proposition 2.4.9). These two results are shown by computing the Boolean
lineage of the query as a DNF, and proving that we can tractably evaluate its
probability because it is β-acyclic [Brault-Baron, Capelli, and Mengel 2015], thanks
to the restricted instance structure. For the first result, this process further relies on
a CSP tool to show the tractability of homomorphism testing in labeled two-way
paths, a condition dubbed the X-property [Gutjahr, Welzl, and Woeginger 1992;
Gottlob, Koch, and Schulz 2006]. We show the intractability of all other cases
(Propositions 2.4.1, 2.4.3, and 2.4.4), by coding #SAT-reductions.

We last study the unlabeled setting for connected queries in Section 2.5. We show
that disallowing query branching and two-wayness suffices to obtain tractability,
provided that the instance is a polytree (Proposition 2.5.2): this result is proven by
building in PTIME a deterministic tree automaton to test the length of the longest
path, and compiling a d-DNNF lineage as in [Amarilli, Bourhis, and Senellart 2015].
This result immediately extends to branching queries, as they are equivalent to
paths in this case (Proposition 2.5.3). We complete the picture by showing that, by
contrast, allowing two-wayness in the query leads to intractability on polytrees, by a
variant of our coding technique (Proposition 2.5.4).

Our results completely classify the complexity of probabilistic conjunctive query
evaluation for all combinations of instance and query restrictions, in the labeled and

33

CHAPTER 2. LIMITS OF COMBINED TRACTABILITY OF PQE

unlabeled setting. In particular, our tractability results are essentially always about
paths, i.e., when the instance or the query is a path, or can be converted to a path.

2.2 Preliminaries on Probabilistic Graph Homo-
morphism

We first provide some formal definitions of the concepts we use in this chapter, and
introduce the probabilistic graph homomorphism problem and the different classes of
graphs that we consider.

Labels. Througout this chapter, σ will always denote a finite non-empty set of
labels. When |σ| > 1, we say that we are in the labeled setting; when |σ| = 1, in the
unlabeled setting. We will always consider that σ is fixed, i.e., σ will never be part of
the input for problems that we consider.

Graphs and homomorphisms. We consider directed graphs with edge labels
from σ, as defined in Section 1.1. We recall that we do not allow multi-edges: an
edge e has a unique label λ(e). When |σ| = 1, i.e., in the unlabeled setting, we
simply write (V,E) for the graph and a→ b for an edge.

A graph H ′ = (V ′, E ′, λ′) is a subgraph of the graph H = (V,E, λ), written
H ′ ⊆ H, when we have V ′ = V , E ′ ⊆ E, and when λ′ is λ|E′ , i.e., the restriction of λ
to E ′. (Note that, in a slightly non-standard way, we impose that subgraphs have
the same set of vertices than the original graph; this will simplify some notation.)

A graph homomorphism h from some graph G = (VG, EG, λG) to some graph H =
(VH , EH , λH) is a function h : VG → VH such that, for all (u, v) ∈ EG, we have
(h(u), h(v)) ∈ EH and further λH((h(u), h(v))) = λG((u, v)). In other word, it is
a homomorphism between G and H, when seen as relational instances. A match
of G in H is the image in H of such a homomorphism h, i.e., the graph with
vertices h(u) for u ∈ VG and edges (h(u), h(v))) for (u, v) ∈ EG. Note that two
different homomorphisms may define the same match. Also note that two distinct
nodes of G could have the same image by h, so a match of G in H is not necessarily
homomorphic to G. We write G; H when there exists a homomorphism from G
to H. We call two graphs G and G′ equivalent if, for any graph H, we have G; H
iff G′ ; H. It is easily seen that G and G′ are equivalent if and only if G; G′ and
G′ ; G.

Probabilistic graphs. A probability distribution on graphs is a function Pr from a
finite set W of graphs (called the possible worlds of Pr) to values in [0; 1] represented
as rational numbers, such that the probabilities of all possible worlds sum to 1,
namely, ∑H∈W Pr(H) = 1.

A probabilistic graph is intuitively a concise representation of a probability
distribution. Formally, it is a pair (H, π) where H is a graph with edge labels from σ
and where π is a probability function π : E → [0; 1] that maps every edge e of H
to a probability π(e), represented as a rational number. Note that each edge (u, v)
in a probabilistic graph (H, π) is annotated both with a label λ((u, v)) ∈ σ, and a
probability π((u, v)).

34

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

H:

•

•

•

•

1R

0.1
R

R 0.1

R
0.05

S
0.7

R
0.8

Figure 2.1 – Example probabilistic graph H

The probability distribution Pr defined by the probabilistic graph (H, π) is obtained
intuitively by considering that edges are kept or deleted independently according to
the indicated probability. Formally, the possible worlds W of Pr are the subgraphs
of H = (V,E, λ), and for H ′ = (V,E ′, λ|E′) ⊆ H we define Pr(H ′) ··=

∏
e∈E′ π(e)×∏

e∈E\E′(1− π(e)). Note that, when H has edges labeled with 0 or 1, some possible
worlds are given probability 0 by π.

Example 2.2.1. Figure 2.1 represents a probabilistic graph (H, π) on signature
σ = {R, S}, where each edge is annotated with its label and probability value. There
are 26 possible worlds, 25 of which have non-zero probability.

The possible world where all R-edges are kept and all S-edges are removed has
probability 0.1× 1× 0.8× 0.1× 0.05× (1− 0.7). C

Probabilistic graph homomorphism. The goal of this chapter is to study the
probabilistic homomorphism problem PHom, for the set of labels σ that we fixed:
given a graph G on σ and a probabilistic graph (H, π) on σ, compute the probability
that there exists a homomorphism from G to H under Pr, i.e., the sum of the
probabilities of all subgraphs H ′ of H to which G has a homomorphism:

Pr(G; H) ··=
∑
H′⊆H
G;H′

Pr(H ′).

Example 2.2.2. Continuing the example, consider the PHom problem for the graph
G : R−→ S−→ S←− and the example probabilistic graph (H, π) in Figure 2.1. The graph G
intuitively corresponds to the conjunctive query ∃xyzt R(x, y)∧ S(y, z)∧ S(t, z). Of
course, we can compute Pr(G; H) by summing over the possible worlds of H, but
this process is generally intractable. Here, by considering the possible matches of G
in H, we can see that Pr(G; H) = 0.7× (1− (1− 0.1)× (1− 0.8)). C

Following database terminology, we call G the query graph and (H, π) the (prob-
abilistic) instance graph. Indeed, the PHom problem is easily seen to be equivalent
(if we allow multi-edges) to conjunctive query evaluation on probabilistic tuple
independent relational databases, over binary relational signatures.

Note that we measure the complexity of PHom as a function of both the query
graph G and of the instance graph (H, π), i.e., in database terminology, we measure
the combined complexity [Vardi 1995] of probabilistic query evaluation. As we
explained, the PHom problem is known to be #P-hard in general [Dalvi and Suciu
2007] (even for some fixed query graphs): by this, we mean that it is hard (under
polynomial-time reductions) for the class #P. To achieve tractable complexity for
PHom, we will classify the complexity of PHom under various restrictions. We say
that the complexity of some variant of the problem is tractable if it can be solved in

35

CHAPTER 2. LIMITS OF COMBINED TRACTABILITY OF PQE

1WP
2WP

DWT
PT Connected All⊆ ⊆
⊆ ⊆⊆ ⊆

Figure 2.2 – Inclusions between classes of graphs

R S S T

R S S T R

Figure 2.3 – Examples of labeled 1WP (top) and 2WP (bottom) for σ = {R, S, T}

PTIME. All PHom variants that we study will be shown either to be tractable in
this sense, or to be #P-hard.

We will study restrictions of PHom first by distinguishing the labeled and unlabeled
settings. We write PHomL for the problem when the fixed label set σ is such that
|σ| > 1, and PHom6 L when the fixed σ is such that |σ| = 1.

The second restriction concerns the input query graphs and instance graphs. We
will model restrictions on these graphs by requiring them to be taken from specific
graph classes, where by graph class we simply mean an infinite set of graphs. Inspired
by the notation used in CSP, for two classes G and H of graphs in the labeled
setting, we denote PHomL(G,H) the problem that takes as input a graph G in class G
and a probabilistic graph (H, π) with H in class H, and computes the probability
Pr(G; H). We denote the same problem in the unlabeled setting by PHom6 L(G,H).

Graph classes. The graph classes which we study in this chapter are defined as
follows, on a graph G with edge labels from σ:

• G is a one-way path (1WP) if it is of the form a1
R1−→ · · · Rm−1−−−→ am for some m,

with all a1, . . . , am being pairwise distinct, and with Ri ∈ σ for 1 6 i < m.

• G is a two-way path (2WP) if it is of the form a1− · · ·− am, with all a1, . . . , am

being pairwise distinct, and each − being Ri−→ or Ri←− (but not both) for some
label Ri ∈ σ.

• G is a downwards tree (DWT) if it is a rooted unranked tree (each node can
have an arbitrary number of children), with all edges going from parent to
child in the tree.

• G is a polytree (PT) if its underlying undirected graph is an unranked tree,
without restriction on edge directions.

We also consider the class Connected of connected graphs, and write All the class of
all graphs. The inclusion diagram between our graph classes is shown in Figure 2.2.
We reproduce here (as Figures 2.3 and 2.4) Figures 1 and 2 from the (general)
introduction (page 5) for examples of a labeled one-way path and two-way path, and
of an unlabeled downwards tree and polytree.

We also introduce the classes ⊔ 1WP (resp., ⊔ 2WP, ⊔DWT, ⊔PT) of graphs that
are disjoint unions of 1WP (resp., 2WP, DWT, PT), that is, of possibly disconnected
graphs whose connected components are 1WP (resp., 2WP, DWT, PT).

36

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Figure 2.4 – Examples of unlabeled DWT (left) and PT (right)

Our graph classes were chosen to be representative of different features of graphs
that will have an impact in the complexity of the PHom problem, namely, labeling,
two-wayness, branching, and disconnectedness. Indeed, 2WP (resp., PT) adds two-
wayness to 1WP (resp., DWT); DWT (resp., PT) adds branching to 1WP (resp.,
2WP); and ⊔ 1WP (resp., ⊔ 2WP, ⊔DWT, ⊔PT) adds disconnectedness to 1WP
(resp., 2WP, DWT, PT).

In the following sections, we investigate the complexity of probabilistic graph
homomorphism for these various classes of conjunctive queries and instances.

2.3 Disconnected Case
We first consider the case where either the query or probabilistic instance graph is
disconnected, i.e., not in the Connected class. When the query is disconnected, we
show in this section that the probabilistic homomorphism problem is #P-hard in all
but the most restricted of cases (in particular in the labeled setting), which justifies
that we restrict to connected queries in the rest of the chapter. On the other hand,
we will show that disconnectedness in the probabilistic instance graph has essentially
no impact on combined complexity.

2.3.1 Labeled Disconnected Queries
We establish our main intractability result on disconnected queries by reduction from
the #Bipartite-Edge-Cover problem on undirected graphs:

Definition 2.3.1. An undirected unlabeled graph is bipartite if its vertices can be
partitioned into two classes such that no edge connects two vertices of the same class.
An edge cover of an undirected graph is a subset of its edges such that every vertex is
incident to at least one edge of the subset. #Bipartite-Edge-Cover is the problem,
given a bipartite undirected graph, of counting its number of edge covers. C

This problem was shown in [Khanna, Roy, and Tannen 2011] to be intractable.

Theorem 2.3.2 ([Khanna, Roy, and Tannen 2011]). The #Bipartite-Edge-Cover
problem is #P-complete.

We can then use this result to show intractability for the simplest forms of
disconnected query graphs (⊔ 1WP) on the simplest forms of probabilistic instance
graphs (1WP), in the labeled case:

Proposition 2.3.3. PHomL(⊔ 1WP, 1WP) is #P-hard.

37

CHAPTER 2. LIMITS OF COMBINED TRACTABILITY OF PQE

Γ = (X t Y,E):

x1

x2

y1

y2

y3

e1

e2

e3e4

G:
C L V (x1)
C L L V (x2)

V R C (y1)
V R R C (y2)
V R R R C (y3)

H:
C L V

(e1)
R C L V

(e2)
R R C L V

(e3)
R R R C L L V

(e4)
R C

Figure 2.5 – Illustration of the proof of Proposition 2.3.3, for the bipartite graph Γ.
Dashed edges have probability 1

2 . We show (within brackets) the edge of Γ coded
by each V -labeled edge in the instance graph H, and the vertex of Γ coded by each
1WP component of the query graph G.

Proof. We reduce from #Bipartite-Edge-Cover. Let Γ = (X tY,E) be an input to
#Bipartite-Edge-Cover, i.e., a bipartite undirected graph with parts X and Y ; we
write X = (x1, . . . , xnl), Y = (y1, . . . , ynr), E = (e1, . . . , em), and for all 1 6 i 6 m
we write ei = (xli , yri), with 1 6 li 6 nl and 1 6 ri 6 nr.

We first construct in PTIME the 1WP probabilistic graph (H, π): see Figure 2.5
for an illustration of the construction. Specifically, for 1 6 j 6 m, we construct the
following 1WP:

Hej
··= (L−→)lj V−→ (R−→)rj .

The graph H is then defined as:
C−→ He1

C−→ He2
C−→ · · · C−→ Hem

C−→ .

We define π as follows: edges labeled by V have probability 1
2 (intuitively coding

whether an edge is part of the candidate cover), all others have probability 1.
We then construct the query graph G ∈ ⊔ 1WP, coding the edge covering con-

straints. For every 1 6 i 6 nl, the graph G contains the 1WP component C−→ (L−→)i V−→,
and for every 1 6 i 6 nr, the graph G contains the 1WP component V−→ (R−→)i C−→.

It is clear that H is in 1WP, G is in ⊔ 1WP and that both can be constructed
in PTIME from Γ. We now show that Pr(G ; H) is exactly the number of edge
covers of Γ divided by 2m, so that the computation of the latter reduces in PTIME
to the computation of the former, concluding the proof.

To see why, we define a bijection between the subsets of edges of Γ, seen as
valuations ν : E → {0, 1}, to the possible worlds H ′ of H of non-zero probability.
We do so in the expected way: keep the one V -edge V−→ of Hei iff ν(ei) = 1. We now
show that there is a homomorphism from G to H ′ if and only if ν is an edge cover
of Γ. As the number of H ′’s such that there is a homomorphism from G to H ′ is
exactly Pr(G; H)× 2m, this will allow us to conclude.

Indeed, if there is a homomorphism h from G to H ′, then, considering the 1WP
component in G that codes the constraint on xi (resp., on yi), its image must be of
the form C−→ (L−→)i V−→ (resp., V−→ (R−→)i C−→), but then by construction of H the V -fact
must correspond to an edge e such that xi (resp., yi) is adjacent to e, so that we have
ν(e) = 1 and so xi (resp., yi) is covered. As this is true for each 1WP component, all
the vertices are covered and ν is indeed an edge cover of Γ.

38

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Table 2.1 – Tractability of PHom6 L for disconnected queries (Section 2.3.2). Results
also hold when instances are unions of the indicated classes.

↓G H→ 1WP 2WP DWT PT Connected⊔ 1WP 2.5.1⊔ 2WP 2.3.4⊔DWT 2.5.3⊔PT
All 2.3.6

PTIME #P-hard Numbers given in cells correspond to the propositions for border cases, the
remaining cells can be filled using the inclusions from Figure 2.2.

Conversely, suppose that ν is an edge cover of Γ, then for every vertex xi (resp.,
yi) we know that there exists 1 6 j 6 m such that ν(ej) = 1 and lj = i (resp.,
rj = i), and we can use the V -fact corresponding to ej and the surrounding facts to
build the homomorphism as above from each component of G to H ′.

The proof of Proposition 2.3.3 crucially requires multiple labels in the signature.
Indeed, it is easy to see that, in the unlabeled setting, a query graph in ⊔ 1WP (or even
in ⊔DWT) is equivalent to the longest path within the graph, and we will show further
(Proposition 2.5.3) that PHom6 L(1WP, 1WP) (indeed, even PHom6 L(⊔DWT,PT)) is
PTIME.

2.3.2 Unlabeled Disconnected Queries
In light of the intractability result of Proposition 2.3.3, let us now consider the
unlabeled setting. We show in Table 2.1 where the tractability frontier lies. First,
introducing two-wayness in both query and instance graphs is enough to obtain an
analogue of the intractability of Proposition 2.3.3:

Proposition 2.3.4. PHom6 L(⊔ 2WP, 2WP) is #P-hard.

Proof. We reduce, again, from the #P-hard problem #Bipartite-Edge-Cover. The
idea of the reduction is similar to that used in the proof of Proposition 2.3.3, but we
face the additional difficulty of not being allowed to use labels. Fortunately, we can
use two-wayness to simulate them.

Let Γ = (X t Y,E) be an input of #Bipartite-Edge-Cover. Consider the
reduction from Γ used in the proof of Proposition 2.3.3 and the 1WP probabilistic
graph (H, π) and the ⊔ 1WP query graph G that were constructed. We construct
from H and G the unlabeled probabilistic graph H ′ and unlabeled ⊔ 2WP query
graph G′ as follows:

• replace each L- or R-labeled edge a L−→ b or a R−→ b in H and G by 3 edges
a→→← b;

• replace each C-labeled edge a C−→ b of H and G by 3 edges a←←← b;

• replace each V -labeled edge a V−→ b of H and G by 6 edges a→→→→→← b.

39

CHAPTER 2. LIMITS OF COMBINED TRACTABILITY OF PQE

All edges of H ′ have probability 1, except the first edge of each sequence of 6 edges
that replaced a V -labeled edge, which has probability 1

2 .
Consider a 1WP component of G that codes the constraint on a vertex from Y ,

e.g V−→ (R−→)i C−→, which was rewritten in G′ into →→→→→← (→→←)i ←←←. A
homomorphism from this component into a possible world J ′ of H ′ must actually
map to a rewriting of a V−→ (R−→)i C−→ sequence in H ′: indeed, the key observation
is that the first 5 → edges can only be matched to 5 consecutive → in J ′, which
only exist as the first 5 edges of a sequence of 6 edges that replaced a V -labeled
fact in H. There is no choice left to match the subsequent edges without failing. A
similar observation holds for components coding the constraints on vertices from X

(C−→ (L−→)i V−→). Hence, we can show correctness of the reduction using the same
argument as before.

Allowing two-wayness in both the query and the instance graphs thus allows us
to simulate labels, so that PHom6 L is intractable. We will study in Section 2.5 what
happens for query graph classes without two-wayness (i.e., 1WP, DWT, and unions
thereof); so let us now consider the case of instance graph classes where two-wayness
is forbidden, i.e., is in ⊔DWT. As we will show, PHom6 L of arbitrary query graphs
on such ⊔DWT instance graphs is tractable. To this end, we need to introduce level
mappings of acyclic directed graphs (DAGs):

Definition 2.3.5. A level mapping of a DAG G is a mapping µ from the vertices
of G to Z such that for each directed edge u→ v of G we have µ(v) = µ(u)− 1. We
call G a graded DAG if it has a level mapping. C

An example of graded DAG together with a level mapping is given in Figure 2.6.
It is easy to see (and shown in Proposition 1 of [Odagiri and Goto 2014]) that a
DAG G is graded iff there are no two vertices u, v and two directed paths χ, χ′ in G
from u to v such that χ and χ′ have different lengths (in the terminology of [Odagiri
and Goto 2014], G does not have a jumping edge). Graded DAGs are related to the
classical notion of graded ordered set [Schröder 2016], and the level mapping function
has been called in the literature a depth function [Odagiri and Goto 2014], a grading
function [Schröder 2016], a set of levels [Schröder 2016], or a rank function [Stanley
1997].

To obtain such a level mapping, we can proceed by picking one vertex in each
connected component of G, mapping each of these vertices to level 0, and then
exploring G by a breadth-first traversal and assigning the level of each vertex
according to the level of the vertex used to reach it, visiting all edges and defining the
image of each vertex. It is clear that this process yields a level mapping of G unless
it tries to assign two different levels to the same vertex v, which cannot happen if
there is no jumping edge [Odagiri and Goto 2014, Proposition 1].

We will now use the notion of graded DAG to show:

Proposition 2.3.6. PHom6 L(All,⊔DWT) is PTIME.

Proof. Let G be an arbitrary unlabeled graph and (H, π) a probabilistic graph with
H ∈ ⊔DWT. We observe that if G contains a directed cycle, then it cannot have a
homomorphism to a subgraph of H (which is necessarily acyclic), so Pr(G; H) = 0.
Hence, it suffices to study the case where the query graph G is a DAG.

40

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

2

0
1

3
4
5

Figure 2.6 – A DAG with a level mapping (dashed lines), see Definition 2.3.5.

Likewise, if there are two vertices u, v of G and directed paths χ, χ′ in G from
u to v such that χ and χ′ have different lengths, then again G cannot have a
homomorphism to a subgraph of H: indeed, any subgraph of H is a directed forest
and there is at most one directed path between each pair of nodes. So we can assume
without loss of generality that there is no such pattern in G, and G is therefore
graded.

Letting µ be a level mapping of G, we call the difference of levels of µ the
difference between the largest and smallest value of its image; the difference of levels
of G itself is the minimum difference of levels of a level mapping of G. As the level
mappings of G only differ in the constant value that they add to all vertices of each
connected component, the difference of levels can clearly be computed in PTIME by
shifting each connected component so that its minimal level is zero, and computing
the difference; we call the result of the shifting the minimal level mapping of G.

Letting m be the difference of levels of G, we now make the following claim: in
any subgraph H ′ of H, there is a homomorphism from G to H ′ if and only if H ′ has
a directed path of length m.

This claim implies the result. Indeed, we can first check in PTIME if G has no
cycles and has no pairs of paths of different lengths between two endpoints, and
return 0 if the conditions are violated. We can then compute in PTIME the difference
of levels m of G using the observations above. Now, on any subgraph of H, the query
G is equivalent to the 1WP graph →m, so our result follows from Proposition 2.5.3
and Lemma 2.3.7 (that we will prove later).

All that remains is to prove the claim. We first note that it suffices to show the
claim under the assumption that G is connected. Indeed, if the claim is true for
all connected G, then the claim is implied for arbitrary G by considering each of
its connected components, applying the claim, and observing that G has a suitable
homomorphism to H ′ iff each one of its connected components does, i.e., iff H ′

has a directed path whose length is the maximal difference of levels of a connected
component of G, and this is precisely the difference of levels m of G. Hence, we now
prove the claim for connected G.

We start with the backwards direction of the claim. It is easily seen that there is
a homomorphism h′ from G to the 1WP graph →m. Indeed, we define h′ according
to the minimal level mapping µ of G: we set h′ to map all the vertices whose level is
i to the (m− i)-th vertex of →m. From the existence of h′, we know that, whenever
there is a homomorphism h from →m to H ′ (i.e., when H ′ has a directed path of
length m), then h ◦ h′ is a homomorphism from G to H ′, which shows the backwards
implication.

41

CHAPTER 2. LIMITS OF COMBINED TRACTABILITY OF PQE

For the forward direction of the claim, suppose that there exists a homomorphism
h from G to H ′, and let m be the difference of levels of G. Because G is connected
and H ′ is in ⊔DWT, the image of h is actually a DWT, call it T . Now it is easy to
see that the image of a node that has level m− i in G has depth i in T , so that T
(and so H ′) contains the 1WP →m. This finishes the proof of the converse and thus
the proof of Proposition 2.3.6.

2.3.3 Disconnected Instances
We conclude our study of the disconnected case with the case of disconnected instance
graphs, which we show to be less interesting than the disconnected query graphs
that we studied so far. Specifically, when the query is connected, PHom on arbitrary
instances can reduce in PTIME to PHom of the same queries on a corresponding
class of connected instances:

Lemma 2.3.7. For any class of graphs H, let H′ be the class of connected components
of graphs in H. Then for any class of connected graphs G, PHomL(G,H) reduces in
PTIME to PHomL(G,H′), and PHom6 L(G,H) reduces in PTIME to PHom6 L(G,H′).

Proof. Let G ∈ G, H ∈ H, and write H = H ′1 t . . . tH ′n: we have H ′i ∈ H′ for all
1 6 i 6 n. Let π be a probability distribution over H: the independence assumption
ensures that the edges of any H ′i are pairwise independent from those of any H ′j for
i 6= j. Now, as G is connected, any image of a homomorphism from G to H must
actually be included in some H ′i. Thus, the computation of Pr(G; H) reduces to
that of the Pr(G; H ′i) for 1 6 i 6 n, as follows:

Pr(G; H) = 1−
∏

16i6n
(1− Pr(G; H ′i)).

We last discuss the case when both the query and instance graphs are disconnected.
Let us consider the results of Table 2.1 for connected instance graphs. Clearly, any
hardness result for a connected class carries over to the corresponding disconnected
class. Conversely, we have shown in Proposition 2.3.6 that PHom6 L(All,⊔DWT) is
PTIME; this implies that all tractable cases in Table 2.1 also hold for unions of the
indicated instance classes, except PHom6 L(⊔ 1WP,⊔PT) and PHom6 L(⊔DWT,⊔PT).
But we have noted at the end of Section 2.3.1 that, in the unlabeled setting, ⊔ 1WP
or ⊔DWT query graphs are equivalent to 1WP query graphs: thus, Lemma 2.3.7,
together with the tractability of PHom6 L(1WP,PT), implies that PHom6 L(⊔ 1WP,⊔PT)
and PHom6 L(⊔DWT,⊔PT) are both in PTIME. Hence, the results of Table 2.1 also
hold when instances are unions of the indicated classes.

We have thus completed our study of PHomL and PHom6 L for disconnected
instances and/or disconnected queries. We accordingly focus on connected queries
and instances in the next two sections.

2.4 Labeled Connected Queries
In this section, we focus on the labeled setting, i.e., the PHomL problem, for classes
of connected queries and instances. Table 2.2 shows the entire classification of the
labeled setting for the classes that we consider.

42

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Table 2.2 – Tractability of PHomL in the connected case (Section 2.4)

↓G H→ 1WP 2WP DWT PT Connected
1WP 2.4.9 2.4.1
2WP 2.4.4
DWT 2.4.3
PT

Connected 2.4.10
PTIME #P-hard Numbers given in cells correspond to the propositions for border cases, the
remaining cells can be filled using the inclusions from Figure 2.2.

Intuitively, we show intractability for polytree instance graphs, and for downward
trees instance graphs when the query graphs allow either two-wayness or branching.
Conversely, we show tractability of one-way path query graphs on downward trees,
and of arbitrary connected queries on two-way path instances. We first present the
hardness results, and then the tractability results.

2.4.1 Hardness Results
We recall that, if we allow arbitrary connected unlabeled probabilistic instance graphs
(or even just 4-partite graphs), then computing the probability that there exists
a path of length 2 is already #P-hard: this is shown in [Suciu, Olteanu, Ré, and
Koch 2011], and we will state this result in our context as Proposition 2.5.1 in the
next section. Hence, if we want to obtain PTIME complexity for PHom, we need
to restrict the class of instances. We can start by restricting the instances to be
polytrees, but as we show, this does not suffice to ensure tractability:
Proposition 2.4.1. PHomL(1WP,PT) is #P-hard.

To show this result, we will reduce from the Boolean formula probability compu-
tation problem, as defined in Section 1.7. This problem is known to be #P-hard,
even under severe restrictions on the formula ϕ. We will use the #PP2DNF formulation
of the above problem, which is #P-hard [Provan and Ball 1983; Suciu, Olteanu, Ré,
and Koch 2011]:
Definition 2.4.2. Recall from Section 1.7 that a positive DNF is a Boolean formula
that is a disjunction of (conjunctive) clauses that are themselves conjunctions of
variables of X . Hence we can write a positive DNF ϕ as

ϕ =
∨

16j6m

 ∧
16i6nj

Xlj,i

 ,
and we assume that each variable of X occurs in ϕ, as we can eliminate the others
without loss of generality.

A positive partitioned 2-DNF (PP2DNF) is a positive DNF ϕ on a partitioned set
of variables where each clause contains one variable from each partition. Formally, the
variables of ϕ are X tY , where we write X = {X1, . . . , Xn1} and Y = {Y1, . . . , Yn2},
and ϕ is of the form ∨

j=1...m(Xxj ∧ Yyj) with 1 6 xj 6 n1 and 1 6 yj 6 n2 for
1 6 j 6 m.

The #PP2DNF problem is the Boolean function probability computation problem
when we impose that π maps every variable to 1/2, and that ϕ is a PP2DNF. C

43

CHAPTER 2. LIMITS OF COMBINED TRACTABILITY OF PQE

H: R

X1 X2 Y1 Y2

X1,3

X1,2

X1,1

X2,3

X2,2

X2,1

Y1,1

Y1,2

Y1,3

Y2,1

Y2,2

Y2,3

A1,1

A1,2

A2,3

B1,2

B2,1

B2,3

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

G: T−−→ S−−→ S−−→ S−−→ S−−→ S−−→ S−−→ T−−→

Figure 2.7 – Illustration of the proof of Proposition 2.4.2 for the PP2DNF formula
X1Y2 ∨X1Y1 ∨X2Y2. Dashed edges have probability 1

2 , all others have probability 1.

We show Proposition 2.4.1 by reducing from #PP2DNF:

Proof of Proposition 2.4.1. See Figure 2.7 for an illustration of the construction for
the PP2DNF formula X1Y2 ∨X1Y1 ∨X2Y2.

From the PP2DNF formula ϕ, we construct a PT probabilistic instance where
each branch starting at the root describes a variable of the formula. The first edge is
probabilistic and represents the choice of valuation. The edges are oriented upwards
or downwards depending on whether the variable belongs to X or to Y. We add
a special gadget at different depths of the branch to code the index of each of the
clauses where the variable occurs. Formally, we construct the following {S, T}-labeled
probabilistic graph H:

• The vertices of H are {R} t {X1, . . . Xn1} t {Y1, . . . , Yn2} t {Xi,j | 1 6 i 6
n1, 1 6 j 6 m} t {Yi,j | 1 6 i 6 n2, 1 6 j 6 m} t {Axj ,j | 1 6 j 6
m} t {Byj ,j | 1 6 j 6 m}.

• The edges of H, all of which have probability 1 except when specified, are:

– Xi
S−→ R for all 1 6 i 6 n1 and R

S−→ Yi for all 1 6 i 6 n2, all having
probability 1

2 and intuitively coding the valuation of each variable;

– For all 1 6 i 6 n1, the edge Xi,m
S−→ Xi and the edges Xi,j

S−→ Xi,j+1 for
all 1 6 j 6 m− 1;

– For all 1 6 i 6 n2, the edge Yi S−→ Yi,1 and the edges Yi,j S−→ Yi,j+1 for all
1 6 j 6 m− 1;

– For all 1 6 j 6 m, the edges Axj ,j
T−→ Xxj ,j and Yyj ,j

T−→ Byj ,j, intuitively
indicating that variables Xxj and Yyj belong to clause j.

44

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

We then code satisfaction of the formula by a query that tests for a path of a
specific length that starts and ends with the gadget. The query has a match exactly
on possible worlds where we have set two variables to true such that the sum of
the depths of the gadgets corresponds to the query length: this happens iff the
two variables occur in the same clause. Specifically, the {S, T}-labeled graph G is
T−→ (S−→)m+3 T−→. It is clear that G is a 1WP query graph, H is a polytree and that
both can be constructed in PTIME from ϕ. We now show that Pr(G; H) is exactly
the number of satisfying assignments of ϕ divided by 2n, so that the computation of
one reduces in PTIME to the computation of the other, concluding the proof. To see
why, we define a bijection between the valuations ν of {X1, . . . , Xn1} t {Y1, . . . , Yn2}
to the possible worlds H ′ of H that have non-zero probability, in the expected way:
keep the edge Xi

S−→ R (resp., R S−→ Yi) iff Xi (resp., Yi) is assigned to true in the
valuation. We then show that there is a homomorphism from G to H ′ if and only if
ϕ evaluates to true under ν.

Indeed, if there is a homomorphism from G to H ′, then by considering the only
possible matches of the T -edges, one can check easily that the image of the match in
H ′ must be of the following form for some 1 6 j 6 m: Axj ,j

T−→ Xxj ,j
S−→ Xxj ,j+1

S−→
· · · S−→ Xxj ,m

S−→ Xxj
S−→ R

S−→ Yyj′
S−→ Yyj′ ,1

S−→ Yyj′ ,2
S−→ · · · S−→ Yyj′ ,j′

T−→ Byj′ ,j
′ ; further,

from the length of the S-path we must have (m− j) + 4 + (j′ − 1) = m+ 3, so that
we must have j = j′. Then, by construction, Xxj and Yyj belong to clause j, so the
valuation satisfies ϕ. Conversely, suppose that the valuation satisfies ϕ, then for
some 1 6 j 6 m we know that Xxj and Yyj are assigned to true by the valuation,
and so we can build the homomorphism as above from G to H ′.

Hence, restricting instances to polytrees is not sufficient to ensure tractability,
even for 1WP query graphs. We must thus restrict the instance further, by disallowing
one of the two remaining features, namely branching and two-wayness. The first
option of disallowing branching, i.e., requiring the instance to be a 2WP, is studied
in Section 2.4.2 below, where we show that the problem is tractable for arbitrary
query graphs.

The second option is to forbid two-wayness on the instance, i.e., restrict it to be
a DWT. In this case, we first show that intractability holds even when we also forbid
two-wayness in the query graph, i.e., we also restrict it to be a DWT:

Proposition 2.4.3. PHomL(DWT,DWT) is #P-hard.

To show this result, we will reduce from the problem #PCNF, which is the Boolean
formula probability computation problem when we again impose that π maps every
variable to 1/2 and ϕ is a positive CNF. This problem is #P-hard, as there is a
straightforward reduction from #PP2DNF.

Proof of Proposition 2.4.3. Let X = {X1, . . . , Xn} be a set of variables and ϕ =∧
16j6m

(∨
16i6nj Xlj,i

)
be a positive CNF on X (where Xlj,i ∈ X), where we assume

that each variable occurs in ϕ. From ϕ, we construct a DWT probabilistic instance
where we have probabilistic edges from the root to distinct nodes representing the
variables. These edges represent the choice of the valuation. For every clause Cj
and variable X appearing in Cj , we have a path of length j starting from the vertex
representing the variable X. Formally, we construct the following {S, T}-labeled
probabilistic graph H:

45

CHAPTER 2. LIMITS OF COMBINED TRACTABILITY OF PQE

• The vertices of H are {R} ∪ {X1, . . . , Xn} ∪ {Ci,j,k | 1 6 j 6 m, 1 6 i 6
nj, 1 6 k 6 j} ∪ {C ′i,j | 1 6 j 6 m, 1 6 i 6 nj}

• The edges of H, all of which have probability 1 except when specified, are:

– R
S−→ Xi for all 1 6 i 6 n, all having probability 1/2 and intuitively coding

the valuation of each variable;
– For all 1 6 j 6 m and all 1 6 i 6 nj (i.e., for each variable occurrence),

the edge Xlj,i
R−→ Cj,i,1 and edges Cj,i,j R−→ Cj,i,k+1 for 1 6 k 6 j − 1; this

path intuitively codes that variable Xli,j occurs in the j-th clause;

– For all 1 6 j 6 m and all 1 6 i 6 nj , the edge Cj,i,j S−→ C ′j,i, which we use
to detect the end of the path.

We then code satisfaction of the formula by a query that tests for a tree whose
branches correspond to the clauses of ϕ. The {S, T}-labeled graph G has as vertices
{R} ∪ {Cj,k | 1 6 j 6 m, 0 6 k 6 j} ∪ {C ′j | 1 6 j 6 m}. For each 1 6 j 6 m, G
has one edge R S−→ Cj,0, a directed R-path Cj,0 R−→ Cj,1

R−→ · · · R−→ Cj,j, and one edge
Cj,j

S−→ C ′j . To show that Pr(G; H) is exactly the number of satisfying assignments
of ϕ divided by 2n, we define a bijection between the valuations ν of X to the possible
worlds H ′ of H that have non-zero probability, in the expected way: keep the edge
R

S−→ Xi iff Xi is assigned to true in the valuation. It is then clear that any valuation
ν satisfies ϕ if and only if G has an homomorphism to H ′.

Moreover, if we forbid branching in the query graph instead of two-wayness,
requiring it to be a 2WP, then intractability still holds:
Proposition 2.4.4. PHomL(2WP,DWT) is #P-hard.
Proof. The idea of the reduction is the same as that of Proposition 2.4.3, except
that we code satisfaction of the formula by a 2WP query. From the positive CNF
ϕ we construct the same probabilistic instance graph H as in Proposition 2.4.3.
Concerning the query graph G, we define for 1 6 j 6 m the following 2WP graphs:

Gj = S−→ (R−→)j S−→ S←− (R←−)j

Then, G is defined as S−→ G1
S←− G2

S←− . . .
S←− Gj

S←−, which we construct in PTIME.
We then observe that G has an homomorphism to a subgraph H ′ of H iff the query
graph constructed in Proposition 2.4.3 has an homomorphism to H ′, which concludes.

Thus, on DWT instances, the only remaining case is when the query is a one-way
path. We will now show in the section below that this case is tractable, in addition
to the case of arbitrary queries on 2WP instances that we left open above.

2.4.2 Tractability Results
The general proof technique to obtain PTIME combined complexity in this section
is inspired by the probabilistic database literature [Suciu, Olteanu, Ré, and Koch
2011]: compute the lineage of G on H as a Boolean formula in positive disjunctive
normal form (DNF), then compute its probability. We already defined lineages in
Section 1.7, but we recall here the definition for our graph setting:

46

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Definition 2.4.5. Let G be a query graph and (H, π) be a probabilistic graph with
edge set E. For any valuation ν : E → {0, 1}, we denote by ν(H) the possible world
of H where each edge e ∈ E is kept iff ν(e) = 1. Letting ϕ be a Boolean function
whose variables are the edges of E, we say that ϕ captures the lineage of G on H if,
for any valuation ν : E → {0, 1}, the function ϕ evaluates to 1 under ν iff we have
G; ν(H). C

Lineage representations allow us to reduce the PHom problem to the Boolean
probability computation problem on the lineage function. Formally, for any query
graph G and probabilistic graph (H, π), given a Boolean function ϕ that captures
the lineage of G on H, we compute the answer to PHom on G and (H, π) as the
probability Pr(ϕ, π) of ϕ under π: it is immediate by definition that these two
quantities are equal.

Of course, computing a lineage representation does not generally suffice to show
tractability, because, as we explained in Section 1.7, the Boolean formula probability
computation problem is generally intractable. However, computing a Boolean lineage
allows us to leverage the known tractable classes of Boolean formulas. Specifically,
we will show how to use the class of β-acyclic positive DNF formulas, which are
known to be tractable [Brault-Baron, Capelli, and Mengel 2015]. We define this
notion, by first recalling the notion of a β-acyclic hypergraph, and then defining a
β-acyclic positive DNF :

Definition 2.4.6. Let H = (V,E) be a hypergraph (see Section 1.1) that does
not contain the empty hyperedge. For v ∈ V , we write H \ v for the hypergraph
(V \ {v}, E ′) where E ′ is {e \ {v} | e ∈ E} \ {∅}.

A vertex v ∈ V of H is called a β-leaf [Brault-Baron 2014] if the set of hyperedges
that contain it, i.e., {e ∈ E | v ∈ e}, is totally ordered by inclusion. In other words,
we can write {e ∈ E | v ∈ e} as (e1, . . . , ek) in a way that ensures that ei ⊆ ei+1 for
all 1 6 i < k.

A β-elimination order for a hypergraph H = (V,E) is defined inductively as
follows:

• if E = ∅, then the empty tuple is a β-elimination order for H;

• otherwise, a tuple (v1, . . . , vn) of vertices of H is a β-elimination order for H if
v1 is a β-leaf in H and (v2, . . . , vn) is a β-elimination order for H \ v1.

The hypergraph H is β-acyclic if there is a β-elimination order for H. C

We can see a positive DNF (recall Definition 2.4.2) as a hypergraph of clauses on
the variables, and introduce the notion of β-acyclic positive DNFs accordingly:

Definition 2.4.7. The hypergraph H(ϕ) of a positive DNF on variables X =
{X1, . . . , Xn} has X as vertex set and has one hyperedge per clause, i.e., we have
H(ϕ) := (X , E) with E := {{Xlj,i | 1 6 i 6 nj} | 1 6 j 6 m}. We say that the
positive DNF ϕ is β-acyclic if H(ϕ) is β-acyclic. C

It follows directly from results by Brault-Baron, Capelli, and Mengel [Brault-
Baron, Capelli, and Mengel 2015] about the β-acyclic #CSPd problem that we can
tractably compute the probability of β-acyclic positive DNFs:

47

CHAPTER 2. LIMITS OF COMBINED TRACTABILITY OF PQE

Theorem 2.4.8. The Boolean formula probability computation problem is in PTIME
when restricted to β-acyclic positive DNF formulas.

This is indeed a special case of the #CSPd problem studied in [Brault-Baron,
Capelli, and Mengel 2015], as we remind here:

Proof. The #CSPd problem studied in [Brault-Baron, Capelli, and Mengel 2015] is
about computing a partition function over the hypergraph, under weighted constraints
on hyperedges: it generalizes the problem of counting the number of valuations of
β-acyclic formulas in conjunctive normal form (CNF) by [Brault-Baron, Capelli, and
Mengel 2015, Lemma 3]. We show how the result extends to β-acyclic positive DNF,
using de Morgan’s law, and to probability computation for weighted variables, using
additional constraints on singleton variable sets.

First, we recall their definition of #CSPd (Definitions 1 and 2 in [Brault-Baron,
Capelli, and Mengel 2015]) in the case of a Boolean domain. We denote by Q+
the nonnegative rational numbers. Denote by {0, 1}X the set of functions from
X to {0, 1}, i.e., the Boolean valuations of X . For ν ∈ {0, 1}X and Y ⊆ X , we
denote by ν|Y the restriction of ν to Y. A weighted constraint (with default value)
on variables X is a pair c = (f, µ) that consists of a function f : S → Q+ for some
subset S of {0, 1}X , called the support of c, and a default value µ ∈ Q+; we write
var(c) := X . The constraint c induces a total function on {0, 1}X , also denoted
c, that maps ν ∈ {0, 1}X to f(ν) if ν ∈ S, and to µ otherwise. The size of c is
|c| = |S| × |X |. Intuitively, a constraint with default value assigns a weight in Q+
to all valuations of X , but the default value mechanism allows us to avoid writing
explicitly the complete table of this mapping.

An instance of the #CSPd problem then consists of a finite set I of weighted
constraints. The size of I is |I| := ∑

c∈I |c|, and we write var(I) := ⋃
c∈I var(c). The

output of the problem is the partition function

w(I) =
∑

ν∈{0,1}var(I)

∏
c∈I

c(ν|var(c)).

The hypergraph H(I) of the #CSPd instance I (defined in Section 2.2 of [Brault-
Baron, Capelli, and Mengel 2015]) is the hypergraph (var(I), EI) where EI =
{var(c) | c ∈ I}. We say that I is β-acyclic if H(I) is a β-acyclic hypergraph
(recall Definition 2.4.6), and we call β-acyclic #CSPd the problem #CSPd restricted to
β-acyclic instances. By Theorem 26 of [Brault-Baron, Capelli, and Mengel 2015],
the problem β-acyclic #CSPd is in PTIME.

We now explain how to reduce the probability computation problem to the
β-acyclic #CSPd problem. Let ϕ = ∨

16j6m

(∧
16i6nj Xlj,i

)
be a Boolean β-acyclic

DNF on variables X , with probabilities π(X) ∈ [0, 1] for each X ∈ X . We construct
in linear time from ϕ and π the variable set X ′ := {X ′ | X ∈ X}, the CNF formula
ϕ′ := ∧

16j6m

(∨
16i6nj X

′
lj,i

)
, and the probability valuation π′ on X ′ defined by

π′(X ′lj,i) = 1−π(Xlj,i). By De Morgan’s duality law we have Pr(ϕ, π) = 1−Pr(ϕ′, π′);
hence, the probability computation problem for ϕ and π reduces in PTIME to the
same problem for ϕ′ and π′.

We then construct in linear time a β-acyclic #CSPd instance I such that Pr(ϕ′, π′)
equals w(I), which concludes the proof. For each variable X ′ ∈ X ′, we define a
weighted constraint cX′ on variables {X ′} by cX′(X ′ 7→ 1) = π′(X ′) and cX′(X ′ 7→
0) = 1− π′(X ′), which codes the probability of the variables. Now, for each clause

48

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

1 6 j 6 m, just like in Lemma 3 of [Brault-Baron, Capelli, and Mengel 2015], we
define a weighted constraint cj = (fj, 1) with default value 1 whose variables are
{X ′lj,i | 1 6 i 6 nj}, i.e., those that occur in the clause: fj(ν) is 0 for the (unique)
valuation that sets all variables of the clause to 0, intuitively coding the constraint
of the clause. From the fact that ϕ was β-acyclic, it is clear that I is also β-acyclic.
Now, the result w(I) of the partition function sums over all valuations of the variables
of I, namely the variables X ′ of ϕ′. Whenever a valuation does not satisfy some
clause 1 6 j 6 m, the weighted constraint cj will give it weight 0, hence ensuring that
the product evaluates to 0, so we can restrict the sum to valuations that satisfy ϕ′:
such valuations are given weight 1 by all weighted constraints cj. Now, it is easy to
see that the weight of valuations ν that satisfy ϕ is their probability π′(ν), as each
cX′ gives them weight π′(X ′) or 1− (π′(X ′)) depending on whether ν(X ′) is 1 or 0.
Hence, we have reduced the probability computation problem for β-acyclic DNF
formulas to β-acyclic #CSPd in PTIME, which concludes the proof.

We will then use the tractability of β-acyclic formulas to show PTIME combined
complexity results for our PHomL problem. The first result that we show is tractability
for labeled 1WP query graphs on DWT probabilistic instance graphs:1

Proposition 2.4.9. PHomL(1WP,DWT) is PTIME.

Proof. Let G ··= u1
R1−→ · · · Rm−1−−−→ um be the 1WP query (where all Ri are not neces-

sarily distinct), and H be the downwards tree instance. The idea is to construct the
lineage of G on H as a β-acyclic DNF ϕ, so that we can conclude with Theorem 2.4.8.
It is clear that any match of G can only be a downwards path of H, hence we
construct ϕ as follows: for every downwards path a1

R′1−→ · · ·
R′m−1−−−→ am of length m of

H (their number is linear in |H| because each path is uniquely defined by the choice
of am) check if the path is a match of G (i.e, check that Ri = R′i for 1 6 i 6 m− 1),
and if it is the case then create a new clause of ϕ whose variables are all the facts
ai

Ri−→ ai+1 for 1 6 i 6 m− 1.
The formula ϕ thus obtained is then a DNF representation of the lineage of H

on G, and has been built in time O(|H| · |G|), i.e., in PTIME. We now justify that ϕ
is β-acyclic by giving a β-elimination order for ϕ: while H still has edges, repeatedly
pick a leaf b of H and, letting a be the parent of b, eliminate the variable a R−→ b
from ϕ. Such a variable will always be a β-leaf, as any set of downwards paths of
a downwards tree all ending at a leaf is necessarily ordered by inclusion. From the
above, the fact that ϕ is β-acyclic suffices to conclude the proof.

Interestingly, we were not able to prove Proposition 2.4.9 using a tree automata-
based dynamic programming approach (like we will do later for Proposition 2.5.2).

The second result that we show is tractability when restricting the instance to be
a 2WP, and allowing arbitrary connected queries (remember from Proposition 2.3.3
that the problem is hard even on 1WP instances if we allow disconnected queries):

Proposition 2.4.10. PHomL(Connected, 2WP) is PTIME.

To show this result, we follow the same scheme as in the proof of Proposition 2.4.9
above: (i) enumerate all candidate matches; (ii) check whether they are indeed

1The connection to β-acyclicity in this context is due to Florent Capelli.

49

CHAPTER 2. LIMITS OF COMBINED TRACTABILITY OF PQE

matches; and (iii) argue that the resulting lineage is β-acyclic. For the first step,
there are polynomially many candidate matches to consider, because matches are
necessarily connected subgraphs of the instance graph H, that are uniquely defined
by their endpoints: this is where we use connectedness of the query. For the third
step, the resulting lineage is β-acyclic for the same reason as in Proposition 2.4.9, as
we can eliminate variables following the order of the path H: all connected subpaths
containing an endpoint of the path are ordered by inclusion. What changes, however,
is the second step: from the quadratically many possible matches, to compute the
lineage expression, we must decide which ones are actually matches.

Deciding this for each subpath amounts to testing, given the connected query
graph G and a candidate match H ′, whether G ; H ′, in the non-probabilistic
sense. This graph homomorphism problem is generally intractable, but here the
minimal match H ′ is a 2WP (as it is a subpath of H), so it turns out to enjoy
combined tractability. The corresponding result was first shown in [Gutjahr, Welzl,
and Woeginger 1992] for unlabeled graphs, when the instance graph is a path, or
for more general instances satisfying a condition called the X-property; this was
generalized to labeled graphs in [Gottlob, Koch, and Schulz 2006]. We recall here
the definition of this property:
Definition 2.4.11 (Definition 3.2 of [Gottlob, Koch, and Schulz 2006]). Let H =
(V,E, λ) be a directed graph with labels on σ, let R ∈ σ, and let < be a total order
on V . Then R is said to have the X-property w.r.t. < if for all n0, n1, n2, n3 ∈ V
such that n0 < n1 and n2 < n3, if we have n0

R−→ n3 and n1
R−→ n2 then we also

have n0
R−→ n2. H is said to have the X-property w.r.t. < if it is the case of each

label R. C

Theorem 2.4.12. (Theorem 3.5 of [Gottlob, Koch, and Schulz 2006], extending
Theorem 3.1 of [Gutjahr, Welzl, and Woeginger 1992]) Given a labeled query graph
G, and given a labeled directed graph H with the X-property w.r.t. some order <, we
can determine in time O(|H| × |G|) whether G; H.

We can use this result to check, for all connected subpaths of the 2WP instance
graph, whether the query graph has a homomorphism to the subpath. This leads to
the following proof of Proposition 2.4.10:

Proof of Proposition 2.4.10. We proceed following the three-step process outlined
above. We first enumerate the possible query matches in the instance, i.e., the
quadratic number of connected subpaths. Second, we test for each subpath ai −
· · · − ai+k whether it satisfies the query. We can do so tractably because the subpath
clearly has the X-property w.r.t. the order ai < · · · < ai+k: using the notation of
Definition 2.4.11, there are in fact no n0, n1, n2, n3 that satisfy the conditions. Third,
having computed the resulting DNF, we compute its probability using β-acyclicity,
eliminating variables in the order of the path as we explained above.

2.5 Unlabeled Connected Queries
We now turn to the unlabeled setting, whose classification is presented in Table 2.3.
We start with an intractability result which follows directly from the well-known
intractability of query evaluation in probabilistic databases [Suciu, Olteanu, Ré, and
Koch 2011], that we have already mentioned:

50

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Table 2.3 – Tractability of PHom6 L in the connected case (Section 2.5)

↓G H→ 1WP 2WP DWT PT Connected
1WP 2.5.1
2WP 2.5.4
DWT 2.5.3
PT

Connected 2.4.10 2.3.6
PTIME #P-hard Numbers given in cells correspond to the propositions for border cases, the
remaining cells can be filled using the inclusions from Figure 2.2.

Proposition 2.5.1 ([Suciu, Olteanu, Ré, and Koch 2011]). The problem
PHom6 L(1WP,Connected) is #P-hard.

Proof. Example 3.3 of [Suciu, Olteanu, Ré, and Koch 2011] states that the conjunctive
query ∃x∃y∃z U(x, y) ∧ U(y, z) is #P-hard on TID instances. In other words,
PHom6 L({→→},All) is #P-hard, which implies the #P-hardness of PHom6 L(1WP,All).
We conclude using Lemma 2.3.7, which provides a PTIME (Turing) reduction from
the PHom6 L(1WP,Connected) problem to the PHom6 L(1WP,All) problem.

Note that this PHom6 L(1WP,Connected) problem can be phrased in a very simple
way: given an unlabeled connected probabilistic graph (H, π) and a length m as input
(namely, that of the 1WP graph query), compute the probability that H contains a
directed path of length m.

This result suggests that, to obtain tractability, we need to restrict the in-
stance graphs. In fact, such tractability results were already obtained in the previ-
ous sections. In Section 2.3, we proved (Proposition 2.3.6) that PHom6 L(All,DWT)
has PTIME combined complexity. Similarly, in the previous section, we proved
that PHomL(Connected, 2WP) is PTIME (Proposition 2.4.10), which implies that
PHom6 L(Connected, 2WP) is also PTIME. This completes the analysis of the unlabeled
case for 1WP, 2WP and DWT instances (see Table 2.3), so the only remaining case
is that of PT instances.

We start our study of PHom6 L for PT instances with the simplest queries, namely,
1WP, for which we will show tractability. We will proceed by translating the 1WP
query to a bottom-up deterministic tree automata (defined in Section 1.5) that will
run on uncertain trees. This will use again the notion of lineage, which was extended
in [Amarilli, Bourhis, and Senellart 2015] to tree automata running on trees with
uncertain Boolean labels: the lineage of an automaton on such a tree describes the
set of annotations of the tree that makes the automaton accept. In this context, the
lineage of deterministic tree automata was shown in [Amarilli, Bourhis, and Senellart
2016] to be compilable to a d-DNNF (see Section 1.7). Combining these tools, we
can show that PHom6 L on one-way path queries and polytree instances is tractable:

Proposition 2.5.2. PHom6 L(1WP,PT) is PTIME.

Proof. The idea of the proof is to construct in polynomial time in the query graph G
a bottom-up deterministic automaton AG, which runs on binary trees T representing
possible worlds of the polytree instance H, and accepts such a tree T iff the corre-
sponding possible world satisfies G. We can then construct a d-DNNF representation

51

CHAPTER 2. LIMITS OF COMBINED TRACTABILITY OF PQE

of the lineage of G on H by [Amarilli, Bourhis, and Senellart 2016, Theorem 6.11],
which allows us to efficiently compute Pr(G; H): the complexity of this process is
in O(|AG| · |H|), hence polynomial in |H| · |G|. (An alternative way to see this is to
use the results of [Cohen, Kimelfeld, and Sagiv 2009].)

Intuitively, the design of the bottom-up automaton ensures that, when it reaches
a node n after having processed the subtree Tn rooted at n, its state reflects three
linear-sized quantities about Tn:

1. the length of the longest path leading out of n;

2. the length of the longest path leading to n;

3. the length of the longest path overall in Tn (not necessarily via n).

The final states are those where the third quantity is greater than the length
of G. The transitions compute each triple from the child triples by considering how
the longest leading paths are extended, and how longer overall paths can be formed
by joining an incoming and outgoing path.

We now describe formally the construction. Let G, (H, π) be the 1WP query
graph and the probabilistic PT instance, and m be the length of G. Because we will
use automata that run on full binary trees, we will have to represent possible worlds
of H as full binary trees. The first step is to transform H in linear time into a full
binary polytree H ′ by applying a variant of the left-child-right-sibling encoding: in so
doing, in addition to unlabeled edges of both orientations that exist in the polytree,
we will also introduce some edges called ε-edges that are labeled by ε and whose
orientation does not matter (so we see them as undirected edges and write them
a− b); intuitively, the ε-edge a− b means that a and b are in fact the same. For a
node a ∈ H and a child b of a, we say that b is an up-child of a if we have b → a
and a down-child of a if we have a→ b. We do this transformation by processing H
bottom-up as follows:

• If n is a leaf node of H, then create a node n′ in H ′.

• If n is an internal node of H with up-children u1, . . . , uk and down-children
d1, . . . , dl then, letting u′1, . . . , u′k and d′1, . . . , d

′
l be the corresponding nodes

in H ′: create a node n′ in H ′ and nodes n′1, . . . , n′k+l−2 with the following
ε-edges: n′−n′1− . . .−n′k+l−2, all having probability 1. Create an edge u′1 → n′

whose probability is that of u1 → n. For 2 6 i 6 k create an edge u′i → n′i−1
annotated with the same probability as ui → n. For 1 6 i 6 l − 1 create an
edge n′k−1+i → d′i annotated with the same probability as n→ d′i, and finally
create an edge n′k−2+l → d′l annotated with the same probability as n → d′l.
Last, if any node has exactly one children (specifically, n′, in case k + l = 1),
then create a node n′′ in H ′ and connect it with an ε-edge to the node.

One can check that H ′ is indeed a full binary polytree (with some edges being labeled
by ε and being undirected) and that Pr(G ; H) equals the probability that H ′
contains a path of the form (→ −∗)m, that is, m occurrences of a directed edge →
followed by some sequence of ε-edges −.

The second step is to transform in linear time H ′ into a probabilistic tree T
to which we can apply the construction of [Amarilli, Bourhis, and Senellart 2015].

52

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Specifically, T must be an ordered full binary rooted tree whose edges do not have a
label or an orientation, but whose nodes n carry a label in some finite alphabet Γ
(written λ(n), where λ is the labeling function) and with a probability value written
π(n). Writing Γ := Γ × {0, 1} as in [Amarilli, Bourhis, and Senellart 2015], the
semantics of T is that it stands for a probability distribution on Γ̄-trees, i.e., trees
T ′ labeled with Γ × {0, 1}, which have same skeleton as T : for each node n of T ,
the corresponding node n′ in a possible world T ′ has label (λ(n), 1) with probability
π(n) and label (λ(n), 0) otherwise. We do this transformation by first adding a new
root vertex to H ′ with an ε-edge with probability 1 to the original root (this clearly
does not change the probability that H ′ has a path of the prescribed form), and
then simply create T from H ′ by assigning the label and probability of each node
that is not the new root as the direction of its parent edge (in Γ ··= {↑, ↓,−}) and
its probability (so the root of T ′ has label − and probability 1).

Our last step is to construct a bDTA AG running on Γ-trees such that for every
possible world W of H ′, letting TW be its representation as a Γ̄-tree, AG accepts
TW if and only if W contains a path of the form (→ −∗)m. The states of AG are of
the form 〈↑: i, ↓: j, Max: k〉 for 0 6 i, j 6 k 6 m, which ensures that AG is of size
polynomial in |G| (and we will construct it in PTIME from G). The idea is that
when a node n of TW will be in such a state, it will mean that:

• Letting Wn be the subinstance of W which is represented by the subtree of TW
rooted at n, and letting rn be the root of Wn, the longest directed upwards
path in Wn finishing at rn has length i (the path is the longest of the form
(↑ −∗)∗ that ends at rn).

• The longest directed downwards path in Wn beginning at rn has length j (the
path is the longest of the form (↓ −∗)∗ that begins at rn).

• The longest directed path in Wn has length k (the path is of the form (→ −∗)k
and is the longest in Wn).

We now describe the initialization function ι of AG:

• ι((s, 0)) := 〈↑: 0, ↓: 0, Max: 0〉 for any s ∈ Γ.

• ι((−, 1)) := 〈↑: 0, ↓: 0, Max: 0〉.

• ι((↑, 1)) := 〈↑: 1, ↓: 0, Max: 1〉.

• ι((↓, 1)) := 〈↑: 0, ↓: 1, Max: 1〉.

• ∆((↑, 1), 〈↑: i, ↓: j, Max: k〉, 〈↑: i′, ↓: j′, Max: k′〉) := 〈↑: i′′, ↓: 0, Max: k′′〉
where i′′ := min(m,max(i + 1, i′ + 1)) and k′′ := min(m,max(i′′, i + j′, i′ +
j, k, k′)).

• ∆((↓, 1), 〈↑: i, ↓: j, Max: k〉, 〈↑: i′, ↓: j′, Max: k′〉) := 〈↑: 0, ↓: j′′, Max: k′′〉
where j′′ := min(m,max(j + 1, j′ + 1)) and k′′ := min(m,max(j′′, i + j′, i′ +
j, k, k′)).

• ∆((−, 1), 〈↑: i, ↓: j, Max: k〉, 〈↑: i′, ↓: j′, Max: k′〉) := 〈↑: i′′, ↓: j′′, Max: k′′〉
where i′′ := max(i, i′) and j′′ := max(j, j′) and k′′ := min(m,max(k, k′, i +
j′, i′ + j)).

53

CHAPTER 2. LIMITS OF COMBINED TRACTABILITY OF PQE

• ∆((s, 0), 〈↑: i, ↓: j, Max: k〉, 〈↑: i′, ↓: j′, Max: k′〉) := 〈↑: 0, ↓: 0, Max: k′′〉
where k′′ := min(m,max(k, k′, i+ j′, i′ + j)) for every s ∈ {−, ↑, ↓}.

The final state of AG are all the states 〈↑: i, ↓: j, Max: k〉 such that k = m. One can
check by a straightforward induction that the semantics of each state is respected,
so that indeed the automaton tests the query G.

We conclude thanks to Proposition 3.1 of [Amarilli, Bourhis, and Senellart 2015]
by computing in linear time in |AG| and |H ′| a representation of the lineage on H ′
of the query that checks whether the input contains a directed path of the form
(→ −∗)m, and observe by Theorem 6.11 of [Amarilli, Bourhis, and Senellart 2016]
that it is a d-DNNF. We then compute the probability of this d-DNNF [Darwiche
2001], yielding Pr(G; H) in PTIME: this concludes the proof.

Hence, PT instances enjoy tractability for the simplest query graphs (i.e., 1WP).
We now study whether Proposition 2.5.2 can be extended to more general queries.
We first notice that this result immediately extends to branching (i.e., to DWT
queries), and even to unions of DWT queries. Indeed, in the unlabeled setting, as
we already observed at the end of Section 2.3.1, such queries are equivalent to 1WP
queries:

Proposition 2.5.3. PHom6 L(DWT,PT) and PHom6 L(⊔DWT,PT) are PTIME.

Proof. We first show the result for a DWT query graph G. Let m be its height, i.e.,
the length of the longest directed path it contains, and let G′ be the 1WP of length
m, which can be computed in PTIME from G. It is easy to observe that G and G′
are equivalent. Indeed, we can find G′ as a subgraph of G by taking any directed
path of maximal length, and conversely there is a homomorphism from G to G′: map
the root of G to the first vertex of G′ and each element of G′ at distance i from the
root to the i-th element of G′. Hence, PHom6 L on G and an input probabilistic PT
instance reduces to PHom6 L on G′ and the same instance, so that the result follows
from Proposition 2.5.2.

The same argument extends to ⊔DWT by considering the greatest height of a
connected component of G.

Thus, we have successfully extended from 1WP to ⊔DWT queries while preserving
tractability on PT instances. However, as we now show, tractability is not preserved
if we extend queries to allow two-wayness. Indeed:

Proposition 2.5.4. PHom6 L(2WP,PT) is #P-hard.

Proof. We adapt the proof of Proposition 2.4.1 by using the same idea than in
Proposition 2.3.4: two-wayness allows us to simulate labels. An illustration of the
reduction is given in Figure 2.8.

We reduce from #PP2DNF (recall Definition 2.4.2): the input consists of two
disjoint sets X = {X1, . . . , Xn1}, Y = {Y1, . . . , Yn2} of Boolean variables, and a
PP2DNF formula ϕ. We construct a 2WP query graph G′ and PT instance H ′ with
the same construction as the one that yielded H and G in that proof, except that
we perform the following replacements (see Figure 2.8):

• replace every edge a S−→ b of H and G by 3 edges a→→← b;

54

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

H ′: R

X1 X2 Y1 Y2

X1,3

X1,2

X1,1

X2,3

X2,2

X2,1

Y1,1

Y1,2

Y1,3

Y2,1

Y2,2

Y2,3

A1,1

A1,2

A2,3

B1,2

B2,1

B2,3
G′: →→→ (→→←)6 →→→

Figure 2.8 – Illustration of the proof of Proposition 2.5.4 for the PP2DNF formula
X1Y2 ∨X1Y1 ∨X2Y2. Dashed edges have probability 1

2 , all others have probability 1.

• replace every edge a T−→ b of H and G by 3 edges a→→→ b.

In particular, the query graph is then defined as follows:

G′ := →→→ (→→←)m+3 →→→ .

All the edges of H ′ have probability 1, except the middle edge of the paths that
replaced the S-labeled edges used to code the valuation of the variables (e.g., for Xi,
the middle edge of the 3 edges Xi →→← R), which have probability 1

2 .
One can check that any image of G′ must again go from the vertex Axj ,j to the

vertex Byj ,j for some 1 6 j 6 m. The key insight is that the first →5 of G must be
matched to a→5-path in H ′, which only exist as the concatenation of a→3 obtained
by rewriting a T -edge for some variable Xj, and of the first →2 of the (undirected)
path from Xxj ,j to R. Then there is no choice left to match the next edges without
failing.

From this we deduce that, from any possible world H ′W of the modified instance
H ′, considering the corresponding possible world HW of the unmodified instance H
following the natural bijection, the modified query graph G′ has a homomorphism
to H ′W iff the unmodified query graph G has a homomorphism to HW. We thus
conclude that the probabilistic homomorphism problem on G′ and H ′ has the same
answer as the one on G and H, which finishes the proof.

Conclusion. This concludes our study of PHom on all the graph classes than we
considered. Our results are summarized in Tables 2.1, 2.2, and 2.3, and classify
the combined complexity of the probabilistic graph homomorphism problem for all
combinations of query and instance graph classes that we considered. It is apparent
from these results that cases where the combined complexity of probabilistic query
evaluation is PTIME are very restricted. In the next chapters, we relax our notion
of combined tractability to capture more expressive queries and more general data.

55

Chapter 3

Fixed Parameter Tractability
of Provenance Computation

This chapter of my thesis presents my work with Antoine Amarilli, Pierre Bourhis,
and Pierre Senellart on the combined complexity of computing provenance information
for Datalog queries on bounded treewidth instances. The results presented here were
published at ICDT’2017 [Amarilli, Bourhis, Monet, and Senellart 2017] and in
ToCS [Amarilli, Bourhis, Monet, and Senellart 2018].

3.1 Introduction
In this chapter we temporarily leave probabilistic evaluation aside and focus on the
evaluation and computation of provenance of Boolean queries on non-probabilistic
relational instances. We will see in Chapter 4 how to use our results for probabilistic
query evaluation (PQE).

As we know, query evaluation is intractable in combined complexity [Vardi 1982]
even for simple query languages such as conjunctive queries [Abiteboul, Hull, and
Vianu 1995]. To address this issue, two main directions have been investigated.
The first is to restrict the class of queries to ensure tractability, for instance, to
α-acyclic conjunctive queries [Yannakakis 1981], this being motivated by the idea
that many real-world queries are simple and usually small. The second approach
restricts the structure of database instances, e.g., requiring them to have bounded
treewidth [Robertson and Seymour 1986] (we call them treelike). This has been
notably studied by Courcelle [Courcelle 1990], to show the tractability of monadic-
second order logic on treelike instances, but in data complexity (i.e., for fixed queries);
the combined complexity is generally nonelementary [Meyer 1975].

This leaves open the main question studied in this chapter: Which queries can be
efficiently evaluated, in combined complexity, on treelike databases? This question
has been addressed in [Gottlob, Pichler, and Wei 2010] by introducing quasi-guarded
Datalog; however, an unusual feature of this language is that programs must explicitly
refer to the tree decomposition of the instance. Instead, we try to follow Courcelle’s
approach and investigate which queries can be efficiently translated to automata.
Specifically, rather than restricting to a fixed class of “efficient” queries, we study
parameterized query classes, i.e., we define an efficient class of queries for each value
of the parameter. We further make the standard assumption that the signature is
fixed; in particular, its arity is constant. This allows us to aim for low combined

57

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

complexity for query evaluation, namely, fixed parameter tractability with linear
time complexity in the product of the input query and instance, which we call
FPT-bilinear complexity (recall Section 1.4).

Surprisingly, we are not aware of further existing work on tractable combined
query evaluation for parameterized instances and queries, except from an unexpected
angle: the translation of restricted query fragments to tree automata on treelike
instances was used in the context of guarded logics and other fragments, to decide
satisfiability [Benedikt, Bourhis, and Vanden Boom 2016] and containment [Barceló,
Romero, and Vardi 2014]. To do this, one usually establishes a treelike model
property to restrict the search to models of low treewidth (but dependent on the
formula), and then translates the formula to an automaton, so that the problems
reduce to emptiness testing: expressive automata formalisms, such as alternating
two-way automata, are typically used. Exploiting this connection, we show how query
evaluation on treelike instances can benefit from these ideas: for instance, as we
show, some queries can only be translated efficiently to such concise automata, and
not to the more common bottom-up tree automata.

Results. From there, the first main contribution of this chapter is to consider the
language of clique-frontier-guarded Datalog (CFG-Datalog), and show an efficient
FPT-linear translation procedure for this language, parameterized by the body size of
rules: this implies FPT-bilinear combined complexity on treelike instances. While it
is a Datalog fragment, CFG-Datalog shares some similarities with guarded logics; yet,
its design incorporates several features (fixpoints, clique-guards, negation, guarding
positive subformulas) that are not usually found together in guarded fragments, but
are important for query evaluation. We show how the tractability of this language
captures the tractability of such query classes as two-way regular path queries [Barceló
2013] and α-acyclic conjunctive queries. We further show that, in contrast with
guarded negation logics, satisfiability of CFG-Datalog is undecidable.

Already for conjunctive queries, we show that the treewidth of queries is not the
right parameter to ensure efficient translatability. In fact, the second contribution
of this chapter is a lower bound: we show that bounded-treewidth queries cannot
be efficiently translated to automata at all, so we cannot hope to show combined
tractability for them via automata methods. By contrast, CFG-Datalog implies the
combined tractability of bounded-treewidth queries with an additional requirement
(interfaces between bags must be clique-guarded), which is the notion of simplicial
decompositions previously studied in [Tarjan 1985]. To our knowledge, we are the
first to introduce this query class and to show its tractability on treelike instances.
CFG-Datalog can be understood as an extension of this fragment to disjunction,
clique-guardedness, stratified negation, and inflationary fixpoints, that preserves
tractability.

To derive our main FPT-bilinear combined complexity result, we define an opera-
tional semantics for our tree automata by introducing a notion of cyclic provenance
circuits, that we call cycluits. These cycluits, the third contribution of the chapter,
are well-suited as a provenance representation for alternating two-way automata
encoding CFG-Datalog programs, as they naturally deal with both recursion and
two-way traversal of a treelike instance, which is less straightforward with provenance
formulas [Green, Karvounarakis, and Tannen 2007] or circuits [Deutch, Milo, Roy,
and Tannen 2014]. While we believe that this natural generalization of Boolean

58

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

circuits may be of independent interest, it does not seem to have been studied in
detail, except in the context of integrated circuit design [Malik 1993; Riedel and
Bruck 2012], where the semantics often features feedback loops that involve negation;
we prohibit these by focusing on stratified circuits, which we show can be evaluated
in linear time. We show that the provenance of alternating two-way automata can
be represented as a stratified cycluit in FPT-bilinear time, generalizing results on
bottom-up automata and circuits from [Amarilli, Bourhis, and Senellart 2015].

Outline. We first position our approach relative to existing work in Section 3.2. We
then present our tractable fragment, first for bounded-simplicial-width conjunctive
queries in Section 3.3, then for CFG-Datalog in Section 3.4. We then define the au-
tomata variants that we use and translate CFG-Datalog to them in Section 3.5, before
introducing cycluits and showing our provenance computation result in Section 3.6.
We last present the proof of our translation result in Section 3.7.

3.2 Approaches for Tractability
We now review existing approaches to ensure the tractability of query evaluation,
starting by query languages whose evaluation is tractable in combined complexity
on all input instances. We then study more expressive query languages which are
tractable on treelike instances, but where tractability only holds in data complexity.
We then present the goals of the chapter.

3.2.1 Tractable Queries on All Instances
The best-known query language to ensure tractable query complexity is the language
of α-acyclic queries [Fagin 1983], i.e., those CQs that have a tree decomposition
where the domain of each bag corresponds exactly to an atom: this is called a join
tree [Gottlob, Leone, and Scarcello 2002]. With Yannakakis’s algorithm [Yannakakis
1981], we can evaluate an α-acyclic conjunctive query Q on an arbitrary instance I
in time O(|I| · |Q|).

Yannakakis’s result was generalized in two main directions. One direction [Gottlob,
Greco, and Scarcello 2014] has investigated more general CQ classes, in particular
CQs of bounded treewidth [Flum, Frick, and Grohe 2002], hypertreewidth [Gottlob,
Leone, and Scarcello 2002], and fractional hypertreewidth [Grohe and Marx 2014].
Bounding these query parameters to some fixed k makes query evaluation run in
time O((|I| · |Q|)f(k)) for some function f , hence in PTIME; for treewidth, since the
decomposition can be computed in FPT-linear time (Theorem 1.5.2), this goes down
to O(|I|k · |Q|). However, query evaluation on arbitrary instances is unlikely to be
FPT when parameterized by the query treewidth, since it would imply that deciding
if a graph contains a k-clique is FPT parameterized by k, which is widely believed
to be false in parameterized complexity theory (this is the W[1] 6= FPT assumption).
Further, even for treewidth 2 (e.g., triangles), it is not known if we can achieve linear
data complexity [Alon, Yuster, and Zwick 1997].

In another direction, α-acyclicity has been generalized to queries with more
expressive operators, e.g., disjunction or negation. The result on α-acyclic CQs thus
extends to the guarded fragment (GF) of first-order logic, which can be evaluated on
arbitrary instances in time O(|I| · |Q|) [Leinders, Marx, Tyszkiewicz, and Van den

59

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

Bussche 2005]. Tractability is independently known for FOk, the fragment of FO
where subformulas use at most k variables, with a simple evaluation algorithm in
O(|I|k · |Q|) [Vardi 1995].

Another important operator are fixpoints, which can be used to express, e.g.,
reachability queries. Though FOk is no longer tractable when adding fixpoints [Vardi
1995], query evaluation is tractable for µGF [Berwanger and Grädel 2001, Theorem 3],
i.e., GF with some restricted least and greatest fixpoint operators, when alternation
depth is bounded; without alternation, the combined complexity is in O(|I| · |Q|).
We could alternatively express fixpoints in Datalog, but, sadly, most known tractable
fragments are nonrecursive: nonrecursive stratified Datalog is tractable [Flum, Frick,
and Grohe 2002, Corollary 5.26] for rules with restricted bodies (i.e., strictly acyclic,
or bounded strict treewidth). This result was generalized in [Gottlob, Leone, and
Scarcello 2003] when bounding the number of guards: this nonrecursive fragment
is shown to be equivalent to the k-guarded fragment of FO, with connections to
the bounded-hypertreewidth approach. One recursive tractable fragment is Datalog
LITE, which is equivalent to alternation-free µGF [Gottlob, Grädel, and Veith
2002]. Fixpoints were independently studied for graph query languages such as
reachability queries and regular path queries (RPQ), which enjoy linear combined
complexity on arbitrary input instances: this extends to two-way RPQs (2RPQs) and
even strongly acyclic conjunctions of 2RPQs (SAC2RPQs), which are expressible in
alternation-free µGF. Tractability also extends to acyclic C2RPQs but with PTIME
complexity [Barceló 2013].

3.2.2 Tractability on Treelike Instances
We now study another approach for tractable query evaluation: this time, we restrict
the shape of the instances, using treewidth. This ensures that we can translate
them to a tree for efficient query evaluation, using tree automata techniques. Recall
from Section 1.5 the definitions of treewidth, bottom-up tree automata, and tree
encodings.

We say that a bNTA A tests a query Q on instances of treewidth 6 k if, for any
Γkσ-encoding 〈E, λ〉 coding an instance I (of treewidth 6 k), A accepts 〈E, λ〉 iff
I |= Q. By a well-known result of Courcelle on graphs ([Courcelle 1990], extended to
higher-arity in [Flum, Frick, and Grohe 2002]), we can use bNTAs to evaluate all
queries in monadic second-order logic (MSO), i.e., first-order logic with second-order
variables of arity 1. MSO subsumes in particular CQs and monadic Datalog (but
not general Datalog). Courcelle showed that MSO queries can be translated to a
bNTA that tests them:

Theorem 3.2.1 ([Courcelle 1990; Flum, Frick, and Grohe 2002]). For any MSO
query Q and treewidth k ∈ N, we can compute a bNTA that tests Q on instances of
treewidth 6 k.

This implies that evaluating any MSO query Q has FPT-linear data complexity
when parameterized by Q and the instance treewidth [Courcelle 1990; Flum, Frick,
and Grohe 2002], i.e., is in O (f(|Q| , k) · |I|) for some computable function f . How-
ever, this tells little about the combined complexity, as f is generally nonelementary
in Q [Meyer 1975]. A better combined complexity bound is known for unions of
conjunctions of two-way regular path queries (UC2RPQs) that are further required

60

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

to be acyclic and to have a constant number of edges between pairs of variables:
these can be translated into polynomial-sized alternating two-way automata [Barceló,
Romero, and Vardi 2014].

3.2.3 Restricted Queries on Treelike Instances
Our approach combines both ideas: we use instance treewidth as a parameter, but
also restrict the queries to ensure tractable translatability. We are only aware of
two approaches in this spirit. First, Gottlob, Pichler, and Wei have proposed a
quasiguarded Datalog fragment on relational structures and their tree decomposi-
tions, for which query evaluation is in O(|I| · |Q|) [Gottlob, Pichler, and Wei 2010].
However, this formalism requires queries to be expressed in terms of the tree de-
composition, and not just in terms of the relational signature. Second, Berwanger
and Grädel [Berwanger and Grädel 2001] remark (after Theorem 4) that, when
alternation depth and width are bounded, µCGF (the clique-guarded fragment of FO
with fixpoints) enjoys FPT-linear query evaluation when parameterized by instance
treewidth. Their approach does not rely on automata methods, and subsumes the
tractability of α-acyclic CQs and alternation-free µGF (and hence SAC2RPQs), on
treelike instances. However, µCGF is a restricted query language (the only CQs
that it can express are those with a chordal primal graph), whereas we want a richer
language, with a parameterized definition.

Our goal is thus to develop an expressive parameterized query language, which can
be translated in FPT-linear time to an automaton that tests it (with the treewidth
of instances also being a parameter). We can then evaluate the automaton, and
obtain FPT-bilinear combined complexity for query evaluation. Further, as we will
show, the use of tree automata will yield provenance representations for the query as
in [Amarilli, Bourhis, and Senellart 2015] (see Section 3.6).

3.3 Conjunctive Queries on Treelike Instances
To identify classes of queries that can be efficiently translated to tree automata, we
start by the simplest queries: conjunctive queries.

α-acyclic queries. A natural candidate for a tractable query class via automata
methods would be α-acyclic CQs, which, as we explained in Section 3.2.1, can be
evaluated in time O(|I| · |Q|) on all instances. Sadly, we show that such queries
cannot be translated efficiently to bNTAs, so the translation result of Theorem 3.2.1
does not extend directly:

Proposition 3.3.1. There is an arity-two signature σ and an infinite family (Qi)i∈N
of α-acyclic CQs such that, for any i ∈ N, any bNTA that tests Qi on instances of
treewidth 6 1 must have Ω(2|Qi|1−ε) states for any ε > 0.

Proof. We fix the signature σ to consist of binary relations S, S0, S1, and C. We
will code binary numbers as gadgets on this fixed signature. The coding of i ∈ N at
length k, with k > 1 + dlog2 ie, consists of an S-chain S(a1, a2), . . . , S(ak−1, ak), and
facts Sbj(aj+1, a

′
j+1) for 1 6 j 6 k − 1 where a′j+1 is a fresh element and bj is the

j-th bit in the binary expression of i (padding the most significant bits with 0). We

61

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

now define the query family Qi: each Qi is formed by picking a root variable x and
gluing 2i chains to x; for 0 6 j 6 2i − 1, we have one chain that is the concatenation
of a chain of C of length i and the coding of j at length (i + 1) using a gadget.
Clearly the size of Qi is Θ(i × 2i). Now, fix ε > 0 As |Qi| is in O(i × 2i), there
exist N, β > 0 such that ∀i > N, |Qi| 6 β × i× 2i. But clearly, there exists M > 0
such that ∀i > M, (β × i × 2i)1−ε 6 2i − i/2. Hence for i > max(N,M) we have
2i − i/2 > |Qi|1−ε.

Fix i > 0. Let A be a bNTA testing Qi on instances of treewidth 1. We will show
that A must have at least

(
2i

2i−1

)
= Ω

(
22i− i

2
)
states (the lower bound is obtained

from Stirling’s formula), from which the claim follows since for i > max(N,M) we
have 22i− i

2 > 2|Qi|1−ε . In fact, we will consider a specific subset I of the instances of
treewidth 6 1, and a specific set E of tree encodings of instances of I, and show the
claim on E , which suffices to conclude.

To define I, let Si be the set of subsets of {0, . . . , 2i − 1} of cardinality 2i−1,
so that |Si| is

(
2i

2i−1

)
. We will first define a family I ′ of instances indexed by Si

as follows. Given S ∈ Si, the instance I ′S of I ′ is obtained by constructing a full
binary tree of the C-relation of height i− 1, and identifying, for all j, the j-th leaf
node with element a1 of the length-(i+ 1) coding of the j-th smallest number in S.
We now define the instances of I to consist of a root element with two C-children,
each of which are the root element of an instance of I ′ (we call the two the child
instances). It is clear that instances of I have treewidth 1, and we can check quite
easily that an instance of I satisfies Qi iff the child instances I ′S1 and I ′S2 are such
that S1 ∪ S2 = {1, . . . , 2i}.

We now define E to be tree encodings of instances of I. First, define E ′ to consist
of tree encodings of instances of I ′, which we will also index with Si, i.e., ES is a
tree encoding of I ′S. We now define E as the tree encodings E constructed as follows:
given an instance I ∈ I, we encode it as a root bag with domain {r}, where r is
the root of the tree I, and no fact, the first child n1 of the root bag having domain
{r, r1} and fact C(r, r1), the second child n2 of the root being defined in the same
way. Now, n1 has one dummy child with empty domain and no fact, and one child
which is the root of some tree encoding in E of one child instance of I. We define n2
analogously with the other child instance.

For each S ∈ Si, letting S̄ be the complement of S relative to {0, . . . , 2i − 1},
we call IS ∈ I the instance where the first child instance is I ′S and the second child
instance is I ′

S̄
, and we call ES ∈ E the tree encoding of IS according to the definition

above. We then call QS the set of states q of A such that there exists a run of A
on ES where the root of the encoding of the first child instance is mapped to q. As
each IS satisfies Q, each ES should be accepted by the automaton, so each QS is
non-empty.

Further, we show that the QS are pairwise disjoint: for any S1 6= S2 of Si, we show
that QS1 ∩QS2 = ∅. Assume to the contrary the existence of q in the intersection,
and let ρS1 and ρS2 be runs of A respectively on IS1 and IS2 that witness respectively
that q ∈ QS1 and q ∈ QS2 . Now, consider the instance I ∈ I where the first child
instance is I1, and the second child instance is Ī2, and let E ∈ E be the tree encoding
of I. We can construct a run ρ of A on E by defining ρ according to ρS2 except
that, on the subtree of E rooted at the root r′ of the tree encoding of the first child
instance, ρ is defined according to ρS1 : this is possible because ρS1 and ρS2 agree
on r′1 as they both map r′ to q. Hence, ρ witnesses that A accepts E. Yet, as I1 6= I2,

62

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

we know that I does not satisfy Q, so that, letting E ∈ E be its tree encoding, A
rejects E. We have reached a contradiction, so indeed the QS are pairwise disjoint.

As the QS are non-empty, we can construct a mapping from Si to the state set
of A by mapping each S ∈ Si to some state of QS: as the QS are pairwise disjoint,
this mapping is injective. We deduce that the state set of A has size at least |Si|,
which concludes from the bound on the size of Si that we showed previously.

Faced by this, we propose to use different tree automata formalisms, which
are generally more concise than bNTAs. There are two classical generalizations
of nondeterministic automata, on words [Birget 1993] and on trees [Comon et al.
2007]: one goes from the inherent existential quantification of nondeterminism to
quantifier alternation; the other allows two-way navigation instead of imposing a
left-to-right (on words) or bottom-up (on trees) traversal. On words, both of these
extensions independently allow for exponentially more compact automata [Birget
1993]. In this chapter, we combine both extensions and use alternating two-way
tree automata [Comon et al. 2007; Cachat 2002], formally introduced in Section 3.5,
which leads to tractable combined complexity for evaluation. Our general results in
the next section will then imply:

Proposition 3.3.2. For any treewidth bound kI ∈ N, given an α-acyclic CQ Q,
we can compute in FPT-linear time in O(|Q|) (parameterized by kI) an alternating
two-way tree automaton that tests it on instances of treewidth 6 kI.

Hence, if we are additionally given a relational instance I of treewidth 6 kI, one
can determine whether I |= Q in FPT-bilinear time in |I| · |Q| (parameterized by kI).

Proof. This proof depends on notions and results that are given in the rest of the
chapter, and should be read after studying the rest of this chapter.

Given the α-acyclic CQ Q, we can compute in linear time in Q a chordal
decomposition T (also called a join tree) of Q by using Theorem 5.6 of [Flum, Frick,
and Grohe 2002] (attributed to [Tarjan and Yannakakis 1984]). We recall that a
chordal decomposition of a hypergraph H is a tree decomposition T of H such that
for every bag b of T , there exists a hyperedge e of H such that e = b. As T is in
particular a simplicial decomposition of Q of width 6 arity(σ)− 1, i.e., of constant
width, we use Proposition 3.4.5 to obtain in linear time in |Q| a CFG-Datalog
program P equivalent to Q with body size bounded by a constant kP.

We now use Theorem 3.5.4 to construct, in FPT-linear time in |P | (hence, in |Q|),
parameterized by kI and the constant kP, an automaton A testing P on instances of
treewidth 6 kI; specifically, a stratified isotropic alternating two-way automata or
SATWA (to be introduced in Definition 3.5.1).

We now observe that, thanks to the fact that Q is monotone, the SATWA A does
not actually feature any negation: the translation in the proof of Proposition 3.4.5
does not produce any negated atom, and the translation in the proof of Theorem 3.5.4
only produces a negated state within a Boolean formula when there is a corresponding
negated atom in the Datalog program. Hence, A is actually an alternating two-way
tree automaton, which proves the first part of the claim.

For the second part of the claim, we use Theorem 3.4.4 to evaluate P on I in
FPT-bilinear time in |I| · |P |, parameterized by the constant kP and kI. This proves
the claim.

63

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

Bounded-treewidth queries. Having re-proven the combined tractability of α-
acyclic queries (on bounded-treewidth instances), we naturally try to extend to
bounded-treewidth CQs. Recall from Section 3.2.1 that these queries have PTIME
combined complexity on all instances, but are unlikely to be FPT when parameterized
by the query treewidth (unless W[1] = FPT). Can they be efficiently evaluated on
treelike instances by translating them to automata? We answer in the negative: that
bounded-treewidth CQs cannot be efficiently translated to automata to test them,
even when using the expressive formalism of alternating two-way tree automata:

Theorem 3.3.3. There is an arity-two signature σ for which there is no algorithm
A with exponential running time and polynomial output size for the following task:
given a conjunctive query Q of treewidth 6 2, produce an alternating two-way tree
automaton AQ on Γ5

σ-trees that tests Q on σ-instances of treewidth 6 5.

This result is obtained from a variant of the 2EXPTIME-hardness of monadic
Datalog containment [Benedikt, Bourhis, and Senellart 2012]. We do not prove it
here, as the proof is technical and not directly related to our PhD research; it can be
found in the extended version of [Amarilli, Bourhis, Monet, and Senellart 2017].

Bounded simplicial width. We have shown that we cannot translate bounded-
treewidth queries to automata efficiently. We now show that efficient translation can
be ensured with an additional requirement on tree decompositions. As it turns out,
the resulting decomposition notion has been independently introduced for graphs:

Definition 3.3.4 ([Diestel 1989]). A simplicial decomposition of a graph G is a tree
decomposition T of G such that, for any bag b of T and child bag b′ of b, letting S
be the intersection of the domains of b and b′, then the subgraph of G induced by S
is a complete subgraph of G. C

We extend this notion to CQs, and introduce the simplicial width measure:

Definition 3.3.5. A simplicial decomposition of a CQ Q is a simplicial decomposition
of its primal graph. Note that any CQ has a simplicial decomposition (e.g., the trivial
one that puts all variables in one bag). The simplicial width of Q is the minimum,
over all simplicial tree decompositions, of the size of the largest bag minus 1. C

Bounding the simplicial width of CQs is of course more restrictive than bounding
their treewidth, and this containment relation is strict: cycles have treewidth 6 2
but have unbounded simplicial width. This being said, bounding the simplicial width
is less restrictive than imposing α-acyclicity: the join tree of an α-acyclic CQ is in
particular a simplicial decomposition, so α-acyclic CQs have simplicial width at most
arity(σ) − 1, which is constant as σ is fixed. Again, the containment is strict: a
triangle has simplicial width 2 but is not α-acyclic.

To our knowledge, simplicial width for CQs has not been studied before. Yet,
we show that bounding the simplicial width ensures that CQs can be efficiently
translated to automata. This is in contrast to bounding the treewidth, which we
have shown in Theorem 3.3.3 not to be sufficient to ensure efficient translatbility to
tree automata. Hence:

Theorem 3.3.6. For any kI, kQ ∈ N, given a CQ Q and a simplicial decomposition
T of simplicial width kQ of Q, we can compute in FPT-linear in |Q| (parameterized

64

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

by kI and kQ) an alternating two-way tree automaton that tests Q on instances of
treewidth 6 kI.

Hence, if we are additionally given a relational instance I of treewidth 6 kI, one
can determine whether I |= Q in FPT-bilinear time in |I| · (|Q|+ |T |) (parameterized
by kI and kQ).

Proof. This proof depends on notions and results that are given in the rest of the
chapter, and should be read after studying the rest of this chapter.

We use Proposition 3.4.5 to transform the CQ Q to a CFG-Datalog program P
with body size at most kP ··= fσ(kQ), in FPT-linear time in |Q|+ |T | parameterized
by kQ.

We now use Theorem 3.5.4 to construct, in FPT-linear time in |P | (hence, in
|Q|), parameterized by kI and kP, hence in kI and kQ, a SATWA A testing P on
instances of treewidth 6 kI (see Definition 3.5.1). For the same reasons as in the
proof of Proposition 3.3.2, it is actually a two-way alternating tree automaton, so we
have shown the first part of the result.

To prove the second part of the result, we now use Theorem 3.4.4 to evaluate
P on I in FPT-bilinear time in |I| · |P |, parameterized by kP and kI, hence again
by kQ and kI. This proves the claim.

Notice the technicality that the simplicial decomposition T must be provided
as input to the procedure, because it is not known to be computable in FPT-
linear time, unlike tree decompositions. While we are not aware of results on the
complexity of this specific task, quadratic-time algorithms are known for the related
problem of computing the clique-minimal separator decomposition [Leimer 1993;
Berry, Pogorelcnik, and Simonet 2010].

The intuition for the efficient translation of bounded-simplicial-width CQs is as
follows. The interface variables shared between any bag and its parent must be
“clique-guarded” (each pair is covered by an atom). Hence, consider any subquery
rooted at a bag of the query decomposition, and see it as a non-Boolean CQ with the
interface variables as free variables. Each result of this CQ must then be covered by
a clique of facts of the instance, which ensures [Gavril 1974] that it occurs in some
bag of the instance tree decomposition and can be “seen” by a tree automaton. This
intuition can be generalized, beyond conjunctive queries, to design an expressive query
language featuring disjunction, negation, and fixpoint, with the same properties of
efficient translation to automata and FPT-linear combined complexity of evaluation
on treelike instances. We introduce such a Datalog variant in the next section.

3.4 CFG-Datalog on Treelike Instances
To design a Datalog fragment with efficient translation to automata, we must of
course impose some limitations, as we did for CQs. In fact, we can even show that
the full Datalog language (even without negation) cannot be translated to automata,
no matter the complexity:

Proposition 3.4.1. There is a signature σ and Datalog program P such that the
language of Γ1

σ-trees that encode instances satisfying P is not a regular tree language.

65

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

Proof. Let σ be the signature containing two binary relations Y and Z and two
unary relations Begin and End. Consider the following program P :

Goal()← S(x, y),Begin(x),End(y)
S(x, y)← Y (x,w), S(w, u), Z(u, y)
S(x, y)← Y (x,w), Z(w, y)

Let L be the language of the tree encodings of instances of treewidth 1 that satisfy P .
We will show that L is not a regular tree language, which clearly implies the second
claim, as a bNTA or an alternating two-way tree automaton can only recognize regular
tree languages [Comon et al. 2007]. To show this, let us assume by contradiction
that L is a regular tree language, so that there exists a Γ1

σ-bNTA A that accepts L,
i.e., that tests P .

We consider instances that are chains of facts which are either Y - or Z-facts,
and where the first end is the only node labeled Begin and the other end is the only
node labeled End. This condition on instances can clearly be expressed in MSO, so
that by Theorem 3.2.1 there exists a bNTA Achain on Γ1

σ that tests this property.
In particular, we can build the bNTA A′ which is the intersection of A and Achain,
which tests whether instances are of the prescribed form and are accepted by the
program P .

We now observe that such instances must be the instance

Ik = {Begin(a1), Y (a1, a2), . . . , Y (ak−1, ak), Y (ak, ak+1),
Z(ak+1, ak+2), . . . , Z(a2k−1, a2k), Z(a2k, a2k+1),End(a2k+1)}

for some k ∈ N. Indeed, it is clear that Ik satisfies P for all k ∈ N, as we derive the
facts

S(ak, ak+2), S(ak−1, ak+3), . . . , S(ak−(k−1), ak+2+(k−1)), that is, S(a1, a2k+1),

and finally Goal(). Conversely, for any instance I of the prescribed shape that
satisfies P , it is easily seen that the derivation of Goal justifies the existence of a
chain in I of the form Ik, which by the restrictions on the shape of I means that
I = Ik.

We further restrict our attention to tree encodings that consist of a single branch
of a specific form, namely, their contents are as follows (given from leaf to root)
for some integer n > 0: ({a1},Begin(a1)), ({a1, a2}, X(a1, a2)), ({a2, a3}, X(a2, a3)),
({a3, a1}, X(a3, a1)), . . . , ({an, an+1}, X(an, an+1)), ({an+1},End(an+1)), where we
write X to mean that we may match either Y or Z, where addition is modulo 3,
and where we add dummy nodes (⊥,⊥) as left children of all nodes, and as right
children of the leaf node ({a1},Begin(a1)), to ensure that the tree is full. It is clear
that we can design a bNTA Aencode which recognizes tree encodings of this form, and
we define A′′ to be the intersection of A′ and Aencode. In other words, A′′ further
enforces that the Γ1

σ-tree encodes the input instance as a chain of consecutive facts
with a certain prescribed alternation pattern for elements, with the Begin end of the
chain at the top and the End end at the bottom.

Now, it is easily seen that there is exactly one tree encoding of every Ik which
is accepted by A′′, namely, the one of the form tested by Aencode where n = 2k, the
first k X are matched to Y and the last k X are matched to Z.

66

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Now, we observe that as A′′ is a bNTA which is forced to operate on chains
(completed to full binary trees by a specific addition of binary nodes). Thus,
we can translate it to a deterministic automaton A′′′ on words on the alphabet
Σ = {B, Y, Z,E}, by looking at its behavior in terms of the X-facts. Formally, A′′′
has same state space as A′′, same final states, initial state δ(ι((⊥,⊥)), ι((⊥,⊥)))
and transition function δ(q, x) = δ(ι((⊥,⊥)), q, (s, f)) for every domain s, where
f is a fact corresponding to the letter x ∈ Σ (B stands here for Begin, and E for
End). By definition of A′′, the automaton A′′′ on words recognizes the language
{BY kZkE | k ∈ N}. However, this language is not regular. This contradicts
our hypothesis about the existence of automaton A, which establishes the desired
result.

Hence, there is no bNTA or alternating two-way tree automaton that tests P for
treewidth 1. To work around this problem and ensure that translation is possible
and efficient, the key condition that we impose on Datalog programs, pursuant to
the intuition of simplicial decompositions, is that the rules must be clique-frontier-
guarded, i.e., the variables in the head must co-occur in positive predicates of the
rule body. We can then use the body size of the program rules as a parameter, and
will show that the fragment can then be translated to automata in FPT-linear time.
Remember that we assume that the arity of the extensional signature is fixed.

Definition 3.4.2. Let P be a stratified Datalog program. A rule r of P is clique-
frontier-guarded if for any two variables xi 6= xj in the head of r, we have that xi
and xj co-occur in some positive (extensional or intensional) predicate of the body of
r. P is clique-frontier-guarded (CFG) if all its rules are clique-frontier-guarded. The
body size of P is the maximal number of atoms in the body of its rules, multiplied
by its arity. C

Example 3.4.3. Let P be the stratified Datalog program from Example 1.2.1.
We recall that σ = {R}, and that P tests if there are two elements that are not
connected by a directed R-path. Then P is not a CFG-Datalog program, since the
rule T (x, y)← R(x, z) ∧ T (z, y) is not clique-frontier-guarded. In fact, it is easy to
show that no CFG-Datalog program can contain a binary intensional predicate T
computing the transitive closure of an extensional binary relation R.

However, it is possible to express a similar query in CFG-Datalog. Let σ be
{R,A,B}, with R being binary, A and B being unary. Let σint = {T}, with T unary.
Consider the stratified Datalog program P ′ with two strata P ′1 and P ′2. The stratum
P ′1 contains the following two rules:

• T (x)← A(x)

• T (y)← T (x) ∧R(x, y)

And P ′2 contains the rule:

• Goal()← A(x) ∧B(y) ∧ ¬T (y)

Then P ′ is a CFG-Datalog program (of body size 3× 2 = 6). Moreover, P ′ tests if
there exist two distinct elements a 6= b such that A(a) and B(b) hold, and such that
a and b are not connected by a directed R-path. C

67

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

We will see later in this section what interesting query languages CFG-Datalog
capture: (Boolean) CQs, (Boolean) 2RPQs, (Boolean) SAC2RPQs, guarded negation
logics, monadic Datalog, etc.

The main result of this chapter is that evaluation of CFG-Datalog is FPT-bilinear
in combined complexity, when parameterized by the body size of the program and
the instance treewidth.

Theorem 3.4.4. Given a CFG-Datalog program P of body size kP and a relational
instance I of treewidth kI, checking if I |= P is FPT-bilinear time in |I| · |P |
(parameterized by kP and kI).

We will show this result in the next section by translating CFG-Datalog programs
in FPT-linear time to a special kind of tree automata (Theorem 3.5.4), and showing
in Section 3.6 that we can efficiently evaluate such automata and even compute
provenance representations. The rest of this section presents consequences of our
main result for various languages.

Conjunctive queries. Our tractability result for bounded-simplicial-width CQs
(Theorem 3.3.6), including α-acyclic CQs, is shown by rewriting to CFG-Datalog of
bounded body size:

Proposition 3.4.5. There is a function fσ (depending only on σ) such that for all
k ∈ N, for any conjunctive query Q and simplicial tree decomposition T of Q of
width at most k, we can compute in O(|Q|+ |T |) an equivalent CFG-Datalog program
with body size at most fσ(k).

To prove Proposition 3.4.5, we first prove the following lemma about simplicial
tree decompositions:

Lemma 3.4.6. For any simplicial decomposition T of width k of a query Q, we can
compute in linear time a simplicial decomposition Tbounded of Q such that each bag
has degree at most 2k+1.

Proof. Fix Q and T . We construct the simplicial decomposition Tbounded of Q in a
process which shares some similarity with the routine rewriting of tree decompositions
to make them binary, by creating copies of bags. However, the process is more intricate
because we need to preserve the fact that we have a simplicial tree decomposition,
where interfaces are guarded.

We go over T bottom-up: for each bag b of T , we create a bag b′ of Tbounded with
same domain as b. Now, we partition the children of b depending on their intersection
with b: for every subset S of the domain of b such that b has some children whose
intersection with b is equal to S, we write these children bS,1, . . . , bS,nS (so we have
S = dom(b)∩dom(bS,j) for all 1 6 j 6 nS), and we write b′S,1, . . . , b′S,nS for the copies
that we already created for these bags in Tbounded. Now, for each S, we create nS
fresh bags b′=S,j in Tbounded (for 1 6 j 6 nS) with domain equal to S, and we set
b′=S,1 to be a child of b′, b′=S,j+1 to be a child of b′=S,j for all 1 6 j < nS, and we set
each b′S,i to be a child of b′=S,i.

This process can clearly be performed in linear time. Now, the degree of the
fresh bags in Tbounded is at most 2, and the degree of the copies of the original
bags is at most 2k+1, as stated. Further, it is clear that the result is still a tree

68

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

decomposition (each fact is still covered, the occurrences of each element still form a
connected subtree because they are as in T with the addition of some paths of the
fresh bags), and the interfaces in Tbounded are the same as in T , so they still satisfy
the requirement of simplicial decompositions.

We can now prove Proposition 3.4.5. In fact, as will be easy to notice from the
proof, our construction further ensures that the equivalent CFG-Datalog program is
positive, nonrecursive, and conjunctive. Recall that a Datalog program is positive if
it contains no negated atoms. It is nonrecursive if there is no cycle in the directed
graph on σint having an edge from R to S whenever a rule contains R in its head
and S in its body. It is conjunctive [Benedikt and Gottlob 2010] if each intensional
relation R occurs in the head of at most one rule.

Proof of Proposition 3.4.5. Using Lemma 3.4.6, we can start by rewriting in linear
time the input simplicial decomposition to ensure that each bag has degree at most
2k+1. Hence, let us assume without loss of generality that T has this property. We
further add an empty root bag if necessary to ensure that the root bag of T is empty
and has exactly one child.

We start by using Lemma 3.1 of [Flum, Frick, and Grohe 2002] to annotate in
linear time each node b of T by the set of atoms Ab of Q whose free variables are
in the domain of b and such that for each atom A of Ab, b is the topmost bag of T
which contains all the variables of A. As the signature σ is fixed, note that we have
|Ab| 6 gσ(k) for some function gσ depending only on σ.

We now perform a process similar to Lemma 3.1 of [Flum, Frick, and Grohe
2002]. We start by precomputing in linear time a mapping µ that associates, to each
pair {x, y} of variables of Q, the set of all atoms in Q where {x, y} co-occur. We
can compute µ in linear time by processing all atoms of Q and adding each atom as
an image of µ for each pair of variables that it contains (remember that the arity
of σ is constant). Now, we do the following computation: for each bag b which is
not the root of T , letting S be its interface with its parent bag, we annotate b by
a set of atoms Aguard

b defined as follows: for all x, y ∈ S with x 6= y, letting A(z)
be an atom of Q where x and y appear (which must exist, by the requirement on
simplicial decompositions, and which we retrieve from µ), we add A(w) to Aguard

b ,
where, for 1 6 i 6 |z|, we set wi ··= zi if zi ∈ {x, y}, and wi to be a fresh variable
otherwise. In other words, Aguard

b is a set of atoms that ensures that the interface
S of b with its parent is covered by a clique, and we construct it by picking atoms
of Q that witness the fact that it is guarded (which it is, because T is a simplicial
decomposition), and replacing their irrelevant variables to be fresh. Note that Aguard

b

consists of at most k × (k + 1)/2 atoms, but the domain of these atoms is not a
subset of dom(b) (because they include fresh variables). This entire computation is
performed in linear time.

We now define the function fσ(k) as follows, remembering that arity(σ) denotes
the arity of the extensional signature:

fσ(k) ··= (k + 1)×
(
gσ(k) + 2k+1 + k(k + 1)/2

)
.

We now build our CFG-Datalog program P of body size fσ(k) which is equivalent
to Q. We define the intensional signature σint by creating one intensional predicate
Pb for each non-root bag b of T , whose arity is the size of the intersection of b with its
parent. As we ensured that the root bag br of T is empty and has exactly one child

69

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

b′r, we use Pb′r as our 0-ary Goal() predicate (because its interface with its parent br
is necessarily empty). We now define the rules of P by processing T bottom-up: for
each bag b of T , we add one rule ρb with head Pb(x), defined as follows:

• If b is a leaf, then ρb is Pb ←
∧Aguard

b ∧ ∧Ab.
• If b is an internal node with children b1, . . . , bm (remember that m 6 2k+1),

then ρb is Pb ←
∧Aguard

b ∧ ∧Ab ∧ ∧16i6m Pbi .

We first check that P is clique-frontier-guarded, but this is the case because by
construction the conjunction of atoms ∧Aguard

b is a suitable guard for x: for each
{x, y} ∈ x, it contains an atom where both x and y occur.

Second, we check that the body size of P is indeed fσ(k). It is clear that
arity(P) = arity(σint ∪ σ) 6 k + 1. Further, the maximal number of atoms in the
body of a rule is gσ(k) + 2k+1 + k(k + 1)/2, so we obtain the desired bound.

What is left to check is that P is equivalent to Q. It will be helpful to reason
about P by seeing it as the conjunctive query Q′ obtained by recursively inlining the
definition of rules: observe that this a conjunctive query, because P is conjunctive,
i.e., for each intensional atom Pb, the rule ρb is the only one where Pb occurs as head
atom. It is clear that P and Q′ are equivalent, so we must prove that Q and Q′ are
equivalent.

For the forward direction, it is obvious that Q′ implies Q, because Q′ contains
every atom of Q by construction of the Ab. For the backward direction, noting that
the only atoms of Q′ that are not in Q are those added in the sets Aguard

b , we observe
that there is a homomorphism from Q′ to Q defined by mapping each atom A(w)
occurring in some Aguard

b to the atom A(z) of Q used to create it; this mapping
is the identity on the two variables x and y used to create A(w), and maps each
fresh variables wi to zi: the fact that these variables are fresh ensures that this
homomorphism is well-defined. This shows Q and Q′, hence P , to be equivalent,
which concludes the proof.

Proposition 3.4.5 implies that CFG-Datalog can express any CQ up to increasing
the body size parameter (since any CQ has a simplicial decomposition), unlike,
e.g., µCGF[Berwanger and Grädel 2001]. Conversely, we can show that bounded-
simplicial-width CQs characterize the queries expressible in CFG-Datalog when
disallowing negation, recursion, and disjunction.

Proposition 3.4.7. For any positive, conjunctive, nonrecursive CFG-Datalog pro-
gram P with body size k, there is a CQ Q of simplicial width 6 k that is equivalent
to P .

To prove Proposition 3.4.7, we will use the notion of call graph of a Datalog
program. This is the graph G on the relations of σint which has an edge from R
to S whenever a rule contains relation R in its head and S in its body. From the
requirement that P is nonrecursive, we know that this graph G is a DAG.

Proof of Proposition 3.4.7. We first check that every intensional relation reachable
from Goal in the call graph G of P appears in the head of a rule of P (as P is
conjunctive, this rule is then unique). Otherwise, it is clear that P is not satisfiable
(it has no derivation tree), so we can simply rewrite P to the query False. We also

70

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

assume without loss of generality that each intensional relation except Goal() occurs
in the body of some rule, as otherwise we can simply drop them and drop all rules
where they appear as the head relation.

In the rest of the proof we will consider the rules of P in some order, and create
an equivalent CFG-Datalog program P ′ with rules r′0, . . . , r′m. We will ensure that
P ′ is also positive, conjunctive, and nonrecursive, and that it further satisfies the
following additional properties:

1. Every intensional relation other than Goal appears in the body of exactly one
rule of P ′, and appears there exactly once;

2. For every 0 6 i 6 m, for every variable z in the body of rule r′i that does not
occur in its head, then for every 0 6 j < i, z does not occur in r′j.

We initialize a queue that contains only the one rule that defines Goal in P , and
we do the following until the queue is empty:

• Pop a rule r from the queue. Let r′ be defined from r as follows: for every
intensional relation R that occurs in the body of r′, letting R(x1), . . . , R(xn)
be its occurrences, rewrite these atoms to R1(x1), . . . , Rn(xn), where the Ri

are fresh intensional relations.

• Add r′ to P ′.

• For each intensional atom Ri(x) of r′, letting R be the relation from which
Ri was created, let rR be the rule of P that has R in its head (by our initial
considerations, there is one such rule, and as the program is conjunctive there
is exactly one such rule). Define r′Ri from rR by replacing its head relation
from R to Ri, and renaming its head and body variables such that the head is
exactly Ri(x). Further rename all variables that occur in the body but not in
the head, to replace them by fresh new variables. Add r′Ri to the queue.

We first argue that this process terminates. Indeed, considering the graph G,
whenever we pop from the queue a rule with head relation R (or a fresh relation
created from a relation R), we add to the queue a finite number of rules for head
relations created from relations R′ such that the edge (R,R′) is in the graph G.
The fact that G is acyclic ensures that the process terminates (but note that its
running time may generally be exponential in the input). Second, we observe that, by
construction, P satisfies the first property, because each occurrence of an intensional
relation in a body of P ′ is fresh, and satisfies the second property, because each
variable which is in the body of a rule but not in its head is fresh, so it cannot occur
in a previous rule

Last, we verify that P and P ′ are equivalent, but this is immediate, because
any derivation tree for P can be rewritten to a derivation tree for P ′ (by renaming
relations and variables), and vice-versa.

We define Q to be the conjunction of all extensional atoms occurring in P ′. To
show that it is equivalent to P ′, the fact that Q implies P ′ is immediate as the leaves
are sufficient to construct a derivation tree, and the fact that P ′ implies Q is because,
letting G′ be the call graph of P ′, by the first property of P ′ we can easily observe
that it is a tree, so the structure of derivation trees of G′ also corresponds to P , and
by the second property of P ′ we know that two variables are equal in two extensional

71

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

atoms iff they have to be equal in any derivation tree. Hence, P ′ and Q are indeed
equivalent.

We now justify that Q has simplicial width at most k. We do so by building
from P ′ a simplicial decomposition T of Q of width 6 k. The structure of T is the
same as G′ (which is actually a tree). For each bag b of T corresponding to a node of
G′ standing for a rule r of P ′, we set the domain of b to be the variables occurring
in r. It is clear that T is a tree decomposition of Q, because each atom of Q is
covered by a bag of T (namely, the one for the rule whose body contained that atom)
and the occurrences of each variable form a connected subtree (whose root is the
node of G′ standing for the rule where it was introduced, using the second condition
of P ′). Further, T is a simplicial decomposition because P ′ is clique-frontier-guarded;
further, from the second condition, the variables shared between one bag and its
child are precisely the head variables of the child rule. The width is 6 k because the
body size of a CFG-Datalog program is an upper bound on the maximal number of
variables in a rule body.

However, our CFG-Datalog fragment is still exponentially more concise than
such CQs:

Proposition 3.4.8. There is a signature σ and a family (Pn)n∈N of CFG-Datalog
programs with body size at most 6 which are positive, conjunctive, and nonrecursive,
such that |Pn| = O(n) and any conjunctive query Qn equivalent to Pn has size Ω(2n).

To prove Proposition 3.4.8, we recall the following classical notion:

Definition 3.4.9. A match of a conjunctive query Q in an instance I is a subinstance
M of I which is an image of a homomorphism from the canonical instance of Q to I,
i.e., M witnesses that I |= Q, in particular M |= Q. C

Our proof will rely on the following elementary observation:

Lemma 3.4.10. If a CQ Q has a match M in an instance I, then necessarily
|Q| > |M |.

Proof. As M is the image of Q by a homomorphism, it cannot have more facts
than Q has atoms.

We are now ready to prove Proposition 3.4.8:

Proof of Proposition 3.4.8. Fix σ to contain a binary relation R and a binary relation
G. Consider the rule ρ0 : R0(x, y)← R(x, y) and define the following rules, for all
i > 0:

ρi : Ri(x, y)← G(x, y), Ri−1(x, z), Ri−1(z, y)

For each i > 0, we let Pi consist of the rules ρj for 0 6 j 6 i, as well as the rule
Goal()← Ri(x, y). It is clear that each Pi is positive, conjunctive, and nonrecursive;
further, the predicate G ensures that it is a CFG-Datalog program. The arity is 2
and the maximum number of atoms is the body is 3, so the body size is indeed 6.

We first prove by an immediate induction that, for each i > 0, considering the
rules of Pi and the intensional predicate Ri, whenever an instance I satisfies Ri(a, b)
for two elements a, b ∈ dom(I) then there is an R-path of length 2i from a to b. Now,
fixing i > 0, this clearly implies there is an instance Ii of size (number of facts) > 2i,

72

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

namely, an R-path of this length with the right set of additional G-facts, such that
Ii |= Pi but any strict subset of Ii does not satisfy Pi.

Now, let us consider a CQ Qi which is equivalent to Pi, and let us show the
desired size bound. By equivalence, we know that Ii |= Qi, hence Qi has a match Mi

in Ii, but any strict subset of Ii does not satisfy Qi, which implies that, necessarily,
Mi = Ii (indeed, otherwise Mi would survive as a match in some strict subset of Ii).
Now, by Lemma 3.4.10, we deduce that |Qi| > |Mi|, and as |Mi| = |Ii| > 2i, we
obtain the desired size bound, which concludes the proof.

Guarded negation fragments. Having explained the connections between CFG-
Datalog and CQs, we now study its connections to the more expressive languages
of guarded logics, specifically, the guarded negation fragment (GNF), a fragment
of first-order logic [Bárány, Cate, and Segoufin 2015]. Indeed, when putting GNF
formulas in GN-normal form [Bárány, Cate, and Segoufin 2015] or even weak GN-
normal form [Benedikt, Cate, and Vanden Boom 2014], we can translate them to
CFG-Datalog, and we can use the CQ-rank parameter [Benedikt, Cate, and Vanden
Boom 2014] (that measures the maximal number of atoms in conjunctions) to control
the body size parameter. We first recall from [Benedikt, Cate, and Vanden Boom
2014], Appendix B.1, the definitions of a weak GN-normal form formulas and of
CQ-rank:

Definition 3.4.11. A weak GN-normal form formulas is a ϕ-formula in the inductive
definition below:

• A disjunction of existentially quantified conjunctions of ψ-formulas is a ϕ-
formula;

• An atom is a ψ-formula;

• The conjunction of a ϕ-formula and of a guard is a ψ-formula;

• The conjunction of the negation of a ϕ-formula and of a guard is a ψ-formula.

The CQ-rank of a ϕ-formula is the overall number of conjuncts occurring in the
disjunction of existentially quantified conjunctions that defines this subformula. C

We can then show:

Proposition 3.4.12. There is a function fσ (depending only on σ) such that, for
any weak GN-normal form GNF query Q of CQ-rank r, we can compute in time
O(|Q|) an equivalent nonrecursive CFG-Datalog program P of body size fσ(r).

Proof. We define fσ : n 7→ arity(σ)× n.
We consider an input Boolean GN-normal form formula Q of CQ-rank r, and

call T its abstract syntax tree. We rewrite T in linear time to inline in ϕ-formulas
the definition of their ψ-formulas, so all nodes of T consist of ϕ-formulas, in which
all subformulas are guarded (but they can be used positively or negatively).

We now process T bottom-up. We introduce one intensional Datalog predicate Rn

per node n in T : its arity is the number of variables that are free at n. We then
introduce one rule ρn,δ for each disjunct δ of the disjunction that defines n in T : the
head of ρn,δ is an Rn-atom whose free variables are the variables that are free in n,

73

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

and the body of ρn,δ is the conjunction that defines δ, with each subformula replaced
by the intensional relation that codes it. Of course, we use the predicate Rr for the
root r of T as our goal predicate; note that it must be 0-ary, as Q is Boolean so
there are no free variables at the root of T . This process defines our CFG-Datalog
program P : it is clear that this process runs in linear time.

We first observe that body size for an intensional predicate Rn is less than the
CQ-rank of the corresponding subformula. Hence, as the arity of σ is bounded,
clearly P has body size 6 fσ(r). We next observe that intentional predicates in the
bodies of rules of P are always guarded, thanks to the guardedness requirement on Q.
Further, it is obvious that P is nonrecursive, as it is computed from the abstract
syntax tree T . Last, it is clear that P is equivalent to the original formula Q, as we
can obtain Q back simply by inlining the definition of the intensional predicates.

In fact, the efficient translation of bounded-CQ-rank normal-form GNF programs
(using the fact that subformulas are “answer-guarded”, like our guardedness require-
ments) has been used recently (e.g., in [Benedikt, Bourhis, and Vanden Boom 2016]),
to give efficient procedures for GNF satisfiability. The satisfiability problem for
a logic formally asks, given a sentence in this logic, whether it is satisfiable (i.e.,
there is an instance that satisfies it), and two variants of the problem exist: finite
satisfiability, where we ask for the existence of a finite instance (as we defined them in
this work), and unrestricted satisfiability, where we also allow the satisfying instance
to be infinite. The decidability of both finite and unrestricted satisfiability for GNF
is shown by translating GNF to automata (for a treewidth which is not fixed, unlike
in our context, but depends on the formula). CFG-Datalog further allows clique
guards (similar to CGNFO [Bárány, Cate, and Segoufin 2015]), can reuse subformulas
(similar to the idea of DAG-representations in [Benedikt, Cate, and Vanden Boom
2014]), and supports recursion (similar to GNFP [Bárány, Cate, and Segoufin 2015],
or GN-Datalog [Bárány, Cate, and Otto 2012] but whose combined complexity is
intractable — PNP-complete). CFG-Datalog also resembles µCGF [Berwanger and
Grädel 2001], but recall that µCGF is not a guarded negation logic, so, e.g., µCGF
cannot express all CQs, unlike CFG-Datalog or GNF.

Hence, the design of CFG-Datalog, and its translation to automata, has similarities
with guarded logics. However, to our knowledge, the idea of applying it to query
evaluation is new, and CFG-Datalog is designed to support all relevant features to
capture interesting query languages (e.g., clique guards are necessary to capture
bounded-simplicial-width queries). Moreover CFG-Datalog is intrinsically more
expressive than guarded negation logics as its satisfiability is undecidable, in contrast
with GNF [Bárány, Cate, and Segoufin 2015], CGNFO [Bárány, Cate, and Segoufin
2015], GNFP [Bárány, Cate, and Segoufin 2015], GN-Datalog [Bárány, Cate, and
Otto 2012], µCGF [Grädel 2002], the satisfiability of all of which is decidable.

Proposition 3.4.13. Given a signature σ and a CFG-Datalog P over σ, determining
if P is satisfiable is undecidable, in both the finite and unrestricted cases.

Proof. We reduce from the implication problem for functional dependencies and
inclusion dependencies, a problem known to be undecidable [Mitchell 1983; Ashok
and Vardi 1985] over both finite and unrestricted instances. See also [Abiteboul, Hull,
and Vianu 1995] for a general presentation of the problem and formal definitions and
notation for functional dependencies and inclusion dependencies.

74

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Let σ be a relational signature, let d be a functional dependency or an inclusion
dependency over σ, and let ∆ be a set of functional dependencies and inclusion
dependencies over σ. The problem is to determine if ∆ implies d.

We construct a CFG-Datalog program P over σ which is satisfiable over finite
(resp., unrestricted) instances iff ∆ implies d over finite (resp., unrestricted) instances,
which establishes that CFG-Datalog satisfiability is undecidable.

The intensional signature of the program P is made of:
• a binary relation Eq;

• a nullary relation P¬δ for every dependency δ ∈ ∆ ∪ {d};

• a relation PΠZ(S) whose arity is |Z| whenever there is at least one inclusion
dependency R[Y] ⊆ S[Z] ∈ ∆ ∪ {d};

• the nullary relation Goal.
For every extensional relation R and for every 1 6 i 6 arity(R), we add rules of

the form:

Eq(xi, xi)← R(x).

Consequently, for every instance I over σ, the Eq-facts of P (I) will be exactly
{Eq(v, v) | v ∈ dom(I)}.

For every functional dependency δ in ∆ ∪ {d} with δ = R[Y] → R[Z], we add
the following rules, for 1 6 j 6 |Z|:

P¬δ()← R(x), R(x′),Eq(y1, y
′
1), . . . ,Eq(y|Y |, y′|Y |),¬Eq(zj, z′j)

where for each 1 6 i 6 |Y |, the variables yi and y′i are those at the Yi-th position
in R(x) and R(x′), respectively; and where the variables zj and z′j are those at the
Zj-th position in R(x) and R(x′), respectively.

For every inclusion dependency δ ∈ ∆ ∪ {d}, with δ = R[Y] ⊆ S[Z] we add two
rules:

PΠZ(S)(z)← S(x) P¬δ()← R(x),¬PΠZ(S)(y)
where z are the variables at positions Z within S(x) and y are the variables at
positions Y within R(x).

Finally, we add one rule for the goal predicate:

Goal()← P¬d(),¬P¬δ1(), · · · ,¬P¬δk()

where ∆ = { δ1, . . . , δk }.
Note that all the rules that we have written are clearly in CFG-Datalog. Now,

let I be some instance. It is clear that for each functional dependency δ, P¬δ() is in
P (I) iff I does not satisfy δ. Similarly, for each inclusion dependency δ, P¬δ() is in
P (I) iff I does not satisfy δ. Therefore, for each instance I, Goal() is in P (I) iff I
satisfies ∆ and I does not satisfy d. Thus P is satisfiable over finite instances (resp.,
unrestricted instances) iff there exists a finite instance (resp., a finite or infinite
instance) that satisfies ∆ and does not satisfy d, i.e., iff ∆ does imply d over finite
instances (resp., over unrestricted instances).

We point out that the extensional signature is not fixed in this proof, unlike in the
rest of the chapter. This is simply to establish the expressiveness of CFG-Datalog, it
has no impact on our study of the combined complexity of query evaluation.

75

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

Recursive languages. The use of fixpoints in CFG-Datalog, in particular, allows
us to capture the combined tractability of interesting recursive languages. First,
observe that our guardedness requirement becomes trivial when all intensional
predicates are monadic (arity-one), so our main result implies that monadic Datalog
of bounded body size is tractable in combined complexity on treelike instances. This
is reminiscent of the results of [Gottlob, Pichler, and Wei 2010]. We show:

Proposition 3.4.14. The combined complexity of monadic Datalog query evaluation
on bounded-treewidth instances is FPT when parameterized by instance treewidth and
body size (as in Definition 3.4.2) of the monadic Datalog program.

Proof. This is simply by observing that any monadic Datalog program is a CFG-
Datalog program with the same body size, so we can simply apply Theorem 3.4.4.

Second, CFG-Datalog can capture two-way regular path queries (2RPQs) [Cal-
vanese, De Giacomo, Lenzeniri, and Vardi 2000; Barceló 2013], a well-known query
language in the context of graph databases and knowledge bases. The definition can
be found in Section 1.2.

Proposition 3.4.15 ([Mendelzon and Wood 1989; Barceló 2013]). 2RPQ query
evaluation (on arbitrary instances) has linear time combined complexity.

CFG-Datalog allows us to capture this result for Boolean 2RPQs on treelike
instances. In fact, the above result extends to SAC2RPQs, which are trees of 2RPQs
with no multi-edges or loops. We can prove the following result, for Boolean 2RPQs
and SAC2RPQs, which further implies translatability to automata (and efficient
computation of provenance representations). We do not know whether this extends
to the more general classes studied in [Barceló, Romero, and Vardi 2014].

Proposition 3.4.16. Given a Boolean SAC2RPQ Q (where each 2RPQ is given as
a regular expression), we can compute in time O(|Q|) an equivalent CFG-Datalog
program P of body size 4.

Proof. We first show the result for 2RPQs, and then explain how to extend it to
SAC2RPQs.

We first use Thompson’s construction [Thompson 1968] to compute in linear time
an equivalent NFA A (with ε-transitions) on the alphabet Σ±. Note that the result
of Thompson’s construction has exactly one final state, so we may assume that A
has exactly one final state.

We now define the intensional signature of the CFG-Datalog program to consist
of one unary predicate Pq for each state q of the automaton, in addition to Goal().
We add the rule Goal() ← Pqf (x) for the final state qf , and for each extensional
relation R(x, y), we add the rules Pq0(x)← R(x, y) and Pq0(y)← R(x, y), where q0
is the initial state. We then add rules corresponding to automaton transitions:

• for each transition from q to q′ labeled with a letter R, we add the rule
Pq′(y)← Pq(x), R(x, y);

• for each transition from q to q′ labeled with a negative letter R−, we add the
rule Pq′(y)← Pq(x), R(y, x);

• for each ε-transition from q to q′ we add the rule Pq′(x)← Pq(x)

76

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

This transformation is clearly in linear time, and the result clearly satisfies the
desired body size bound. Further, as the result is a monadic Datalog program, it
is clearly a CFG-Datalog program. Now, it is clear that, in any instance I where
Q holds, from two witnessing elements a and b and a path π : a = c0, c1, . . . , cn = b
from a to b satisfying Q, we can build a derivation tree of the Datalog program
by deriving Pq0(a), Pq1(c1), . . . , Pqn(cn), where q0 is the initial state and qn is final,
to match the accepting path in the automaton A that witnesses that π is a match
of Q. Conversely, any derivation tree of the Datalog program P that witnesses
that an instance satisfies P can clearly be used to extract a path of relations which
corresponds to an accepting run in the automaton.

We now extend this argument to SAC2RPQs. Recall from Section 1.2 that a
C2RPQ is a conjunction of 2RPQs, i.e., writing a 2RPQ as Q(x, y) with its two free
variables, a C2RPQ is a CQ built on 2RPQs. An AC2RPQ is a C2RPQ where the
undirected graph on variables defined by co-occurrence between variables is acyclic,
and a SAC2RPQ further imposes that there are no self-loops (i.e., atoms of the
C2RPQ of the form Q(x, x)) and no multiedges (i.e., for each variable pair, there is
at most one atom where it occurs).

We will also make a preliminary observation on CFG-Datalog programs: any rule
of the form (*) A(x) ← A1(x), . . . , An(x), where A and each Ai is a unary atom,
can be rewritten in linear time to rules with bounded body size, by creating unary
intensional predicates A′i for 1 6 i 6 n, writing the rule A′n(x)← An(x), writing the
rule A′i(x)← A′i+1(x), Ai(x) for each 1 6 i < n, and writing the rule A(x)← A′1(x).
Hence, we will write rules of the form (*) in the transformation, with unbounded
body size, being understood that we can finish the process by rewriting out each
rule of this form to rules of bounded body size.

Given a SAC2RPQ Q, we compute in linear time the undirected graph G on
variables, and its connected components. Clearly we can rewrite each connected
component separately, by defining one Goali() 0-ary predicate for each connected
component i, and adding the rule Goal() ← Goal1(), . . . ,Goaln(): this is a rule
of form (*), which we can rewrite. Hence, it suffices to consider each connected
component separately.

Hence, assuming that the graph G is connected, we root it at an arbitrary
vertex to obtain a tree T . For each node n of T (corresponding to a variable of the
SAC2RPQ), we define a unary intensional predicate P ′n which will intuitively hold
on elements where there is a match of the sub-SAC2RPQ defined by the subtree
of T rooted at n, and one unary intensional predicate P ′′n,n′ for all non-root n and
children n′ of n in T which will hold whenever there is a match of the sub-SAC2RPQ
rooted at n which removes all children of n except n′. Of course we add the rule
Goal()← P ′nr(x), where nr is the root of T .

Now, we rewrite the SAC2RPQ to monadic Datalog by rewriting each edge of T
independently, as in the argument for 2RPQs above. Specifically, we assume that the
edge when read from bottom to top corresponds to a 2RPQ; otherwise, if the edge is
oriented in the wrong direction, we can clearly compute an automaton for the reverse
language in linear time from the Thompson automaton, by reversing the direction of
transitions in the automaton, and swapping the initial state and the final state. We
modify the previous construction by replacing the rule for the initial state Pq0 by
Pq0(x)← P ′n′(x) where n′ is the lower node of the edge that we are rewriting, and
the rule for the goal predicate in the head is replaced by a rule P ′′n,n′(x) ← Pqf (x),

77

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

where n is the upper node of the edge, and qf is the final state of the automaton for
the edge: this is the rule that defines the P ′′n,n′ .

Now, we define each P ′n as follows:

• If n is a leaf node of T , we define P ′n by the same rules that we used to define
Pq0 in the previous construction, so that P ′n holds of all elements in the active
domain of an input instance.

• If n is an internal node of T , we define P ′n(x)← P ′′n,n1(x), . . . , P ′′n,nm(x), where
n1, . . . , nm are the children of n in T : this is a rule of form (*).

Now, given an instance I satisfying the SAC2RPQ, from a match of the SAC2RPQ
as a rooted tree of paths, it is easy to see by bottom-up induction on the tree that
we derive Pv with the desired semantics, using the correctness of the rewriting of
each edge. Conversely, a derivation tree for the rewriting can be used to obtain a
rooted tree of paths with the correct structure where each path satisfies the RPQ
corresponding to this edge.

The rest of the chapter presents the tools needed for our tractability results
(alternating two-way automata and cyclic provenance circuits) and their technical
proofs.

3.5 Translation to Automata
In this section, we study how we can translate CFG-Datalog queries on treelike
instances to tree automata, to be able to evaluate them efficiently. As we showed
with Proposition 3.3.1, we need more expressive automata than bNTAs. Hence, we
use instead the formalism of alternating two-way automata [Comon et al. 2007], i.e.,
automata that can navigate in trees in any direction, and can express transitions
using Boolean formulas on states. Specifically, we introduce for our purposes a variant
of these automata, which are stratified (i.e., allow a form of stratified negation), and
isotropic (i.e., no direction is privileged, in particular order is ignored).

As in Section 3.2.2, we will define tree automata that run on Γ-trees (remember
Section 1.7) for some alphabet Γ. In the rest of this chapter we will always consider
that Γ-trees 〈T, λ〉 are rooted and ordered (but not necessarily binary). The neigh-
borhood Nbh(n) of a node n ∈ T is the set which contains n, all children of n, and
the parent of n if it exists.

Stratified isotropic alternating two-way automata. To define the transitions
of our alternating automata, we write B(X) the set of propositional formulas (not
necessarily monotone) over a set X of variables: we will assume w.l.o.g. that negations
are only applied to variables, which we can always enforce using De Morgan’s laws.
A literal is a propositional variable x ∈ X (positive literal) or the negation of a
propositional variable ¬x (negative literal).

A satisfying assignment of ϕ ∈ B(X) consists of two disjoint sets P,N ⊆ X (for
“positive” and “negative”) such that ϕ is a tautology when substituting the variables
of P with 1 and those of N with 0, i.e., when we have ν(ϕ) = 1 for every valuation
ν of X such that ν(x) = 1 for all x ∈ P and ν(x) = 0 for all x ∈ N . Note that we

78

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

allow satisfying assignments with P tN (X, which will be useful for our technical
results. We now define our automata:

Definition 3.5.1. A stratified isotropic alternating two-way automaton on Γ-trees
(Γ-SATWA) is a tuple A = (Q, qI,∆, ζ) with Q a finite set of states, qI the initial
state, ∆ the transition function from Q× Γ to B(Q), and ζ a stratification function,
i.e., a surjective function from Q to {0, . . . ,m} for some m ∈ N, such that for any
q, q′ ∈ Q and f ∈ Γ, if ∆(q, f) contains q′ as a positive literal (resp., negative literal),
then ζ(q′) 6 ζ(q) (resp., ζ(q′) < ζ(q)).

We define by induction on 0 6 i 6 m an i-run of A on a Γ-tree 〈T, λ〉 as a finite
tree 〈Tr, λr〉, with labels of the form (q, w) or ¬(q, w) for w ∈ T and q ∈ Q with
ζ(q) 6 i, by the following (nested) inductive definition on Tr:

1. For q ∈ Q such that ζ(q) < i, the singleton tree 〈Tr, λr〉 with one node labeled
by (q, w) (resp., by ¬(q, w)) is an i-run if there is a ζ(q)-run of A on 〈T, λ〉
whose root is labeled by (q, w) (resp., if there is no such run);

2. For q ∈ Q such that ζ(q) = i, if ∆(q, λ(w)) has a satisfying assignment (P,N),
if we have an i-run Tq− for each q− ∈ N with root labeled by ¬(q−, w), and an i-
run Tq+ for each q+ ∈ P with root labeled by (q+, wq+) for some wq+ in Nbh(w),
then the tree 〈Tr, λr〉 whose root is labeled (q, w) and has as children all the
Tq− and Tq+ is an i-run.

A run of A starting in a state q ∈ Q at a node w ∈ T is an m-run whose root is
labeled (q, w). We say that A accepts 〈T, λ〉 (written 〈T, λ〉 |= A) if there exists a
run of A on 〈T, λ〉 starting in the initial state qI at the root of T . C

Observe that the internal nodes of a run starting in some state q are labeled by
states q′ in the same stratum as q. The leaves of the run may be labeled by states
of a strictly lower stratum or negations thereof, or by states of the same stratum
whose transition function is tautological, i.e., by some (q′, w) such that ∆(q′, λ(w))
has ∅, ∅ as a satisfying assignment. Intuitively, if we disallow negation in transitions,
our automata amount to the alternating two-way automata used by [Cachat 2002],
with the simplification that they do not need parity acceptance conditions (because
we only work with finite trees), and that they are isotropic: the run for each positive
child state of an internal node may start indifferently on any neighbor of w in the
tree (its parent, a child, or w itself), no matter the direction. (Note, however, that
the run for negated child states must start on w itself.)

We will soon explain how the translation of CFG-Datalog is performed, but we
first note that evaluation of Γ-SATWAs is in linear time.

Proposition 3.5.2. For any alphabet Γ, given a Γ-tree 〈T, λ〉 and a Γ-SATWA A,
we can determine whether 〈T, λ〉 |= A in time O(|T | · |A|).

In fact, this result follows from the definition of provenance cycluits for SATWAs
in the next section, and the claim that these cycluits can be evaluated in linear time.
We will prove Proposition 3.5.2 at the end of Section 3.6.

We now give our main translation result: we can efficiently translate any CFG-
Datalog program of bounded body size into a stratified alternating two-way automa-
ton that tests it (in the same sense as for bNTAs). For pedagogical purposes, we
present the translation for a subclass of CFG-Datalog, namely, CFG-Datalog with

79

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

guarded negations (CFGGN-Datalog), in which invocations of negative intensional
predicates are guarded in rule bodies:

Definition 3.5.3. Let P be a stratified Datalog program. A negative intensional
literal ¬A(x) in a rule body ψ of P is clique-guarded if, for any two variables xi 6= xj
of x, it is the case that xi and xj co-occur in some positive atom of ψ. A CFGGN-
Datalog program is a CFG-Datalog program such that for any rule R(x)← ψ(x,y),
every negative intensional literal in ψ is clique-guarded in ψ. C

We will then prove in Section 3.7 the following translation result, and explain at
the end of Section 3.7 how it can be extended to full CFG-Datalog:

Theorem 3.5.4. Given a CFGGN-Datalog program P of body size kP and kI ∈ N, we
can build in FPT-linear time in |P | (parameterized by kP, kI) a SATWA AP testing P
on instances of treewidth 6 kI.

Proof sketch. The idea is to have, for every relational symbol R, states of the form
qνR(x), where ν is a partial valuation of x. This will be the starting state of a run if it
is possible to navigate the tree encoding from some starting node and build in this
way a total valuation ν ′ that extends ν and such that R(ν ′(x)) holds. When R is
intensional, once ν ′ is total on x, we go into a state of the form qν

′,A
r where r is a

rule with head relation R and A is the set of atoms in the body of r (whose size is
bounded by the body size). This means that we choose a rule to prove R(ν ′(x)). The
automaton can then navigate the tree encoding, build ν ′ and coherently partition A
so as to inductively prove the atoms of the body. The clique-guardedness condition
ensures that, when there is a match of R(x), the elements to which x is mapped can
be found together in a bag. The fact that the automaton is isotropic relieves us from
the syntactic burden of dealing with directions in the tree, as one usually has to do
with alternating two-way automata.

3.6 Provenance Cycluits
In the previous section, we have seen how CFG-Datalog programs could be translated
efficiently to tree automata that test them on treelike instances. To show that
SATWAs can be evaluated in linear time (stated earlier as Proposition 3.5.2), we
will introduce an operational semantics for SATWAs based on the notion of cyclic
circuits, or cycluits for short.

We will also use these cycluits as a new powerful tool to compute (Boolean)
provenance information. We point to Section 1.7 for the definition of the Boolean
provenance of a Boolean query on a relational database. As we already mentioned,
we can represent Boolean provenance as Boolean formulas [Imielinski and Lipski 1984;
Green, Karvounarakis, and Tannen 2007], or (more recently) as Boolean circuits
[Deutch, Milo, Roy, and Tannen 2014; Amarilli, Bourhis, and Senellart 2015]. In
this section, we first introduce monotone cycluits (monotone Boolean circuits with
cycles), for which we define a semantics (in terms of the Boolean function that they
express); we also show that cycluits can be evaluated in linear time, given a valuation.
Second, we extend them to stratified cycluits, allowing a form of stratified negation.
We conclude the section by showing how to construct the provenance of a SATWA
as a cycluit, in FPT-bilinear time. Together with Theorem 3.5.4, this claim implies
our main provenance result:

80

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Theorem 3.6.1. Given a CFG-Datalog program P of body size kP and a relational
instance I of treewidth kI, we can construct in FPT-bilinear time in |I| · |P | (param-
eterized by kP and kI) a representation of the provenance of P on I as a stratified
cycluit.

Of course, this result implies the analogous claims for query languages that
are captured by CFG-Datalog parameterized by the body size, as we studied in
Section 3.4. When combined with the fact that cycluits can be tractably evaluated,
it yields our main result, Theorem 3.4.4. The rest of this section formally introduces
cycluits and proves Theorem 3.6.1.

Cycluits. We coin the term cycluits for Boolean circuits without the acyclicity
requirement. This is the same kind of objects studied in [Riedel and Bruck 2012].
To avoid the problem of feedback loops, however, we first study monotone cycluits,
and then cycluits with stratified negation.

Definition 3.6.2. A monotone Boolean cycluit C = (G,W, g0, µ) is defined just like
a Boolean circuit (see Section 1.7), except that is does not contain NOT gates and
the graph (G,W) is not required to be acyclic. C

We now define the semantics of monotone cycluits. A (Boolean) valuation of C is
a function ν : Cinp → {0, 1} indicating the value of the input gates. As for standard
monotone circuits, a valuation yields an evaluation ν ′ : C → {0, 1}, that we will
define shortly, indicating the value of each gate under the valuation ν: we abuse
notation and write ν(C) ∈ {0, 1} for the evaluation result, i.e., ν ′(g0) where g0 is the
output gate of C. The Boolean function captured by a cycluit C is thus the Boolean
function ϕ on Cinp defined by ν(ϕ) := ν(C) for each valuation ν of Cinp. We define
the evaluation ν ′ from ν by a least fixed-point computation: we set all input gates
to their value by ν, and other gates to 0. We then iterate until the evaluation no
longer changes, by evaluating OR-gates to 1 whenever some input evaluates to 1,
and AND-gates to 1 whenever all their inputs evaluate to 1. Formally, the semantics
of monotone cycluits is defined by Algorithm 1.

Algorithm 1: Semantics of monotone cycluits
Input: Monotone cycluit C = (G,W, g0, µ), valuation ν : Cinp → {0, 1}
Output: {g ∈ C | ν ′(g) = 1}

1 S0 ··= {g ∈ Cinp | ν(g) = 1}
2 i ··= 0
3 do
4 i++
5 Si ··= Si−1 ∪

{
g ∈ C | (µ(g) = ∨), ∃g′ ∈ Si−1, g

′ → g ∈ W
}
∪

6

{
g ∈ C | (µ(g) = ∧), {g′ | g′ → g ∈ W} ⊆ Si−1

}
7 While Si 6= Si−1
8 return Si

The Knaster–Tarski theorem [Tarski 1955] gives an equivalent characterization:

81

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

Proposition 3.6.3. For any monotone cycluit C and Boolean valuation ν of C,
letting ν ′ be the evaluation (as defined by Algorithm 1), the set S ··= {g ∈ C | ν ′(g) =
1} is the minimal set of gates (under inclusion) such that:

(i) S contains the true input gates, i.e., it contains {g ∈ Cinp | ν(g) = 1};

(ii) for any g such that µ(g) = ∨, if some input gate of g is in S, then g is in S;

(iii) for any g such that µ(g) = ∧, if all input gates of g are in S, then g is in S.

Proof. The operator used in Algorithm 1 is clearly monotone, so by the Knaster–
Tarski theorem, the outcome of the computation is the intersection of all sets of
gates satisfying the conditions in Proposition 3.6.3.

Algorithm 1 is a naive fixpoint algorithm running in quadratic time, but we show
that the same output can be computed in linear time with Algorithm 2.

Algorithm 2: Linear-time evaluation of monotone cycluits
Input: Monotone cycluit C = (G,W, g0, µ), valuation ν : Cinp → {0, 1}
Output: {g ∈ C | ν ′(g) = 1}

1 /* Precompute the in-degree of ∧ gates */
2 for g ∈ C s.t. µ(g) = ∧ do
3 M [g] ··= |{g′ ∈ C | g′ → g}|
4 Q ··= {g ∈ Cinp | ν(g) = 1} ∪ {g ∈ C | (µ(C) = ∧) ∧M [g] = 0} /* as a

stack */
5 S ··= ∅ /* as a bit array */
6 while Q 6= ∅ do
7 pop g from Q
8 if g /∈ S then
9 add g to S

10 for g′ ∈ C | g → g′ do
11 if µ(g′) = ∨ then
12 push g′ into Q
13 if µ(g′) = ∧ then
14 M [g′] ··= M [g′]− 1
15 if M [g′] = 0 then
16 push g′ into Q

17 return S

Proposition 3.6.4. Given any monotone cycluit C and Boolean valuation ν of C,
we can compute the evaluation ν ′ of C in linear time.

Proof. We use Algorithm 2. We first prove the claim about the running time. The
preprocessing to compute M is in linear-time in C (we enumerate at most once every
wire), and the rest of the algorithm is clearly in linear time as it is a variant of a
DFS traversal of the graph, with the added refinement that we only visit nodes that

82

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

evaluate to 1 (i.e., OR-gates with some input that evaluates to 1, and AND-gates
where all inputs evaluate to 1).

We now prove correctness. We use the characterization of Proposition 3.6.3. We
first check that S satisfies the properties:

(i) S contains the true input gates by construction.

(ii) Whenever an OR-gate g′ has an input gate g in S, then, when we added g
to S, we have necessarily followed the wire g → g′ and added g′ to Q, and later
added it to S.

(iii) Whenever an AND-gate g′ has all its input gates g in S, there are two cases.
The first case is when g has no input gates at all, in which case S contains it by
construction. The second case is when g′ has input gates: in this case, observe
that M [g′] was initially equal to the fan-in of g′, and that we decrement it for
each input gate g of g′ that we add to S. Hence, considering the last input
gate g of g′ that we add to S, it must be the case that M [g′] reaches zero when
we decrement it, and then we add g′ to Q, and later to S.

Second, we check that S is minimal. Assume by contradiction that it is not the
case, and consider the first gate g which is added to S while not being in the minimal
Boolean valuation S ′. It cannot be the case that g was added when initializing S,
as we initialize S to contain true input gates and AND-gates with no inputs, which
must be true also in S ′ by the characterization of Proposition 3.6.3. Hence, we added
g to S in a later step of the algorithm. However, we notice that we must have added
g to S because of the value of its input gates. By minimality of g, these input gates
have the same value in S and in S ′. This yields a contradiction, because the gates
that we add to S are added following the characterization of Proposition 3.6.3. This
concludes the proof.

Another way to evaluate cycluits in linear time is by a rewriting of the circuit to
a Horn formula, whose minimal model can be computed in linear time [Dowling and
Gallier 1984] and corresponds to the cycluit evaluation.

Stratified cycluits. We now move from monotone cycluits to general cycluits
featuring negation. However, allowing arbitrary negation would make it difficult to
define a proper semantics, because of possible cycles of negations. Hence, we focus
on stratified cycluits:

Definition 3.6.5. A Boolean cycluit C is defined like a monotone cycluit, but
further allows NOT-gates (µ(g) = ¬), which are required to have a single input. It
is stratified if there exists a surjective stratification function ζ mapping its gates to
{0, . . . ,m} for some m ∈ N such that ζ(g) = 0 iff g ∈ Cinp, and ζ(g) 6 ζ(g′) for each
wire g → g′, the inequality being strict if µ(g′) = ¬. C

This notion of stratification is similar to that of stratification of Datalog programs
(see Section 1.2) or that of stratification of Horn formulas [Dantsin, Eiter, Gottlob,
and Voronkov 2001].

Equivalently, we can show that C is stratified if and only if it contains no cycle of
gates involving a ¬-gate. Moreover if C is stratified we can compute a stratification
function in linear time, from a topological sort of its strongly connected components:

83

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

Definition 3.6.6. A strongly connected component (SCC) of a directed graph G =
(V,E) is a subset S ⊆ V that is maximal by inclusion and which ensures that for
any x, y ∈ S with x 6= y, there is a directed path from x to y in G. Observe that the
SCCs of G are disjoint. A topological sort of the SCCs of (G,W) is a linear ordering
(S1, . . . , Sk) of all the SCCs of G such that for any 1 6 i < j 6 k and x ∈ Si and
y ∈ Sj, there is no directed path from y to x in G. C

Such a topological sort always exists and can be computed in linear time from
G [Tarjan 1972]. We can then show:

Proposition 3.6.7. Any Boolean cycluit C is stratified iff it it contains no cycle
of gates involving a ¬-gate. Moreover, a stratification function can be computed in
linear time from C.

Proof. To see why a stratified Boolean cycluit C cannot contain a cycle of gates
involving a ¬-gate, assume by contradiction that it has such a cycle g1 → g2 →
· · · → gn → g1. As C is stratified, there exists a stratification function ζ. From the
properties of a stratification function, we know that ζ(g1) 6 ζ(g2) 6 · · · 6 ζ(g1), so
that we must have ζ(g1) = · · · = ζ(gn). However, letting gi be such that µ(gi) = ¬,
we know that ζ(gi−1) < ζ(gi) (or, if i = 1, ζ(gn) < ζ(g1)), so we have a contradiction.

We now prove the converse direction of the claim, i.e., that any Boolean cycluit
which does not contain a cycle of gates involving a ¬-gate must have a stratification
function, and show how to compute such a function in linear time. Compute in
linear time the strongly connected components (SCCs) of C, and a topological sort
of the SCCs. As the input gates of C do not themselves have inputs, each of them
must have their own SCC, and each such SCC must be a leaf, so we can modify the
topological sort by merging these SCCs corresponding to input gates, and putting
them first in the topological sort. We define the function ζ to map each gate of C to
the index number of its SCC in the topological sort, which ensures in particular that
the input gates of C are exactly the gates assigned to 0 by ζ. This can be performed
in linear time. Let us show that the result ζ is a stratification function:

• For any edge g → g′, we have ζ(g) 6 ζ(g′). Indeed, either g and g′ are in the
same strongly connected component and we have ζ(g) = ζ(g′), or they are not
and in this case the edge g → g′ witnesses that the SCC of g precedes that
of g′, whence, by definition of a topological sort, it follows that ζ(g) < ζ(g′).

• For any edge g → g′ where µ(g′) = ¬, we have ζ(g) < ζ(g′). Indeed, by
adapting the reasoning of the previous bullet point, it suffices to show that g
and g′ cannot be in the same SCC. Indeed, assuming by contradiction that they
are, by definition of a SCC, there must be a path from g′ to g, and combining
this with the edge g → g′ yields a cycle involving a ¬-gate, contradicting our
assumption on C.

We can then use any stratification function to define the evaluation of C (which
will be independent of the choice of stratification function):

Definition 3.6.8. Let C be a stratified cycluit with stratification function ζ : C →
{0, . . . ,m}, and let ν be a Boolean valuation of C. We inductively define the i-th
stratum evaluation νi, for i in the range of ζ, by setting ν0 := ν, and letting νi extend
the νj (j < i) as follows:

84

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

1. For g such that ζ(g) = i with µ(g) = ¬, set νi(g) ··= ¬νζ(g′)(g′) for its one
input g′.

2. Evaluate all other g with ζ(g) = i as for monotone cycluits, considering the
¬-gates of point 1. and all gates of stratum < i as input gates fixed to their
value in νi−1.

Letting g0 be the output gate of C, the Boolean function ϕ captured by C is then
defined as ν(ϕ) := νm(g0) for each valuation ν of Cinp. C

Proposition 3.6.9. We can compute ν(C) in linear time in the stratified cycluit C
and in ν. Moreover, the result is independent of the chosen stratification function.

Proof. Compute in linear time a stratification function ζ of C using Proposition 3.6.7,
and compute the evaluation following Definition 3.6.8. This can be performed in
linear time. To see why this evaluation is independent from the choice of stratification,
observe that any stratification function must clearly assign the same value to all
gates in an SCC. Hence, choosing a stratification function amounts to choosing the
stratum that we assign to each SCC. Further, when an SCC S precedes another SCC
S ′, the stratum of S must be no higher than the stratum of S ′. So in fact the only
freedom that we have is to choose a topological sort of the SCCs, and optionally to
assign the same stratum to consecutive SCCs in the topological sort: this amounts to
“merging” some SCCs, and is only possible when there are no ¬-gates between them.
Now, in the evaluation, it is clear that the order in which we evaluate the SCCs
makes no difference, nor does it matter if some SCCs are evaluated simultaneously.
Hence, the evaluation of a stratified cycluit is well-defined.

Building provenance cycluits. Having defined cycluits as our provenance repre-
sentation, we compute the provenance of a query on an instance as the provenance
of its SATWA on a tree encoding. To do so, we must give a general definition of
the provenance of SATWAs. Consider a Γ-tree T ··= 〈T, λ〉 for some alphabet Γ,
as in Section 3.5. We define a (Boolean) valuation ν of T as a mapping from the
nodes of T to {0, 1}. Writing Γ := Γ× {0, 1}, each valuation ν then defines a Γ-tree
ν(T) ··= 〈T, (λ × ν)〉, obtained by annotating each node of T by its ν-image. As
in [Amarilli, Bourhis, and Senellart 2015], we define the provenance of a Γ-SATWA
A on T , which intuitively captures all possible results of evaluating A on possible
valuations of T :

Definition 3.6.10. The provenance of a Γ-SATWA A on a Γ-tree T is the Boolean
function ϕ defined on the nodes of T such that, for any valuation ν of T , ν(ϕ) = 1
iff A accepts ν(T). C

We then show that we can efficiently build provenance representations of SATWAs
on trees as stratified cycluits:

Theorem 3.6.11. For any fixed alphabet Γ, given a Γ-SATWA A and a Γ-tree
T = 〈T, λ〉, we can build a stratified cycluit capturing the provenance of A on T in
time O(|A| · |T |).

The construction generalizes Proposition 3.1 of [Amarilli, Bourhis, and Senellart
2015] from bNTAs and circuits to SATWAs and cycluits. The reason why we

85

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

need cycluits rather than circuits is because two-way automata may loop back on
previously visited nodes. To prove Theorem 3.6.11, we construct a cycluit CA

T as
follows. For each node w of T , we create an input node gi

w, a ¬-gate g¬i
w defined

as NOT(gi
w), and an OR-gate gqw for each state q ∈ Q. Now for each gqw, for

b ∈ {0, 1}, we consider the propositional formula ∆(q, (λ(w), b)), and we express it
as a circuit that captures this formula: we let gq,bw be the output gate of that circuit,
we replace each variable q′ occurring positively by an OR-gate ∨w′∈Nbh(w) g

q′

w′ , and
we replace each variable q′ occurring negatively by the gate gq′w . We then define gqw
as OR(AND(gi

w, g
q,1
w),AND(g¬i

w , g
q,0
w)). Finally, we let the output gate of C be gqI

r ,
where r is the root of T , and qI is the initial state of A.

It is clear that this process runs in linear time in |A| · |T |. The proof of Theo-
rem 3.6.11 then results from the following claim:

Lemma 3.6.12. The cycluit CA
T is a stratified cycluit capturing the provenance of

A on T .

Proof. We first show that C := CA
T is a stratified cycluit. Let ζ be the stratification

function of the Γ-SATWA A and let {0, . . . ,m} be its range. We use ζ to define ζ ′
as the following function from the gates of C to {0, . . . ,m+ 1}:

• For any input gate gi
w, we set ζ ′(gi

w) := 0 and ζ ′(g¬i
w) := 1.

• For an OR gate g := ∨
w′∈Nbh(w) g

q′

w′ , we set ζ ′(g) := ζ(q′) + 1.

• For any state gqw, we set ζ ′(gqw) := ζ(q)+1, and do the same for the intermediate
AND-gates used in its definition, as well as the gates in the two circuits that
capture the transitions ∆(q, (λ(w), b)) for b ∈ {0, 1}, except for the input gates
of that circuit (i.e., gates of the form ∨

w′∈Nbh(w) g
q′

w′ , which are covered by the
previous point, or gq′w , which are covered by another application of that point).

Let us show that ζ ′ is indeed a stratification function for C. We first observe
that it is the case that the gates in stratum zero are precisely the input gates. We
then check the condition for the various possible wires:

• gi
w → g¬i

w : by construction, we have ζ(gi
w) < ζ ′(g¬i

w).

• g → g′ where g′ is a gate of the form gqw and g is an intermediate AND-gate in
the definition of a gate of the form gqw: by construction we have ζ ′(g) = ζ ′(g′),
so in particular ζ ′(g) 6 ζ ′(g′).

• g → g′ where g′ is an intermediate AND-gate in the definition of a gate of
the form gqw, and g is gi

w or g¬i
w : by construction we have ζ ′(g) ∈ {0, 1} and

ζ ′(g′) > 1, so ζ ′(g) 6 ζ ′(g′).

• g → g′ where g is a gate in a circuit capturing the propositional formula of some
transition of ∆(q, ·) without being an input gate or a NOT-gate of this circuit,
and g′ is also such a gate, or is an intermediate AND-gate in the definition
of gqw: then g′ cannot be a NOT-gate (remembering that the propositional
formulas of transitions only have negations on literals), and by construction we
have ζ ′(g) = ζ ′(g′).

86

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

• g → g′ where g is of the form ∨
w′∈Nbh(w) g

q
w′ , and g′ is a gate in a circuit

describing ∆(q′, ·) or an intermediate gate in the definition of gq′w . Then we
have ζ ′(g) = ζ(q) and ζ ′(g′) = ζ(q′), and as q occurs as a positive literal
in a transition of q′, by definition of ζ being a transition function, we have
ζ(q) 6 ζ(q′). Now we have ζ ′(g) = ζ(q) and ζ ′(g′) = ζ ′(q′) by definition of ζ ′,
so we deduce that ζ ′(g) 6 ζ ′(g′).

• g → g′ where g′ is of the form ∨
w′∈Nbh(w) g

q′

w′ , and g is one of the gq
′

w′ . Then
by definition of ζ ′ we have ζ ′(g) = ζ(q′) and ζ ′(g′) = ζ(q′), so in particular
ζ ′(g) 6 ζ ′(g′).

• g → g′ where g is a NOT-gate in a circuit capturing a propositional formula
∆(q′, (λ(w), b)), and g is then necessarily a gate of the form gqw: then clearly
q′ was negated in ϕ so we had ζ(q) < ζ(q′), and as by construction we have
ζ ′(g) = ζ(q) and ζ ′(g′) = ζ(q′), we deduce that ζ ′(g) < ζ ′(g′).

We now show that C indeed captures the provenance of A on 〈T, λ〉. Let
ν : T → {0, 1} be a Boolean valuation of the inputs of C, that we extend to an
evaluation ν ′ : C → {0, 1} of C. We claim the following equivalence: for all q and
w, there exists a run ρ of A on ν(T) starting at w in state q if and only if ν ′(gqw) = 1.

We prove this claim by induction on the stratum i = ζ(q) of q. Up to adding
an empty first stratum, we can make sure that the base case is vacuous. For the
induction step, we prove each implication separately.

Forward direction. First, suppose that there exists a run ρ = 〈Tr, λr〉
starting at w in state q, and let us show that ν ′(gqw) = 1. We show by induction on
the run (from bottom to top) that for each node y of the run labeled by a positive
state (q′, w′) we have ν ′(gq

′

w′) = 1, and for every node y of the run labeled by a
negative state ¬(q′, w′) we have ν ′(gq

′

w′) = 0. The base case concerns the leaves, where
there are three possible subcases:

• We may have λr(y) = (q′, w′) with ζ(q′) = i, so that ∆(q′, (λ(w′), ν(w′))) is
tautological. In this case, gq

′

w′ is defined as OR(AND(gi
w′ , g

q′,1
w′),AND(g¬i

w′ , g
q′,0
w′)).

Hence, we know that ν(gq
′,ν(w)
w′) = 1 because the circuit is also tautological, and

depending on whether ν(w) is 0 or 1 we know that ν(g¬i
w′) = 1 or ν(gi

w′) = 1,
so this proves the claim.

• We may have λr(y) = (q′, w′) with ζ(q′) = j for j < i. By definition of the run
ρ, this implies that there exists a run starting at w′ in state q′. But then, by
the induction on the strata (using the forward direction of the equivalence),
we must have ν(gq

′

w′) = 1.

• We may have λr(y) = ¬(q′, w′) with ζ(q′) = j for j < i. Then by definition
there exists no run starting at w′ in state q′. Hence again by induction on
the strata (using the backward direction of the equivalence), we have that
ν(gq

′

w′) = 0.

For the induction case on the run, where y is an internal node, by definition
of a run there is a subset S = {qP1 , · · · , qPn} of positive literals and a subset

87

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

N = {¬qN1 , · · · ,¬qNm} of negative literals that satisfy ϕν(w′) ··= ∆(q′, (λ(w′), ν(w′)))
such that:

• For all qPk ∈ P , there exists a child yk of y with λr(yk) = (qPk , w′k) where
w′k ∈ Nbh(w′);

• For all ¬qNk ∈ N there is a child y′k of y with λr(y′k) = ¬(qNk , w′).

Then, by induction on the run, we know that for all qPk we have ν(gqPkw′k
) = 1

and for all ¬qNk we have ν(gqNkw′) = 0. Let us show that we have ν(gq
′

w′) = 1, which
would finish the induction case on the run. There are two cases: either ν(w′) = 1 or
ν(w′) = 0. In the first case, remember that the first input of the OR-gate gq

′

w′ is an
AND-gate of gi

w′ and the output gate gq
′,1
w′ of a circuit coding ϕ1 on inputs including

the gqPkw′
k

and gqNkw′ . We have ν(gi
w′) = 1 because ν(w′) = 1, and the second gate (gq

′,1
w′)

evaluates to 1 by construction of the circuit, as witnessed by the Boolean valuation
of the gqPkw′

k
and gqNkw′ . In the second case we follow the same reasoning but with the

second input of gq
′

w′ instead, which is an AND-gate on g¬i
w′ and a circuit coding ϕ0.

By induction on the run, the claim is proven, and applying it to the root of the
run concludes the proof of the first direction of the equivalence (for the induction
step of the induction on strata).

Backward direction. We now prove the converse implication for the induc-
tion step of the induction on strata, i.e., letting i be the current stratum, for every
node w and state q with ζ(q) = i, if ν(gqw) = 1 then there exists a run ρ of A starting
at w. From the definition of the stratification function ζ ′ of the cycluit from ζ, we
have ζ ′(gqw) = ζ(q) + 1, so as ν(gqw) = 1 we know that νi+1(gqw) = 1, where νi+1 is
the i + 1-th stratum evaluation of C (remember Definition 3.6.8). By induction
hypothesis on the strata, we know from the equivalence that, for any j 6 i, for any
gate gq

′′

w′′ of C with ζ(gq
′′

w′′) = j, we have νj(gq
′′

w′′) = 1 iff there exists a run ρ of A on
ν(T) starting at w′′ in state q′′.

Recall that the definition of νi+1 according to Definition 3.6.8 proceeds in three
steps. Initially, we fix the value in νi+1 of gates of lower strata, so we can then
conclude by induction hypothesis on the strata. We then set the value of all NOT-
gates in νi+1, but these cannot be of the form gq

′

w′ so there is nothing to show. Last, we
evaluate all other gates with Algorithm 1. We then show our claim by an induction
on the iteration in the application of Algorithm 1 for νi+1 where the gate gqw was set
to 1. The base case, where gqw was initially true, was covered in the beginning of this
paragraph.

For the induction step on the application of Algorithm 1, when a gate gq
′

w′ is set to
true by νi+1, as gq

′

w′ is an OR-gate by construction, from the workings of Algorithm 1,
there are two possibilities: either its input AND-gate that includes gi

w′ was true, or
its input AND-gate that includes g¬i

w′ was true. We prove the first case, the second
being analogous. From the fact that gi

w′ is true, we know that ν(w′) = 1. Consider
the other input gate to that AND gate, which is the output gate of a circuit C ′
reflecting ϕ ··= ∆(q′, (λ(w′), ν(w′))), with the input gates adequately substituted.
We consider the value by νi+1 of the gates that are used as input gates of C ′ in the
construction of C (i.e., OR-gates, in the case of variables that occur positively, or
directly gq

′′

w′ -gates, in the case of variables that occur negatively). By construction

88

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

of C ′, the corresponding Boolean valuation ν ′ is a witness to the satisfaction of ϕ.
By induction hypothesis on the strata (for the negated inputs to C ′; and for the
non-negated inputs to C ′ which are in a lower stratum) and on the step at which the
gate was set to true by Algorithm 1 (for the inputs in the same stratum, which must
be positive), the valuation of these inputs reflects the existence of the corresponding
runs. Hence, we can assemble these (i.e., a leaf node in the first two cases, a run in
the third case) to obtain a run starting at w′ for state q′ using the Boolean valuation
ν ′ of the variables of ϕ; this valuation satisfies ϕ as we have argued.

This concludes the two inductions of the proof of the equivalence for the
induction step of the induction on strata, which concludes the proof of Theorem 3.6.11.

Note that the proof can be easily modified to make it work for standard alternating
two-way automata rather than our isotropic automata.

Proving Theorem 3.6.1. We are now ready to conclude the proof of our main
provenance construction result, i.e., Theorem 3.6.1. We do so by explaining how
our provenance construction for Γ-SATWAs can be used to compute the provenance
of a CFG-Datalog query on a treelike instance. This is again similar to [Amarilli,
Bourhis, and Senellart 2015].

Recall the definition of tree encodings from Section 1.5, and the definition of the
alphabet Γkσ. To represent the dependency of automaton runs on the presence of
individual facts, we will be working with Γkσ-trees, where the Boolean annotation on
a node n indicates whether the fact coded by n (if any) is present or absent. The
semantics is that we map back the result to Γkσ as follows:

Definition 3.6.13. We define the mapping ε from Γkσ to Γkσ by:

• ε((d, s), 1) is just (d, s), indicating that the fact of s (if any) is kept;

• ε((d, s), 0) is (d, ∅), indicating that the fact of s (if any) is removed.

We abuse notation and also see ε as a mapping from Γkσ-trees to Γkσ-trees by
applying it to each node of the tree. C

As our construction of provenance applies to automata on Γkσ, we show the
following easy lifting lemma (generalizing Lemma 3.3.4 of [Amarilli 2016]):

Lemma 3.6.14. For any Γkσ-SATWA A, we can compute in linear time a Γkσ-SATWA
A′ such that, for any Γkσ-tree E, we have that A′ accepts E iff A accepts ε(E).

Proof. The proof is exactly analogous to that of Lemma 3.3.4 of [Amarilli 2016].

We are now ready to conclude the proof of our main provenance result (Theo-
rem 3.6.1):

Proof of Theorem 3.6.1. Given the program P and instance I, use Theorem 3.5.4
to compute in FPT-linear time in |P | a Γkσ-SATWA A that tests P on instances of
treewidth 6 kI, for kI the treewidth bound. Compute also in FPT-linear time a
tree encoding 〈E, λ〉 of the instance I (i.e., a Γkσ-tree), using Theorem 1.5.2. Lift
the Γkσ-SATWA A in linear time using Lemma 3.6.14 to a Γkσ-SATWA A′, and use
Theorem 3.6.11 on A′ and 〈E, λ〉 to compute in FPT-bilinear time a stratified cycluit

89

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

C ′ that captures the provenance of A′ on 〈E, λ〉: the inputs of C ′ correspond to the
nodes of E. Let C be obtained from C ′ in linear time by changing the inputs of C ′
as follows: those which correspond to nodes n of 〈E, λ〉 containing a fact (i.e., with
label (d, s) for |s| = 1) are renamed to be an input gate that stands for the fact of I
coded in this node; the nodes n of 〈E, λ〉 containing no fact are replaced by a 0-gate,
i.e., an OR-gate with no inputs. Clearly, C is still a stratified Boolean cycluit, and
Cinp is exactly the set of facts of I.

All that remains to show is that C captures the provenance of P on I in the sense
of Section 1.7. To see why this is the case, consider an arbitrary Boolean valuation ν
mapping the facts of I to {0, 1}, and call ν(I) ··= {F ∈ I | ν(F) = 1}. We must show
that ν(I) satisfies P iff ν(C) = 1. By construction of C, it is obvious that ν(C) = 1
iff ν ′(C ′) = 1, where ν ′ is the Boolean valuation of Cinp defined by ν ′(n) = ν(F)
when n codes some fact F in 〈E, λ〉, and ν ′(n) = 0 otherwise. By definition of the
provenance of A′ on 〈E, λ〉, we have ν ′(C ′) = 1 iff A′ accepts ν ′(〈E, λ〉), that is, by
definition of lifting, iff A accepts ε(ν ′(〈E, λ〉)). Now all that remains to observe
is that ε(ν ′(〈E, λ〉)) is precisely a tree encoding of the instance ν(I): this is by
definition of ν ′ from ν, and by definition of our tree encoding scheme. Hence, by
definition of A testing P , the tree ε(ν ′(〈E, λ〉)) is accepted by A iff ν(I) satisfies P .
This finishes the chain of equivalences, and concludes the proof of Theorem 3.6.1.

As promised in Section 3.5, we still need to show how we can use cycluits to
evaluate a SATWA in linear time. We recall the statement of Proposition 3.5.2:

Proposition 3.5.2. For any alphabet Γ, given a Γ-tree 〈T, λ〉 and a Γ-SATWA A,
we can determine whether 〈T, λ〉 |= A in time O(|T | · |A|).

Proof. We use Theorem 3.6.11 to compute a provenance cycluit C of the SATWA
(modified to be a Γ-SATWA by simply ignoring the second component of the alphabet)
in time O(|T | · |A|). Then we conclude by evaluating the resulting provenance cycluit
(for an arbitrary valuation of that circuit) in time O(|C|) using Proposition 3.6.9.

Note that, intuitively, the fixpoint evaluation of the cycluit can be understood as
a least fixpoint computation to determine which pairs of states and tree nodes (of
which there are O(|T | · |A|)) are reachable.

This concludes the presentation of our provenance results.

3.7 Proof of Translation
In this section, we prove our main technical theorem, Theorem 3.5.4, which we recall
here:

Theorem 3.5.4. Given a CFGGN-Datalog program P of body size kP and kI ∈ N, we
can build in FPT-linear time in |P | (parameterized by kP, kI) a SATWA AP testing P
on instances of treewidth 6 kI.

We then explain at the end of the section how this can be extended to full
CFG-Datalog (i.e., with negative intensional predicates not being necessarily guarded
in rule bodies).

90

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

3.7.1 Guarded-Negation Case

First, we introduce some useful notations to deal with valuations of variables as
constants of the encoding alphabet. Recall that DkI is the domain of elements for
treewidth kI, used to define the alphabet ΓkI

σ of tree encodings of width kI.

Definition 3.7.1. Given a tuple x of variables, a partial valuation of x is a function
ν from x to DkI t{?}. The set of undefined variables of ν is U(ν) = {xj | ν(xj) = ?}:
we say that the variables of U(ν) are not defined by ν, and the other variables are
defined by ν.

A total valuation of x is a partial valuation ν of x such that U(ν) = ∅. We say
that a valuation ν ′ extends another valuation ν if the domain of ν ′ is a superset of
that of ν, and if all variables defined by ν are defined by ν ′ and are mapped to the
same value. For y ⊆ x, we say that ν is total on y if its restriction to y is a total
valuation.

For any two partial valuations ν of x and ν ′ of y, if we have ν(z) = ν ′(z) for all
z in (x ∩ y) \ (U(ν) ∪ U(ν ′)), then we write ν ∪ ν ′ for the valuation on x ∪ y that
maps every z to ν(z) or ν ′(z) if one is defined, and to “?” otherwise.

When ν is a partial valuation of x with x ⊆ x′ and we define a partial valuation
ν ′ of x′ with ν ′ := ν, we mean that ν ′ is defined like ν on x and is undefined on
x′ \ x. C

Definition 3.7.2. Let x and y be two tuples of variables of same arity (note that
some variables of x may be repeated, and likewise for y). Let ν : x→ DkI be a total
valuation of x. We define Homy,x(ν) to be the (unique) homomorphism from the
tuple y to the tuple ν(x) (i.e., the unification between the tuple y and the tuple
ν(x)), if such a homomorphism exists; otherwise, Homy,x(ν) is null. C

The rest of this section proves Theorem 3.5.4 in two steps. First, we build a
SATWA A′P and we prove that A′P tests P on instances of treewidth 6 kI; however,
the construction of A′P that we present is not FPT-linear. Second, we explain how
to modify the construction to construct an equivalent SATWA AP while respecting
the FPT-linear time bound.

Construction of A′P . We formally construct the SATWA A′P by describing its
states and transitions. First, for every extensional atom S(x) appearing in (the
body) of a rule of P and partial valuation ν of x, we introduce a state qνS(x). This
will be the starting state of a run if it is possible to navigate the tree encoding from
some starting node and build in this way a total valuation ν ′ that extends ν and
such that S(ν ′(x)) holds in the tree encoding, in a node whose domain elements that
are in the image of ν ′ will decode to the same element as they do in the node where
the automaton can reach state qνS(x). In doing so, one has to be careful not to leave
the occurrence subtree of the values in the image of the valuation, which we call
the allowed subtree. Indeed, remember that in a tree encoding, an element a ∈ DkI

appearing in two bags that are separated by another bag not containing a is used to
encode two distinct elements of the original instance, rather than the same element.
We now define the transitions needed to implement this.

Let (d, s) ∈ ΓkI
σ be a symbol; we have the following transitions:

91

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

• If there is an xj ∈ x such that ν(xj) 6= ? (i.e., xj is defined by ν) and ν(xj) /∈ d,
then ∆(qνS(x), (d, s)) := ⊥. This is to prevent the automaton from leaving the
allowed subtree.

• Else if ν is not total, then ∆(qνS(x), (d, s)) := qνS(x) ∨
∨

a∈d,xj∈U(ν)
q
ν∪{xj 7→a}
S(x) . That

is, either we continue navigating in the same state (but remember that the
automaton may move to any neighbor node), or we guess a value for some
undefined variable.

• Else if ν is total but s 6= S(ν(x)), then ∆(qνS(x), (d, s)) := qνS(x): if the fact s of
the node is not a match, then we continue searching.

• Else, the only remaining possibility is that ν is total and that s = S(ν(x)), in
which case we set ∆(qνS(x), (d, s)) := >, i.e., we have found a node containing
the desired fact.

Let r be a rule of P and A be a subset of the literals in the body of r. We write
vars(A) the set of variables that appear in some atom of A. For every rule r of P ,
for every subset A of the literals in the body of r, and for every partial valuation ν
of vars(A) that defines all the variables that are also in the head of r, we introduce a
state qν,Ar . This state is intended to prove the literals in A with the partial valuation
ν. We will describe the transitions for those states later.

For every intensional predicate R(x) appearing in a rule of P and partial valuation
ν of x, we have a state qνR(x). This state is intended to prove R(x) with a total
extension of ν. Let (d, s) ∈ ΓkI

σ be a symbol; we have the following transitions:

• If there is a j such that xj is defined by ν and ν(xj) /∈ d, then ∆(qνR(x), (d, s)) :=
⊥. This is again in order to prevent the automaton from leaving the allowed
subtree.

• Else if ν is not total, then ∆(qνR(x), (d, s)) := qνR(x)∨
∨

a∈d,xj∈U(ν)
q
ν∪{xj 7→a}
R(x) . Again,

either we continue navigating in the same state, or we guess a value for some
undefined variable.

• Else (in this case ν is total), ∆(qνR(x), (d, s)) is defined as the disjunction of all
the qν′,Ar for each rule r such that the head of r is R(y), ν ′ := Homy,x(ν) is
not null and A is the set of all literals in the body of r. Notice that because
ν is total on x, ν ′ is also total on y. This transition simply means that we
need to chose an appropriate rule to prove R(x). We point out here that these
transitions are the ones that make the construction quadratic instead of linear
in |P |, but this will be handled later.

It is now time to describe transitions for the states qν,Ar . Let (d, s) ∈ ΓkI
σ , then:

• If there is a variable z in A such that z is defined by ν and ν(z) /∈ d, then
∆(qν,Ar , (d, s)) := ⊥. Again, this is to prevent the automaton from leaving the
allowed subtree.

92

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

• Else, if A contains at least two literals, then ∆(qν,Ar , (d, s)) is defined as a

disjunction of qν,Ar and of
 a disjunction over all the non-empty sets A1,A2

that partition A of
[
a disjunction over all the total valuations ν ′ of U(ν) ∩

vars(A1) ∩ vars(A2) with values in d of
[
qν∪ν

′,A1
r ∧ qν∪ν′,A2

r

]]. This transition
means that we allow to partition in two the literals that need to be proved,
and for each class of the partition we launch one run that will have to prove
the literals of that class. In doing so, we have to take care that the two runs
will build valuations that are consistent. This is why we fix the value of the
variables that they have in common with a total valuation ν ′.

• Else, if A = {T (y)} where T is an extensional or an intensional relation, then
∆(qν,Ar , (d, s)) := qνT (y).

• Else, if A = {¬R′(y)} where R′ is an intensional relation, and if |y| = 1, and if
ν(y) is undefined (where we write y the one element of y), then ∆(qν,Ar , (d, s)) :=
qν,Ar ∨ ∨a∈d qν∪{y 7→a},Ar .

• Else, if A = {¬R′(y)} where R′ is an intensional relation, then we will only
define the transitions in the case where ν is total on y, in which case we set
∆(qν,Ar , (d, s)) := ¬qνR′(y). It is sufficient to define the transitions in this case,
because qν,{¬R′(y)}

r can only be reached if ν is total on y. Indeed, if |y| = 1,
then ν must be total on y because we would have applied the previous bullet
point otherwise. If |y| > 1, the only way we could have reached the state
qν,{¬R

′(y)}
r is by a sequence of transitions involving qν0,A0

r , . . . , qνm,Amr , where
A0 are all the literals in the body of r, Am is A and νm is ν. We can then
see that, during the partitioning process, ¬R′(y) must have been separated
from all the (positive) atoms that formed its guard (recall the definition of
CFGGN-Datalog), hence all its variables have been assigned a valuation.

Finally, the initial state of A′P is q∅Goal.

We describe the stratification function ζ ′ of A′P . Let ζ be that of P . Observe that
we can assume w.l.o.g. that the first stratum of ζ (i.e., relations R with ζ(R) = 1)
contains exactly all the extensional relations. For any state q of the form qνT (x) or
qν,Ar with r having as head relation T (T begin extensional or intensional), then ζ ′(q)
is defined to be ζ(T) − 1. Notice that this definition ensures that only the states
corresponding to extensional relations are in the first stratum of ζ ′. It is then clear
from the transitions that ζ ′ is a valid stratification function for A′P .

As previously mentioned, the construction of A′P is not FPT-linear, but we will
explain at the end of the proof how to construct in FPT-linear time a SATWA AP
equivalent to A′P .

A′P tests P on instances of treewidth 6 kI. To show this claim, let 〈T, λE〉
be a (σ, kI)-tree encoding. Let I be the instance obtained by decoding 〈T, λE〉;
we know that I has treewidth 6 kI and that we can define from 〈T, λE〉 a tree

93

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

decomposition 〈T, dom〉 of I whose underlying tree is also T . For each node n ∈ T ,
let decn : DkI → dom(n) be the function that decodes the elements in node n of
the encoding to the elements of I that are in the corresponding bag of the tree
decomposition, and let encn : dom(n) → DkI be the inverse function that encodes
back the elements, so that we have decn ◦ encn = encn ◦ decn = Id. We will denote
elements of DkI by a and elements in the domain of I by c.

We recall some properties of tree decompositions and tree encodings:
Property 3.7.3. Let n1, n2 be nodes of T and a ∈ DkI be an (encoded) element that
appears in the λE-image of n1 and n2. Then the element a appears in the λE-image
of every node in the path from n1 to n2 if and only if decn1(a) = decn2(a).
Property 3.7.4. Let n1, n2 be nodes of T and c be an element of I that appears in
dom(n1) ∩ dom(n2). Then for every node n′ on the path from n1 to n2, c is also in
dom(n′), and moreover encn′(c) = encn1(c).

We start with the following lemma about extensional facts:
Lemma 3.7.5. For every extensional relation S, node n ∈ T , variables y, and
partial valuation ν of y, there exists a run ρ of A′P starting at node n in state qνS(y)
if and only if there exists a fact S(c) in I such that we have decn(ν(yj)) = cj for
every yj defined by ν. We call this a match c of S(y) in I that is compatible with ν
at node n.
Proof. We prove each direction in turn.

Forward direction. Suppose there exists a run ρ of A′P starting at node n
in state qνS(y). First, notice that by design of the transitions starting in a state of that
form, states appearing in the labeling of the run can only be of the form qν′S(y) for an
extension ν ′ of ν. We will show by induction on the run that for every node π of
the run labeled by (qν′S(y),m), there exists c′ such that S(c′) ∈ I and c′ is compatible
with ν ′ at node m. This will conclude the proof of the forward part of the lemma,
by taking m = n.

The base case is when π is a leaf of ρ. The node π is then labeled by (qν′S(y),m) such
that ∆(qν′S(y), λE(m)) = >. Let (d, s) = λE(m). By construction of the automaton we
have that ν ′ is total and s = S(ν ′(y)). We take c′ to be decm(ν ′(y)), which satisfies
the compatibility condition by definition and is such that S(c′) = S(decm(ν ′(y))) =
decm(s) ∈ I.

When π is an internal node of ρ, we write again (qν′S(y),m) its label. By def-
inition of the transitions of the automaton, we have ∆(qν′S(y), (d, s)) = qν

′

S(y) ∨∨
a∈d,yj∈U(ν′)

q
ν′∪{yj 7→a}
S(y) . Hence, the node π has at least one child π′, the second compo-

nent of the label of π′ is some m′ ∈ Nbh(m), and we have two cases depending on
the first component of its label (i.e., the state):

• π′ may be labeled by (qν′S(y),m
′). Then by induction on the run there exists

c′′ such that S(c′′) ∈ I and c′′ is compatible with ν ′ at node m′. We take c′
to be c′′, so that we only need to check the compatibility condition, i.e., that
for every yj defined by ν ′, decm(ν ′(yj)) = cj = decm′(ν ′(yj)). This is true by
Property 3.7.3. Indeed, for every yj defined by ν ′, we must have ν ′(yj) ∈ m′,
otherwise π′ would have a label that cannot occur in a run (because this would
mean that we have escaped the allowed subtree).

94

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

• π′ is labeled by (qν
′∪{yj 7→a}
S(y) ,m′) for some a ∈ d and for some yj ∈ U(ν ′). Then

by induction on the run there exists c′′ such that S(c′′) ∈ I and c′′ is compatible
with ν ′ ∪ {yj 7→ a} at node m′. We take c′ to be c′′, which again satisfies the
compatibility condition thanks to Property 3.7.3.

Backward direction. Now, suppose that there exists c such that S(c) ∈
I and c is compatible with ν at node n. The fact S(c) is encoded somewhere
in 〈T, λE〉, so there exists a node m such that, letting (d, s) be λE(m), we have
decm(s) = S(c). Let n = m1,m2, . . . ,mp = m be the nodes on the path from n
to m, and (di, si) be λE(mi) for 1 6 i 6 p. By compatibility, for every yj defined
by ν we have decn(ν(yj)) = cj. But decn(ν(yj)) ∈ dom(n) and cj ∈ dom(m) so
by Property 3.7.4, for every 1 6 i 6 p we have cj ∈ dom(mi) and encmi(cj) =
encn(cj) = encn(decn(ν(yj))) = ν(yj), so that ν(yj) ∈ di. We can then construct a
run ρ starting at node n in state qνS(y) as follows. The root π1 is labeled by (qνS(y), n),
and for every 2 6 i 6 p, πi is the unique child of πi−1 and is labeled by (qνS(y),mi).
This part is valid because we just proved that for every i, there is no j such that
yj is defined by ν and ν(yj) /∈ dj. Now from πm, we continue the run by staying
at node m and building up the valuation, until we reach a total valuation νf such
that νf(y) = encm(c). Then we have s = S(νf(y)) and the transition is >, which
completes the definition of the run.

The preceding lemma concerns the base case of extensional relations. We now
prove a similar equivalence lemma for all relations (extensional or intensional). This
lemma allows us to conclude the correctness proof, by applying it to the Goal()
predicate and to the root of the tree-encoding.

Lemma 3.7.6. For every relation R, node n ∈ T and partial valuation ν of x, there
exists a run ρ of A′P starting at node n in state qνR(x) if and only if there exists c such
that R(c) ∈ P (I) and c is compatible with ν at node n (i.e., we have decn(ν(xj)) = cj
for every xj defined by ν).

Proof. We will prove this equivalence by induction on the stratum ζ(R) of the
relation R. The base case (ζ(R) = 0, so R is an extensional relation) was shown in
Lemma 3.7.5. For the inductive case, where R is an intensional relation, we prove
each direction separately.

Forward direction. First, suppose that there exists a run ρ of A′P starting
at node n in state qνR(x). We show by induction on the run (from bottom to top)
that for every node π of the run the following implications hold:

(i) If π is labeled with (qν′R′(y),m), then there exists c such that R′(c) ∈ P (I) and
c is compatible with ν ′ at node m.

(ii) If π is labeled with ¬(qν′R′(y),m), then R′(decm(ν ′(y))) /∈ P (I) (remembering
that in this case ν ′ must be total, thanks to the fact that negations are guarded
in rule bodies).

(iii) If π is labeled with (qν′,Ar ,m), then there exists a mapping µ : vars(A) →
Dom(I) that is compatible with ν ′|vars(A) at node m and such that:

• For every positive literal S(z) in A, then S(µ(z)) ∈ P (I).

95

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

• For every negative literal ¬S(z) in A, then S(µ(z)) /∈ P (I).

The base case is when π is a leaf. Notice that in this case, and by construction
of A′P , the node π cannot be labeled by states corresponding to rules of P : indeed,
there are no transitions for these states leading to a tautology, and all transitions to
such a state are from a state in the same stratum, so π could not be a leaf. Thus,
we have three subcases:

• π may be labeled by (qν′R′(y),m), where R′ is extensional. We must show (i),
but this follows from Lemma 3.7.5.

• π may be labeled by (qν′R′(y),m), where R′ is intensional and verifies ζ(R′) < i.
Again we need to show (i). By definition of the run ρ, this implies that there
exists a run of A′P starting at m in state qν′R′(y). But then (i) follows from
the induction hypothesis on the strata (using the forward direction of the
equivalence lemma).

• π may be labeled by ¬(qν′R′(y),m), where R′ is intensional and verifies ζ(R′) < i.
Observe that by construction of the automaton, ν ′ is total (because negations
are guarded in rule bodies). We need to show (ii). By definition of the run ρ
there exists no run of A′P starting at m in state qν′R′(y). Hence by induction on
the strata we have (using the backward direction of the equivalence lemma)
that R′(decm(ν ′(y))) /∈ P (I), which is what we needed to show.

For the induction case, where π is an internal node, we let (d, s) be λE(m) in
what follows, and we distinguish five subcases:

• π may be labeled by (qν′R′(y),m) with R′ intensional. We need to prove (i). We
distinguish two subsubcases:

– ν ′ is not total. In that case, given the definition of ∆(qν′R′(y), (d, s)) and
of the run, there exists a child π′ of π labeled by (qν′′R′(y),m

′), where
m′ ∈ Nbh(m) and ν ′′ is either ν ′ or is ν ′∪{xj 7→ a} for some xj undefined
by ν ′ and a ∈ d. Hence by induction on the run there exists c′ such that
R′(c′) ∈ P (I) and c′ is compatible with ν ′′ at node m′. We then take c
to be c′, and one can check that the compatibility condition holds.

– ν ′ is total. In that case, given the definition of ∆(qν′R′(y), (d, s)) and of the
run, there exists a child π′ of π labeled by (qν′′,Ar ,m′), where m′ ∈ Nbh(m),
where r is a rule with head R′(z), where ν ′′ = Homz,y(ν ′) is a partial
valuation which is not null, and where A is the set of literals of r. Then,
by induction on the run, there exists a mapping µ : vars(A) → Dom(I)
that verifies (iii). Thus by definition of the semantics of P we have that
R′(µ(z)) ∈ P (I), and we take c to be µ(z). What is left to check is that
the compatibility condition holds. We need to prove that decm(ν ′(y)) =
c, i.e., that decm(ν ′(y)) = µ(z). We know, by definition of µ, that
decm′(ν ′′(z)) = µ(z). So our goal is to prove decm(ν ′(y)) = decm′(ν ′′(z)),
i.e., by definition of ν ′′ we want decm(ν ′(y)) = decm′(Homz,y(ν ′)(z)). By
definition of Homz,y(ν ′), we know that ν ′(y) = Homz,y(ν ′)(z), and this
implies the desired equality by applying Property 3.7.3 to m and m′.

96

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

• π may be labeled by (qν′,Ar ,m), where A = {¬R′′(y)}, where |y| = 1, and where,
writing y the one element of y, y is undefined by ν ′. We need to prove (iii). By
construction we have ∆(qν′,Ar , (d, s)) = qν

′,A
r ∨∨a∈d qν′∪{y 7→a},Ar . So by definition

of a run there is m′ ∈ Nbh(m) and a child π′ of π such that π′ is labeled by
(qν′,Ar ,m′) or by (qν′∪{y 7→a},Ar ,m′) for some a ∈ d. In both cases it is easily seen
that we can define an appropriate µ from the mapping µ′ that we obtain by
induction on the run (more details are given in the next bullet point).

• π may be labeled by (qν′,Ar ,m) with A = {R′′(y)}. We need to prove (iii). By
construction we have ∆(qν′,Ar , (d, s)) = qν

′

R′′(y), so that by definition of the run
there is m′ ∈ Nbh(m) and a child π′ of π such that π′ is labeled by (qν′R′′(y),m

′).
Thus by induction on the run there exists c such that R′′(c) ∈ P (I) and c
compatible with ν ′ at node m′. By Property 3.7.3, c is also compatible with ν ′
at node m. We define µ by µ(y) ··= c, which effectively defines it because in
this case vars(A) = y, and this choice satisfies the required properties.

• π may be labeled by (qν′,Ar ,m), with A = {¬R′′(y)} and ν ′ total on y. We
again need to prove (iii). By construction we have ∆(qν′,Ar , (d, s)) = ¬qν′R′′(y)
and then by definition of the automaton there exists a child π′ of π labeled
by ¬(qν′R′′(y),m) with ζ(R′′) < i and there exists no run starting at node
m in state qν′R′′(y). So by using (ii) of the induction on the strata we have
R′′(decm(ν ′(y))) /∈ P (I). We define µ by µ(y) = decm(ν ′(y)), which effectively
defines it because vars(A) = y, and the compatibility conditions are satisfied.

• π may be labeled by (qν′,Ar ,m), with |A| > 2. We need to prove (iii). Given the
definition of ∆(qν′,Ar , (d, s)) and by definition of the run, one of the following
holds:

– There exists m′ ∈ Nbh(m) and a child π′ of π such that π′ is labeled by
(qν′,Ar ,m′). By induction there exists µ′ : vars(A) → Dom(I) satisfying
(iii) for node m′. We can take µ to be µ′, which satisfies the required
properties.

– There exist (m1,m2) ∈ Nbh(m)×Nbh(m) and π1, π2 children of π and non-
empty sets A1,A2 that partition A and a total valuation ν ′′ of vars(A1)∩
vars(A2) with values in d such that π1 is labeled by (qν′∪ν′′,A1

r ,m1) and π2
is labeled by (qν′∪ν′′,A2

r ,m2). By induction there exists µ1 : vars(A1) →
Dom(I) and similarly µ2 that satisfy (iii). Thanks to the compatibility
conditions for µ1 and µ2 and to Property 3.7.3 applied to m1 and m2
via m, we can define µ : vars(A)→ Dom(I) with µ ··= µ1 ∪ µ2. One can
check that µ satisfies the required properties.

Hence, the forward direction of our equivalence lemma is proven.

Backward direction. We now prove the backward direction of the induction
on strata of our main equivalence lemma (Lemma 3.7.6). From the induction
hypothesis on strata, we know that, for every relation R with ζ(R) 6 i − 1, for
every node n ∈ T and partial valuation ν of x, there exists a run ρ of A′P starting
at node n in state qνR(x) if and only if there exists c such that R(c) ∈ P (I) and c is
compatible with ν at node n. Let R be a relation with ζ(R) = i, let n ∈ T be a node

97

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

and let ν be a partial valuation of x such that there exists c such that R(c) ∈ P (I)
and c is compatible with ν at node n. We need to show that there exists a run
ρ of A′P starting at node n in state qνR(x). We will prove this by induction on the
smallest j ∈ N such that R(c) ∈ ΞjP (Pi−1(I)), where ΞjP is the j-th application of the
immediate consequence operator for the program P (see [Abiteboul, Hull, and Vianu
1995]) and Pi−1 is the restriction of P with only the rules up to strata i− 1. The
base case, when j = 0, is in fact vacuous since R(c) ∈ Ξ0

P (Pi−1(I)) = Pi−1(I) implies
that ζ(R) 6 i− 1, whereas we assumed ζ(R) = i. For the inductive case (j > 1), we
have R(c) ∈ Ξj

P (Pi−1(I)) so by definition of the semantics of P , there is a rule r of
the form R(z)← L1(y1) . . . Lt(yt) of P and a mapping µ : y1 ∪ · · · ∪ yt → Dom(I)
such that µ(z) = c and, for every literal Ll in the body of r:

• If Ll(yl) = Rl(yl) is a positive literal, then Rl(µ(yl)) ∈ Ξj−1
P (Pi−1(I))

• If Ll(yl) = ¬Rl(yl) is a negative literal, then Rl(µ(yl)) /∈ Pi−1(I)

Hence because c is clique-guarded and by a well-known property of tree decom-
positions (see Lemma 1 of [Gavril 1974], Lemma 2 of [Bodlaender and Koster 2010]),
there exists a node n′ such that c ⊆ dom(n′). Let n = n1, n2, . . . , np = n′ be the
nodes on the path from n to n′, and (di, si) be λE(ni) for 1 6 i 6 p. By compatibility,
for every xj defined by ν we have decn(ν(xj)) = cj. But decn(ν(xj)) ∈ dom(n) and
cj ∈ dom(m) so by Property 3.7.4, for every 1 6 i 6 p we have cj ∈ dom(mi) and
encmi(cj) = encn(cj) = encn(decn(ν(xj))) = ν(xj), so that ν(xj) ∈ di. We can then
start to construct the run ρ starting at node n in state qνR(x) as follows. The root π1
is labeled by (qνR(x), n), and for every 2 6 i 6 p, πi is the unique child of πi−1 and
is labeled by (qνR(x),mi). This part is valid because we just proved that for every i,
there is no j such that yj is defined by ν and ν(yj) /∈ dj . Now from πn′ , we continue
the run by staying at node n′ and building up the valuation, until we reach a total
valuation ν ′ such that ν ′(x) = encn′(c). Hence we now only need to build a run ρ′
starting at node n′ in state qν′R(x).

To achieve our goal of building a run starting at node n′ in state qν′R(x), it suffices
to construct a run starting at node n′ in state qν′′,{L1,...,Lt}

r , with ν ′′ = Homz,x(ν ′).
The first step is to take care of the literals of the rule and to prove that:

(i) If Ll(yl) = Rl(yl) is a positive literal, then there exists a node ml and a total
valuation νl of yl with decml(νl(yl)) = µ(yl) such that there exists a run ρl
starting at node ml in state qνlRl(yl).

(ii) If Ll(yl) = ¬Rl(yl) is a negative literal, then there exists a node ml and a total
valuation νl of yl with decml(νl(yl)) = µ(yl) such that there exists a run ρl
starting at node ml in state ¬qνlRl(yl).

We first prove (i). We have Rl(µ(yl)) ∈ Ξj−1
P (Pi−1(I)), and because P is clique-

frontier-guarded, there exists a node m such that µ(yl) ⊆ m. We take ml to be m
and νl to be such that νl(yl) = encml(µ(yl)). We then directly obtain (i) by induction
hypothesis (on j). We then prove (ii). Because the negative literals are guarded in
rule bodies, there exists a node m such that µ(yl) ⊆ m. We take ml to be m and
νl to be such that νl(yl) = encml(µ(yl)). We straightforwardly get (ii) using the
induction on the strata of our equivalence lemma.

98

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

The second step is to use the runs ρl that we just constructed and to construct
from them a run starting at node n′ in state qν′′,{L1,...,Lt}

r . We describe in a high-level
manner how we build the run. Starting at node n, we partition the literals to prove
(i.e., the atoms of the body of the rule that we are applying), in the following way:

• We create one class in the partition for each literal Rl (which can be intentional
or extensional) such that ml is n′, which we prove directly at the current node.
Specifically, we handle these literals one by one, by splitting the remaining
literals in two using the transition formula corresponding to the rule and by
staying at node n′ and building the valuations according to decn(µ).

• For the remaining literals, considering all neighbors of n′ in the tree encoding,
we split the literals into one class per neighbor n′′, where each literal Ll is
mapped to the neighbor that allows us to reach its node ml. We ignore the
empty classes. If there is only one class, i.e., we must go in the same direction
to prove all facts, we simply go to the right neighbor n′′, remaining in the same
state. If there are multiple classes, we partition the facts and prove each class
on the correct neighbor.
One must then argue that, when we do so, we can indeed choose the image
by ν ′′ of all elements that were shared between literals in two different classes
and were not yet defined in ν ′′. The reason why this is possible is because we
are working on a tree encoding: if two facts of the body share a variable x,
and the two facts will be proved in two different directions, then the variable
x must be mapped to the same element in the two direction (namely, µ(x)),
which implies that it must occur in the node where we split. Hence, we can
indeed choose the image of x at the moment when we split.

FPT-linear time construction. Finally, we justify that we can construct in
FPT-linear time the automaton AP which recognizes the same language as A′P . The
size of ΓkI

σ only depends on kI and on the extensional signature, which are fixed.
As the number of states is linear in |P |, the number of transitions is linear in |P |.
Most of the transitions are of constant size, and in fact one can check that the only
problematic transitions are those for states of the form qνR(x) with R intensional,
specifically the second bullet point. Indeed, we have defined a transition from qνR(x),
for each valuation ν of a rule body, to the qν′,Ar for linearly many rules, so in general
there are quadratically many transitions.

However, it is easy to fix this problem: instead of having one state qνR(x) for
every occurrence of an intensional predicate R(x) in a rule body of P and total
valuation ν of this rule body, we can instead have a constant number of states qR(a)

for a ∈ Darity(R)
kI

. In other words, when we have decided to prove a single intensional
atom in the body of a rule, instead of remembering the entire valuation of the rule
body (as we remember ν in qνR(x)), we can simply forget all other variable values,
and just remember the tuple which is the image of x by ν, as in qR(a). Remember
that the number of such states is only a function of kP and kI, because bounding kP
implies that we bound the arity of P , and thus the arity of intensional predicates.

We now redefine the transitions for those states :

• If there is a j such that aj /∈ d, then ∆(qR(a), (d, s)) = ⊥.

99

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

• Else, ∆(qR(a), (d, s)) is a disjunction of all the qν′,Ar for each rule r such that
the head of r is R(y), ν ′(y) = a and A is the set of all literals in the body of r.

The key point is that a given qν′,Ar will only appear in rules for states of the form
qR(a) where R is the predicate of the head of r, and there is a constant number of
such states.

We also redefine the transitions that used these states:

• Else, if A = {R′(y)} with R′ intensional, then ∆(qν,Ar , (d, s)) = qR′(ν(y)).

• Else, if A = {¬R′(y)} with R′ intensional, then ∆(qν,Ar , (d, s)) = ¬qR′(ν(y)).

AP recognizes the same language as A′P . Indeed, consider a run of A′P , and
replace every state qνR(x) with R intensional by the state qR(ν(x)): we obtain a run
of AP . Conversely, being given a run of AP , observe that every state qR(a) comes
from a state qν,{R(y)}

r with ν(y) = a. We can then replace qR(a) by the state qνR(x) to
obtain a run of A′P .

3.7.2 Managing Unguarded Negations
We now explain how the translation can be extended to the full CFG-Datalog
fragment. We recall that the difference with CFGGN-Datalog is that negative literals
in rule bodies no longer need to be clique-guarded. Remember that clique-frontier-
guardedness was used in the translation of CFGGN-Datalog to ensure the following
property: when the automaton is trying to prove a rule r ··= R(z)← L1(y1) . . . Lt(yt)
at some node n, i.e., when it is in a state qν,Ar at node n for some subset A of
literals of the body of r and partial valuation ν of the variables of A, then, for
each literal Ll(yl) for 1 6 l 6 t, the images of yl all appear together in a bag.
More formally, let µ : vars(r)→ dom(I) be a mapping with µ(z) = decn(ν(z)) that
witnesses that R(µ(z)) ∈ P (i): that is, if Ll(yl) is a positive literal Sl(yl) then
we have Sl(µ(yl)) ∈ P (i) and if L(yl) is a negative literal ¬Sl(yl) then we have
Sl(µ(yl)) /∈ P (I). In this case, we know that each µ(yl) must be contained in a bag
of the tree decomposition.

This property is still true in CFG-Datalog when L(yl) is a positive literal Sl(yl).
Indeed, if S is an extensional relation then the fact S(µ(yl)) is encoded somewhere
in the tree encoding, hence µ(yl) is contained in a bag of the tree decomposition.
If S is an intensional predicate then, because P is clique-frontier-guarded, µ(yl) is
also contained in a bag. However, when L(yl) is a negative literal ¬Sl(yl), it is now
possible that µ(yl) is not contained in any bag of the tree decomposition. This can
be equivalently rephrased as follows: there are yi, yj ∈ yl with yi 6= yj such that
the occurrence subtrees of µ(yi) and that of µ(yj) are disjoint. If this happens, the
automaton that we construct in the previous proof no longer works: it cannot assign
the correct values to yi and yj , because once a value is assigned to yi, the automaton
cannot leave the occurrence subtree of µ(yi) until a value is also assigned to yj , which
is not possible if the occurrence subtrees are disjoint.

To circumvent this problem, we will first rewrite the CFG Datalog program P
into another program (still of body size bounded) which intuitively distinguishes
between two kinds of negations: the negative atoms that will hold as in the case of
clique-guarded negations in CFGGN-Datalog, and the ones that will hold because
two variables have disjoint occurrence subtrees. First, we create a vacuous unary

100

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

fact Adom, we modify the input instance and tree encoding in linear time to add
the fact Adom for every element a in the active domain, and we modify P in linear
time: for each rule r, for each variable x in the body of r, we add the fact Adom(x).
This ensures that each variable of rule bodies occurs in at least one positive fact.

Second, we rewrite P to a different program P ′. Let r be a rule of P , and let N
be the set of negative atoms in the body of r. Let NG ∪ N¬G be a partition of N
(where the classes in the partition may be empty), intuitively distinguishing the
guarded and unguarded negations. For every atom of N¬G, we nondeterministically
choose a pair (yi, yl) of distinct variables of this atom, and consider the undirected
graph G formed by the edges {yi, yl} (we may choose the same edge for two different
atoms). The graph G intuitively describes the variables that must be mapped to
elements having disjoint occurrence subtrees in the tree encoding. For each rule
r or P , for each choice of NG ∪ N¬G and G, we create a rule rNG,N¬G,G defined as
follows: it has the same head as r, and its body contains the positive atoms of the
body of r (including the Adom-facts) and the negative atoms of NG. We call G
the unguardedness graph of rNG,N¬G,G. Note that the semantics of P ′ will defined
relative to the instance and also relative to the tree encoding of the instance that
we consider: specifically, a rule can fire if there is a valuation that satisfies it in the
sense of CFGGN-Datalog (i.e., for all atoms, including negative atoms, all variables
must be mapped to elements that occur together in some node), and which further
respects the unguardedness graph, i.e., for any two variables x 6= y with an edge in
the graph, the elements to which they are mapped must have disjoint occurrence
subtrees in the tree encoding. Note that we can compute P ′ from P in FPT-linear
time parameterized by the body size, because the number of rules created in P ′ for
each rule of P can be bounded by the body size; further, the bound on the body size
of P ′ only depends on that of P , specifically it only increases by the addition of the
atoms Adom(x).

The translation of P ′ can now be done as in the case of CFGGN-Datalog that we
presented before; the only thing to explain is how the automaton can ensure that
the semantics of the unguardedness graph is satisfied. To this end, we will first make
two general changes to the way that our automaton is defined, and then present
the specific tweaks to handle the unguardedness graph. The two general changes
can already be applied to the original automaton construction that we presented,
without changing its semantics.

The first change is that, instead of isotropic automata, we will use automata that
take the directions of the tree into account, as in [Cachat 2002] for example (with
stratified negation as we do for SATWAs). Specifically, we change the definition
of the transition function. Remember that a SATWA has a transition function
∆ : Q × Γ → B(Q) that maps each pair of a state and a label to a propositional
formula on states of Q. To handle directions, ∆ will instead map to a propositional
formula on pairs of states of Q and of directions in the tree, in {•, ↑,←,→}. The
intuition is that the corresponding state is only evaluated on the tree node in the
specified direction (rather than on any arbitrary neighbor). We will use these
directions to ensure that, while the automaton considers a rule application and
navigates to find the atoms used in the rule body, then it never visits the same node
twice. Specifically, consider two variables yi and yj that are connected by an edge in
the unguardedness graph, and imagine that we first assign a value a to yi in some
node n. To assign a value to yj, we must leave the occurrence subtree of the current

101

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

a in the tree encoding, and must choose a value outside of this occurrence subtree.
Thus, the automaton must “remember” when it has left the subtree of occurrences
of a, so that it can choose a value for yj. However, an isotropic automaton cannot
“remember” that it has left the subtree of occurrences of a, because it can always
come back on a previously visited node, by going back in the direction from which it
came. However, using SATWAs with directions, and changing the automata states to
store the last direction that was followed, we can ensure that the automaton cannot
come back to a previously visited node (while locating the facts that correspond to
the body of a rule application). This ensures that, once the automaton has left the
subtree of occurrences of an element, then it cannot come back in this subtree again
while it is considering the same rule application. Hence, the first general change is
that we use SATWAs with directions, and we use the directions to ensure that the
automaton does not go back to a previously visited node while considering the same
rule application. In fact, this first general change does not change the semantics
of the automaton, as in the case of isotropic automata, we did not really need the
ability to turn around when trying to prove a rule.

The second general change that we perform on the automaton is that, when
guessing a value for an undefined variable, then we only allow the guess to happen
as early as possible. In other words, suppose the automaton is at a node n in the
tree encoding while it was previously at node n′. Then it can assign a value a ∈ n
to some variable y only if a was not in n′, i.e., a has just been introduced in n.
Obviously an automaton can remember which elements have been introduced in this
sense, and which elements have not. This change can be performed on our existing
construction without changing the semantics of the automaton, by only considering
runs where the automaton assigns values to variables at the moment when it enters
the occurrence subtree of this element.

Having done these general changes, we will simply reuse the previous automaton
construction (not taking the unguardedness graph G into account) on the program P ′,
and make two tweaks to ensure that the unguardedness graph is respected. The first
tweak is that, in states of the form qν,Ar , the automaton will also remember, for each
undefined variable x (i.e., x is in the domain of ν but ν(x) is still undefined), a set
β(x) of blocking elements for x, which are elements of the tree encoding. While β(x)
is non-empty, then the automaton is not allowed to guess a value for x, intuitively
because we know that it is still in the occurrence subtree of some previously mapped
variable y ∈ β(x) which is adjacent to x in G. Here is how these sets of blocking
elements are computed and updated:

• When the automaton starts to consider the application of a rule r, then
β(x) := ∅ for each variable x of the body of r.

• When the automaton guesses a value a for a variable x, then for every undefined
variable y, if x and y are adjacent in G, then we set β(y) := β(y)∪{a}, intuitively
adding a to the set of blocking elements for y. This intuitively means that the
automaton is not allowed to guess a value for y until it has exited the subtree
of occurrences of a. Note that, if the automaton wishes to guess values for
multiple variables while visiting one node (in particular when partitioning the
literals of A), then the blocking sets are updated between each guess: this
implies in particular that, if there is an edge in G between two variables x and
y, then the automaton can never guess the value for x and for y at the same

102

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

node.

• When the automaton navigates to a new node n′ of the tree encoding, then
for every variable x in the domain of ν which does not have an image yet, we
set β(x) := β(x) ∩ n′. Intuitively, when an element a was blocking for x but
disappears from the current node, then a is no longer blocking. Note that β(x)
may then become empty, meaning that the automaton is now free to guess a
value for x.

The blocking sets ensure that, when the automaton guesses a value for x, then
this value is guaranteed not to occur in the occurrence subtree of variables that are
adjacent to x in G and have been guessed before. This also relies on the second
general change above: we can only guess values for variables as early as possible,
i.e., we can only use elements in guesses when we have just entered their occurrence
subtree, so when β(x) becomes empty then the possible guesses for x do not include
any element whose occurrence subtree intersects that of ν(y) for any variable y
adjacent to x in G.

The second tweak is that, when we partition the set of literals to be proven, then
we use the directionality of the automaton to ensure that the remaining literals are
split across the various directions (having at most one run for every direction). For
instance, considering the rule body {Adom(x),Adom(y)} and the unguardedness
graph G having an edge between x and y, the automaton may decide at one node
to partition A = {Adom(x),Adom(y)} into {Adom(x)} and {Adom(y)}, and these
two subsets of facts will be proven by two independent runs: these two runs are
required to go in different directions of the tree. This will ensure that, even though
the edge {x, y} of G will not be considered explicitly by either of these runs (because
the domain of their valuations will be {x} and {y} respectively), it will still be the
case that x and y will be mapped to elements whose occurrence subtrees do not
intersect: this is again using the fact that we map elements as early as possible.

We now summarize how the modified construction works:

1. Assume that the automaton A is at some node n in state qν′′R(x), with ν ′′ being
total in x.

2. At node n, the automaton chooses a rule r′ : R(z) ← L1(y1) . . . Lt(yt) of P ′
and goes to state qν,Ar′ where ν ··= Homz,x(ν ′′) and A is the set of literals in
the body of r′. That is, it simply chooses a rule to prove R(ν ′′(x)). This
amounts to choosing a rule of the original program P , and choosing which
negative atoms will be guarded (i.e., mapped to variables that occur together
in some node of the tree encoding), and choosing the unguardedness graph G
in a way to ensure that each unguarded negated atom has a pair of variables
that forms an edge of G. The blocking set β(x) of each variable x in the rule
body is initialized to the empty set, and whenever the automaton will move to
a different node n′ then each element a that is no longer present in n′ will be
removed from β(x) for each variable x, formally, β(x) := β(x) ∩ n′.

3. From now on, assume the automaton A always remembers (stores in its state)
which elements N have just been introduced in the current node of the tree
encoding. That is, N is initialized with the elements in n, and when A goes
from some node n′ to node n′′, N becomes n′′ \ n′. When guessing values

103

CHAPTER 3. FIXED PARAMETER TRACTABILITY OF PROVENANCE COMPUTATION

for variables, the automaton will only use values in N , so as to respect the
condition that we guess the value of variables as early as possible. This is how
we implement our second general change.

4. While staying at node n, the automaton chooses some undefined variables x
(i.e., variables in the domain of ν that do not have a value yet), and guesses
some values in N for them, one after another. For each such variable x, we
first verify that β(x) = ∅ (otherwise we fail), we set ν(x) := a where a is the
guessed value, and then, for every edge {x, y} in G such that y is an undefined
variable (i.e., it is in the domain of ν but does not have an image by ν yet), we
set β(y) := β(y) ∪ {a}, ensuring that no value will be guessed for y until the
automaton has left the subtree of occurrences for a. We call ν ′ the resulting
new valuation.

5. While staying at node n, the automaton guesses a partition of A as Pdirections =
(A•,A↑,A←,A→) to decide in which direction each one of the remaining facts
is sent. Of course, if there is a direction for which n has no neighbor (e.g.,
← and → if n is a leaf, or ↑ if n is the root), then Ad in the corresponding
direction d must be empty.

6. If A• is the only class that is not empty, meaning that all remaining facts will
be witnessed at the current node, then go to step 10.

7. While staying at node n, the automaton checks that each variable x that
appears in two different classes of Pdirections has been assigned a value, i.e.,
ν(x) is defined; otherwise, the automaton fails. This is to ensure that the
partitioning is consistent (i.e., that a variable x will not be assigned different
values in different runs). The automaton also checks that ν(x) is defined for
each variable occurring in A•, that is, we assume without loss of generality that
atoms that will be proven at the current node have all their variables already
mapped. This ensures that the undefined variables are partitioned between
directions in {↑,←,→}.

8. The automaton then launches a run qν
′,Ad
r′ for each direction d ∈ {•, ↑,←,→}

at the corresponding node (n for •, the parent of n for ↑, the left of right child
of n for ← or →).

9. For each of these runs, we update the value of N and of the blocking sets, and
we go back to step 4, except that now A remembers the direction from which
it comes, and does not go back to the previously visited node. For example if
the automaton goes from some node n to the parent n′ of n such that n is the
left child of n′, then in the partition that will be guessed at step 5 we will have
A← = ∅. Further, in each of these runs, of course, the automaton remembers
the values of the blocking sets β(x) for each undefined variable x.

10. Check that all the variables have been assigned. Launch positive states for
each positive intensional literal and negative states for each negative literal,
i.e., start from step 1: in this case, when the automaton proves a different rule
application, then of course it forgets the values of the blocking sets, and forgets
the previous direction (i.e., it can again visit the entire tree from the node

104

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

where it starts). For each positive extensional literal, simply check that the
atom is indeed encoded in the current node of the tree encoding.

All these modifications can be implemented in FPT-linear time provided that
the arity of P is bounded, which is the case because the body size of P is bounded.
Moreover, as we pointed out after the proof of Theorem 3.6.11, the construction of
provenance cycluits can easily be modified to work for stratified alternating two way
automata with directions, so that all our results about CFG-Datalog (evaluation
and provenance cycluit computation in FPT linear time) still hold on this modified
automaton.

Conclusion. This finishes the proof of translation and the presentation of our work
on the combined tractability of the evaluation of CFG-Datalog queries on treelike
instances. In the next chapter, we return to the problem of probabilistic query
evaluation, and investigate how the provenance of CFG-Datalog programs can be
compiled into tractable formalisms that allow for efficient probability computation.

105

Chapter 4

From Cycluits to d-DNNFs
and Lower Bounds

This chapter of my thesis presents my work with Antoine Amarilli and Pierre Senellart
on the connections between various circuit classes from knowledge compilation. We
also show the consequences of these connections for PQE, and in particular for
our language of CFG-Datalog from Chapter 3. Excepted Section 4.5, which is part
of [Amarilli, Bourhis, Monet, and Senellart 2017], all results presented here were
published at ICDT’2018 [Amarilli, Monet, and Senellart 2018].

4.1 Introduction
As previously discussed, a common technique to evaluate queries on probabilistic
databases is the intensional approach: first compute a representation of the lineage
of the query on the database, which intuitively describes how the query depends on
the possible database facts; then use this lineage to compute probabilities efficiently.
Specifically, the lineage can be computed as a Boolean circuit [Jha and Suciu 2012],
and efficient probability computation can be achieved by restricting to tractable
circuit classes via knowledge compilation. Thus, to evaluate queries on probabilistic
databases, we can use knowledge compilation algorithms to translate circuits to
tractable classes; conversely, lower bounds in knowledge compilation can identify the
limits of the intensional approach.

In this chapter, we study the relationship between two kinds of tractable circuit
classes in knowledge compilation: width-based classes, specifically, bounded-treewidth
and bounded-pathwidth circuits; and structure-based classes, specifically, OBDDs
(following a variable order) and d-SDNNFs (following a v-tree), as defined in Sec-
tion 1.7. Circuits of bounded treewidth can be obtained as a result of practical
query evaluation (e.g., in [Jha, Olteanu, and Suciu 2010; Amarilli, Bourhis, and
Senellart 2015]), whereas OBDDs and d-DNNFs have been studied to show theoretical
characterizations of the query lineages they can represent [Jha and Suciu 2011]. Both
classes enjoy tractable probabilistic computation: for width-based classes, using
message passing [Lauritzen and Spiegelhalter 1988], in time linear in the circuit and
exponential in the treewidth; for OBDDs and d-SDNNFs, in linear time by definition
of the class [Darwiche 2001]. Hence the question that we study: can we compile
width-based classes efficiently into structure-based classes?

We first study how to perform this transformation, and show corresponding upper

107

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

bounds. Existing work has already studied the compilation of bounded-pathwidth
circuits to OBDDs [Jha and Suciu 2012], which can be made constructive [Amarilli,
Bourhis, and Senellart 2016, Lemma 6.9]. Accordingly, we focus on compiling
bounded-treewidth circuits to d-SDNNF circuits. Our first contribution, stated in
Section 4.3 and proved in Section 4.4, is to show the following:

Result 1 (Theorem 4.3.2 and subsequent remark). Given as input a Boolean circuit C
of treewidth k, we can compute a d-SDNNF equivalent to C in time O(|C| × f(k))
where f is singly exponential.

The algorithm transforms the input circuit bottom-up, considering all possible
valuations of the gates in each bag of the tree decomposition, and keeping track of
additional information to remember which guessed values have been substantiated
by a corresponding input. Our result relates to a recent theorem of Bova and Szeider
in [Bova and Szeider 2017], except that our bound depends on |C| (the circuit
size) whereas their bound depends on the number of variables of C. In exchange
for this, we improve on their result in two ways. First, our result is constructive,
whereas the bound of [Bova and Szeider 2017] only shows a bound on the size of the
d-SDNNF, without bounding the complexity of effectively computing it. Second,
our bound is singly exponential in k, whereas [Bova and Szeider 2017] is doubly
exponential; this allows us to be competitive with message passing (also singly
exponential in k), and we believe it can be useful for practical applications. Indeed,
beyond probabilistic query evaluation, our result implies that all tractable tasks on
d-SDNNFs (e.g., enumeration [Amarilli, Bourhis, Jachiet, and Mengel 2017] and
MAP inference [Fierens et al. 2015]) are also tractable on bounded-treewidth circuits.

Second, we show in Section 4.5 how we can then use this result to lift the combined
tractability of CFG-Datalog on bounded-treewidth databases (i.e., Theorem 3.4.4 of
Chapter 3) to the case of probabilistic query evaluation. Indeed, the treewidth of the
constructed provenance cycluit is linear in the size of the Datalog query. However, we
cannot directly apply Result 1, because here we have a cycluit. Hence the first step
is to transform this cycluit into a circuit, while preserving some kind of bound on the
treewidth. We use an algorithm from [Amarilli, Bourhis, Monet, and Senellart 2017]
that converts a cycluit of treewidth k into an equivalent circuit whose treewidth is
singly exponential in k, in FPT-linear time (parameterized by k). We can then apply
our transformation of Result 1 to this circuit, which in the end shows that we can
compute a d-SDNNF representation of the provenance of a CFG-Datalog program of
bounded rule-size on an instance of bounded treewidth with a complexity linear in
the data and doubly exponential in the program:

Result 2 (Theorem 4.5.4). Fix kI, kP ∈ N. There is an α ∈ N s.t., given a CFG-
Datalog program P of body size kP and a TID instance (I, π) of treewidth kI, we can
compute a d-SDNNF representing the provenance of P on I in time O(22|P |α |I|).

This d-SDNNF then allows us to solve PQE for this program on this instance
with the same complexity. While the complexity in the query is not polynomial,
we consider that it is a reasonable one, given that our language of CFG-Datalog
is quite expressive (at least in comparison to the restricted CQ fragments that we
studied in Chapter 2). Moreover, the complexity is linear in the data, which is crucial
for practical applications. Also, we recall that the previous approach to PQE for

108

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

expressive queries on treelike instances (i.e., MSO queries in [Amarilli, Bourhis, and
Senellart 2015]), has a complexity nonelementary in the query.

Third, we study lower bounds on how efficiently we can convert from width-based
to structure-based classes. Our bounds already apply to a weaker formalism of
width-based circuits, namely monotone CNFs and DNFs of bounded width, so we
focus on them. Our third contribution (in Section 4.6) concerns pathwidth and
OBDD representations: we show that, up to factors in the formula arity (maximal
size of clauses) and degree (maximal number of variable occurrences), any OBDD
for a monotone CNF or DNF must be of width exponential in the pathwidth of the
formula. Formally:

Result 3 (Theorem 4.6.2). Let ϕ be a monotone DNF or monotone CNF, let

a := arity(ϕ) and d := degree(ϕ). Then any OBDD for ϕ has width 2Ω
(

pw(ϕ)
a3×d2

)
.

This result generalizes several existing lower bounds in knowledge compilation
that exponentially separate CNFs from OBDDs, such as [Devadas 1993] and [Bova
and Slivovsky 2017, Theorem 19].

We further show (Section 4.7) an analogue for treewidth and (d-)SDNNFs:

Result 4 (Theorem 4.7.1). Let ϕ be a monotone DNF (resp., monotone CNF), let
a := arity(ϕ) and d := degree(ϕ). Then any d-SDNNF (resp., SDNNF) for ϕ has

size 2Ω
(

tw(ϕ)
a3×d2

)
.

Our two lower bounds contribute to a vast landscape of knowledge compilation
results giving lower bounds on compiling specific Boolean functions to restricted
circuits classes, e.g., [Devadas 1993; Razgon 2014; Bova and Slivovsky 2017] to
OBDDs, [Calí, Capelli, and Razgon 2017] to decision structured DNNF, [Beame and
Liew 2015] to sentential decision diagrams (SDDs), [Pipatsrisawat and Darwiche 2010;
Bova, Capelli, Mengel, and Slivovsky 2016] to d-SDNNF, [Bova, Capelli, Mengel, and
Slivovsky 2016; Capelli 2016; Capelli 2017] to d-DNNFs and DNNFs. However, all
those lower bounds (with the exception of some results in [Capelli 2016; Capelli 2017]
discussed in Section 4.7) apply to well-chosen families of Boolean functions (usually
CNF), whereas Result 3 and 4 apply to any monotone CNF and DNF. Together with
Result 1, these generic lower bounds point to a strong relationship between width
parameters and structure representations, on monotone CNFs and DNFs of constant
arity and degree. Specifically, the smallest width of OBDD representations of any
such formula ϕ is in 2Θ(pw(ϕ)), i.e., precisely singly exponential in the pathwidth; and
an analogous bound applies to d-SDNNF size and treewidth of DNFs.

Example 4.1.1. We give here a concrete example to illustrate the genericity of
our results. Let h ∈ N, h > 1, and let T = (V,E) be the complete binary tree
of height h (i.e., the rooted full binary tree such that the path from any leaf to
the root is of length h). Let F be the monotone CNF on variables V defined by
F ··=

∧
(v1,v2)∈E v1 ∨ v2. Intuitively, for every valuation ν : V → {0, 1}, we have

F (ν) = 1 if and only if {v ∈ V | ν(v) = 1} is a vertex cover of T . Then, the arity
of F is 2, its degree is 3, and its pathwidth is dh2e [Marshall and Wood 2014]. Hence,
by Theorem 4.6.2, letting w be the width of an OBDD for F , we have:

w > 2
⌊

h
2×23×32

⌋

109

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

Moreover, by [Bova and Slivovsky 2017, Theorem 4 and Lemma 9], there exists an
OBDD for F of width 2dh2 e+2. C

To prove our lower bounds, we rephrase pathwidth and treewidth to new notions
of pathsplitwidth and treesplitwidth, which intuitively measure the performance of a
variable ordering or v-tree. We also use the disjoint non-covering prime implicant
sets (dncpi-sets), a tool introduced in [Amarilli, Bourhis, and Senellart 2016; Amarilli
2016], and generalizing subfunction width [Bova and Slivovsky 2017]. These dncpi-sets
allow us to derive lower bounds on OBDD width directly using [Amarilli 2016]. We
show how they can also imply lower bounds on d-SDNNF size, using the recent
communication complexity approach of [Bova, Capelli, Mengel, and Slivovsky 2016].

Fourth, in Section 4.8, we apply our lower bounds to intensional query evaluation
on relational databases. We reuse the notion of intricate queries of [Amarilli, Bourhis,
and Senellart 2016], and show that d-SDNNF representations of the lineage of these
queries have size exponential in the treewidth of any input instance. Intuitively, a
query is intricate if, under some conditions, their lineage never has lower treewidth
than the instance. We lift the result of [Amarilli, Bourhis, and Senellart 2016] from
OBDDs to d-SDNNFs:
Result 5 (Theorem 4.8.4). There is a constant d ∈ N such that the following is true.
Let σ be an arity-2 signature, and Q be a connected UCQ6= which is intricate on σ.
For any instance I on σ, any d-SDNNF representing the lineage of Q on I has size
> 2Ω(tw(I)1/d).

As in [Amarilli, Bourhis, and Senellart 2016], this result shows that, on arity-2
signatures and under constructibility assumptions, treewidth is the right parameter on
instance families to ensure that all queries (in monadic second-order) have tractable
d-SDNNF lineage representations.

4.2 Preliminaries on Tree Decompositions
We start with short preliminaries, which are a local refinement of the general
preliminaries from Chapter 1. In particular, Sections 1.5 and 1.7 from Chapter 1 will
be of special importance for this chapter.

Hypergraphs, treewidth, pathwidth. Recall the definition of a hypergraph
H = (V,E) from Section 1.1. In this chapter we will only consider hypergraphs that
do not contain the empty hyperedge (i.e., ∅ /∈ E). We will moreover always assume
that hypergraphs have at least one edge.

Tree decompositions. Recall the definitions of treewidth and of a tree decompo-
sition of a hypergraph from Section 1.5. For convenience, we will often identify a
bag with its domain. We will need in this chapter a slightly more precise version of
Theorem 1.5.2, which shows that computing a tree decomposition can be done in
FPT-linear time when parameterizing by the treewidth:
Theorem 4.2.1 ([Bodlaender 1996]). There exists a fixed function g(k) that is in
O(2(32+ε)k3) for any ε > 0 such that the following is true. Given a hypergraph H and
an integer k ∈ N we can check in time O(|H| × g(k)) whether H has treewidth 6 k,
and if yes output a tree decomposition of H of width 6 k.

110

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

For simplicity, we will often assume that a tree decomposition is v-friendly, for a
node v ∈ V , meaning that:

1. it is a full binary tree, i.e., each node has exactly zero or two children;

2. for every internal bag b with children bl, br we have b ⊆ bl ∪ br;

3. for every leaf bag b we have |b| 6 1;

4. the root bag of T only contains the node v.

Lemma 4.2.2. Given a tree decomposition T of a hypergraph H of width k and a
node v of H, we can compute in time O(k × |T |) a v-friendly tree decomposition T ′
of H of width k.

Proof. We first create a bag broot containing only the node v, and make this bag the
root of T by connecting it to a bag of T that contains v (if there is no such bag then
we connect broot to an arbitrary bag of T). Then, we make the tree decomposition
binary (but not necessarily full) by replacing each bag b with children b1, . . . , bn with
n > 2 by a chain of bags with the same label as b to which we attach the children
b1, . . . , bn. This process is in time O(|T |) and does not change the width.

We then ensure the second and third conditions, by applying a transformation
to leaf bags and to internal bags. We first modify every leaf bag b containing
more than one vertex by a chain of at most k internal bags with leaves where
the vertices are added one after the other. Then, we modify every internal bag
b that contains elements v1, . . . , vn not present in the union D of its children: we
replace b by a chain of at most k internal bags b′1, . . . , b′n containing respectively
b, b\{vn}, b\{vn, vn−1}, . . . , D, each bag having a child introducing the corresponding
gate vi. This is in time O(k × |T |), and again it does not change the width; further,
the result of the process is a tree decomposition that satisfies the second, third and
fourth conditions and is still a binary tree.

The only missing part is to ensure that the tree decomposition is full, which we
can simply do in linear time by adding bags with an empty label as a second children
for internal nodes that have only one child. This is obviously in linear time, does not
change the width, and does not affect the other conditions, concluding the proof.

DNFs and CNFs. For lower bounds, we will study representations of Boolean
functions as DNFs and CNFs (defined in Section 1.7). In this chapter we always
assume that monotone DNFs and monotone CNFs are minimized, i.e., no clause is a
subset of another. This ensures that every monotone Boolean function has a unique
representation as a monotone DNF (the disjunction of its prime implicants), and
likewise for CNF. We will also assume that CNFs and DNFs always contain at least
one non-empty clause (in particular, they cannot represent constant functions).

4.3 Upper Bound
Our upper bound result studies how to compile a Boolean circuit to a d-SDNNF,
parameterized by the treewidth of the input circuit. To present it, we first review the
independent result that was recently shown by Bova and Szeider [Bova and Szeider
2017] about these circuit classes:

111

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

Theorem 4.3.1 ([Bova and Szeider 2017, Theorem 3 and Equation (22)]). Given a
Boolean circuit C with n variables and of treewidth 6 k, there exists an equivalent
d-SDNNF of size O(f(k)× n), where f is doubly exponential.

An advantage of their result is that it depends only on the number of variables of
the circuit (and on the width parameter), not on the size of the circuit. In contrast,
we will always measure complexity as a function of the size of the input circuit. In
exchange for this advantage, their result has two drawbacks: (i) it has a doubly
exponential dependency on the width; and (ii) it is nonconstructive, because [Bova
and Szeider 2017] gives no time bound on the computation, leaving open the question
of effectively compiling bounded-treewidth circuits to d-SDNNFs.

Our bound. Our main upper bound result addresses both drawbacks and shows
that we can compile in time linear in the circuit and singly exponential in the
treewidth. Our proof is independent from the techniques of [Bova and Szeider 2017].
Formally, we show:

Theorem 4.3.2. There exists a function f(k) that is in O(2(4+ε)k) for any ε > 0 such
that the following holds. Given as input a Boolean circuit C and tree decomposition
T of width 6 k of C, we can compute a d-SDNNF equivalent to C with its v-tree, in
time O (|T | × f(k)).

We prove Theorem 4.3.2 in the next section. Observe how we assume the tree
decomposition to be given as part of the input. If it is not, we can compute one
with Theorem 4.2.1, but this becomes the bottleneck: the complexity becomes
O
(
|C| × 2(32+ε)k3

)
for any ε > 0.

Applications. Theorem 4.3.2 implies several consequences for bounded-treewidth
circuits. The first one deals with the Boolean circuit probability computation
problem, as defined by Section 1.7. This problem is #P-hard for arbitrary circuits,
but it is tractable for d-DNNFs [Darwiche 2001], remembering that we assumed that
arithmetic operations (sum and product) take unit time. Hence, our result implies
the following, where |π| denotes the size of writing the probability valuation π:

Corollary 4.3.3. Let f(k) be the function from Theorem 4.3.2. Given a Boolean
circuit C, a tree decomposition T of width 6 k of C, and a probability valuation π
of Cvar, we can compute π(C) in time O (|π|+ |T | × f(k)).

Proof. Use Theorem 4.3.2 to compute an equivalent d-SDNNF C ′; as C and C ′ are
equivalent, it is clear that π(C) = π(C ′). Now, compute the probability π(C ′) in
linear time in C ′ and |π| by a simple bottom-up pass, using the fact that C ′ is a
d-DNNF [Darwiche 2001].

This improves the bound obtained when applying message passing techniques [Lau-
ritzen and Spiegelhalter 1988] directly on the bounded-treewidth input circuit (as
presented, e.g., in [Amarilli, Bourhis, and Senellart 2015, Theorem D.2]). Indeed,
message passing applies to moralized representations of the input: for each gate, the
tree decomposition must contain a bag containing all inputs of this gate simultane-
ously, which is problematic for circuits of large fan-in. Indeed, if the original circuit
has a tree decomposition of width k, rewriting it to make it moralized will results

112

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

in a tree decomposition of width 3k2 (see [Amarilli, Bourhis, Monet, and Senellart
2017, Lemmas 53 and 55]), and the bound of [Amarilli, Bourhis, and Senellart 2015,
Theorem D.2] then yields an overall complexity of O

(
|π|+ |T | × 23k2

)
for message

passing. Our Corollary 4.3.3 achieves a more favorable bound because Theorem 4.3.2
uses directly the associativity of AND and OR. We note that the connection between
message-passing techniques and structured circuits has also been investigated by
Darwiche, but his result [Darwiche 2003, Theorem 6] produces arithmetic circuits
rather than d-DNNFs, and it also needs the input to be moralized.

A second consequence concerns the task of enumerating the accepting valuations
of circuits, i.e., producing them one after the other, with small delay between each
accepting valuation. The valuations are concisely represented as assignments, i.e., as
a set of variables that are set to true, omitting those that are set to false. This task
is of course NP-hard on arbitrary circuits (as it implies that we can check whether
an accepting valuation exists), but was recently shown in [Amarilli, Bourhis, Jachiet,
and Mengel 2017] to be feasible on d-SDNNFs with linear-time preprocessing and
delay linear in the Hamming weight of each produced assignment. Hence, we have:

Corollary 4.3.4. Let f(k) be the function from Theorem 4.3.2. Given a Boolean
circuit C and a tree decomposition T of width 6 k of C, we can enumerate the
accepting assignments of C with preprocessing in O (|T | × f(k)) and delay linear in
the size of each produced assignment.

Proof. Use Theorem 4.3.2 to compute an equivalent d-SDNNF C ′, which has the
same accepting valuations, along with a v-tree T ′ of C ′. We now conclude using
[Amarilli, Bourhis, Jachiet, and Mengel 2017, Theorem 2.1].

Other applications of Theorem 4.3.2 include counting the number of satisfying
valuations of the circuit (a special case of probability computation), MAP inference
[Fierens et al. 2015] or random sampling of possible worlds (which can be done on
the d-SDNNF in an easy manner).

4.4 Proof of the Upper Bound
We first present in Section 4.4.1 the construction used for Theorem 4.3.2, then
prove in Section 4.4.2 that this construction is correct and can be done within the
prescribed time bound.

4.4.1 Construction
We start with prerequisites, and then describe how to build the d-SDNNF equivalent
to the input bounded-treewidth circuit.

Prerequisites. Let C be the input circuit, and T the input tree decomposition of
width 6 k of C. Let goutput be the output gate of C. Thanks to Lemma 4.2.2, we
can assume that T is goutput-friendly. For every variable gate x ∈ Cvar, we chose a
leaf bag bx of T such that λ(bx) = {x}. Such a leaf bag exists because T is friendly
(specifically, thanks to bullet points 2 and 3). We say that bx is responsible for the
variable gate x. We can obviously chose such a bx for every variable gate x in linear
time in T .

113

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

To abstract away the type of gates and their values in the construction, we will
talk of strong and weak values. Intuitively, a value is strong for a gate g if any
input g′ of g which carries this value determines the value of g; and weak otherwise.
Formally:

Definition 4.4.1. Let g be a gate and c ∈ {0, 1}:

• If g is an AND-gate, we say that c = 0 is strong for g and c = 1 is weak for g;

• If g is an OR-gate, we say that c = 1 is strong for g and c = 0 is weak for g;

• If g is a NOT-gate, c = 0 and c = 1 are both strong for g;

• For technical convenience, if g is a var-gate, c = 0 and c = 1 are both weak
for g. C

If we take any valuation ν : Cvar → {0, 1} of the circuit C = (G,W, goutput, µ), and
extend it to an evaluation ν : G→ {0, 1}, then ν will respect the semantics of gates.
In particular, it will respect strong values: for any gate g of C, if g has an input g′
for which ν(g′) is a strong value, then ν(g) is determined by ν(g′), specifically, it
is ν(g′) if g is an OR- or an AND-gate, and 1 − ν(g′) if g is a NOT-gate. In our
construction, we will need to guess how gates of the circuit are evaluated, focusing
on a subset of the gates (as given by a bag of T); we will then call almost-evaluation
an assignment of these gates that respects strong values. Formally:

Definition 4.4.2. Let U be a set of gates of C. We call ν : U → {0, 1} a (C,U)-
almost-evaluation if it respects strong values, i.e., for every gate g ∈ U , if there is
an input g′ of g in U and ν(g′) is a strong value for g, then ν(g) is determined from
ν(g′) in the sense above. C

Respecting strong values is a necessary condition for such an assignment to be
extensible to a valuation of the entire circuit. However, it is not sufficient: an
almost-evaluation ν may map a gate g to a strong value even though g has no input
that can justify this value. This is hard to avoid: when we focus on the set U , we
do not know about other inputs of g. For now, let us call unjustified the gates of U
that carry a strong value that is not justified by ν:

Definition 4.4.3. Let U be a set of gates of a circuit C and ν a (C,U)-almost-
evaluation. We call g ∈ U unjustified if ν(g) is a strong value for g, but, for every
input g′ of g in U , the value ν(g′) is weak for g; otherwise, g is justified. The set of
unjustified gates is written Unj(ν). C

Let us start to explain in a high-level manner how to construct the d-SDNNF D
equivalent to the input circuit C (we will later describe the construction formally).
We do so by traversing T bottom-up, and for each bag b of T we create gates Gν,S

b

in D, where ν is a (C, b)-almost-evaluation and S is a subset of Unj(ν) which we call
the suspicious gates of Gν,S

b . We will connect the gates of D created for each internal
bag b with the gates created for its children in T , in a way that we will explain later.
Intuitively, for a gate Gν,S

b of D, the suspicious gates g in the set S are gates of b
whose strong value is not justified by ν (i.e., g ∈ Unj(ν)), and is not justified either
by any of the almost-evaluations at descendant bags of b to which Gν,S

b is connected.
We call innocent the other gates of b; they are the gates that are justified in ν (in

114

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

particular, those who carry weak values), and the gates that are unjustified in ν but
have been justified by an almost-evaluation at a descendant bag b′ of b. Crucially,
in the latter case, the gate g′ justifying the strong value in b′ may no longer appear
in b, making g unjustified for ν; this is why we remember the set S.

We still have to explain how we connect the gates Gν,S
b of D to the gates Gνl,Sl

bl

and Gνr,Sr
br

created for the children bl and br of b in T . The first condition is that νl
and νr must mutually agree, i.e., νl(g) = νr(g) for all g ∈ bl ∩ br, and ν must then
be the union of νl and νr, restricted to b. We impose a second condition to prohibit
suspicious gates from escaping before they have been justified, which we formalize as
connectibility of a pair (ν, S) at bag b to the parent bag of b.

Definition 4.4.4. Let b be a non-root bag, b′ its parent bag, and ν a (C, b)-almost-
evaluation. For any set S ⊆ Unj(ν), we say that (ν, S) is connectible to b′ if S ⊆ b′,
i.e., the suspicious gates of ν must still appear in b′. C

If a gate Gν,S
b is such that (ν, S) is not connectible to the parent bag b′, then this

gate will not be used as input to any other gate (but we do not try to preemptively
remove these useless gates in the construction). We are now ready to give the formal
definition that will be used to explain how gates are connected:

Definition 4.4.5. Let b be an internal bag with children bl and br, let νl and
νr be respectively (C, bl) and (C, br)-almost-evaluations that mutually agree, and
Sl ⊆ Unj(νl) and Sr ⊆ Unj(νr) be sets of suspicious gates such that both (νl, Sl) and
(νr, Sr) are connectible to b. The result of (νl, Sl) and (νr, Sr) is then defined as the
pair (ν, S) where:

• ν is defined as the restriction of νl ∪ νr to b.

• S ⊆ Unj(ν) is the new set of suspicious gates, defined as follows. A gate g ∈ b
is innocent (i.e., g ∈ b \ S) if it is justified for ν or if it is innocent for some
child. Formally, b \ S := (b \ Unj(ν)) ∪

[
b ∩ [(bl \ Sl) ∪ (br \ Sr)]

]
. C

We point out that (ν, S) is not necessarily a (C, b)-almost-evaluation.

Construction. We now use these definitions to present the construction formally.
For every variable gate g of C, we create a corresponding variable gate Gg,1 of D,
and we create Gg,0 := NOT(Gg,1). For every internal bag b of T , for each (C, b)-
almost-evaluation ν and set S ⊆ Unj(ν) of suspicious gates of ν, we create one
OR-gate Gν,S

b . For every leaf bag b of T , we create one OR-gate Gν,S
b for every

(C, b)-almost-evaluation ν, where we set S := Unj(ν); intuitively, in a leaf bag, an
unjustified gate is always suspicious (it cannot have been justified at a descendant
bag).

Now, for each internal bag b of T with children bl, br, for each pair of gates Gνl,Sl
bl

and Gνr,Sr
br

that are both connectible to b and where νl and νr mutually agree, letting
(ν, S) be the result of (νl, Sl) and (νr, Sr), if (ν, S) is a (C, b)-almost-evaluation then
we create a gate Gνl,Sl,νr,Sr

b = AND(Gνl,Sl
bl

, Gνr,Sr
br

) and make it an input of Gν,S
b . We

now explain where the variables gates are connected. For every leaf bag b that is
responsible for a variable gate x (i.e., b is bx), for ν ∈ {{x 7→ 1}, {x 7→ 0}}, we set
the gate Gx,ν(x) to be the (only) input of the gate Gν,S

b . Last, for every leaf bag b
that is not responsible for a variable gate, for every valuation ν of b, we create a

115

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

constant 1-gate (i.e., an AND-gate with no inputs), and we make it the (only) input
of Gν,S

b . The output gate of D is the gate Gν,∅
broot where broot is the root of T and ν

maps goutput to 1 (remember that broot contains only goutput).
We now construct a v-tree T ′ that structures D. T ′ has the same skeleton than T

(in particular, it is a full binary tree). For every node b of T , let us denote by b′ the
corresponding node of T ′. For every leaf bag b of T , b′ is either x if b is responsible for
the variable x, or unlabelled otherwise. It is then clear that T ′ structures D. Indeed,
the only AND-gates of D are gates of the form Gνl,Sl,νr,Sr

b , or constant 1-gates (i.e.,
AND-gates with no inputs). Now, an AND-gate with no input is structured by any
node of T ′, and one can check that any gate of the form Gνl,Sl,νr,Sr

b is structured by
b′.

4.4.2 Proof of Correctness
We now prove that the circuit D constructed in the main text is indeed a d-SDNNF
equivalent to the initial circuit C, and that it can be constructed together with its
v-tree in O (|T | × f(k)) for some function f(k) that is in O(2(4+ε)k) for any ε > 0.

4.4.2.1 D is a Structured DNNF

Negations only apply to the input gates, so D is an NNF. Moreover, we already
justified that D is structured by the v-tree T ′ that we constructed, so D is an
SDNNF.

4.4.2.2 D is Equivalent to C

In order to prove that D is equivalent to C, we introduce the standard notion of a
trace in an NNF:

Definition 4.4.6. Let D be an NNF, χ a valuation of its variable gates, and g a
gate that evaluates to 1 under χ. A trace of D starting at g according to χ is a set
Ξ of gates of D that is minimal by inclusion and such that:

• g ∈ Ξ;

• If g′ ∈ Ξ and g′ is an AND gate, then W (g′) ⊆ Ξ, where W (g′) denotes the set
of gates that are an input to g′;

• If g′ ∈ Ξ and g′ is an OR gate, then exactly one input of g′ that evaluates to 1
is in Ξ. C

The first step is then to prove that traces have exactly one almost-evaluation
corresponding to each descendant bag, and that these almost-evaluations mutually
agree.

Lemma 4.4.7. Let χ be a valuation of the variable gates, Gν,S
b a gate in D that

evaluates to 1 under χ and Ξ be a trace of D starting at Gν,S
b according to χ. Then

for any bag b′ 6 b (meaning that b′ is b or a descendant of b), Ξ contains exactly one
gate of the form Gν′,S′

b′ . Moreover, over all b′ 6 b, all the almost-evaluations of the
gates Gν′,S′

b′ that are in Ξ mutually agree.

116

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Proof. The fact that Ξ contains exactly one gate Gν′,S′

b′ for any bag b′ 6 b is obvious
by construction of D, as OR-gates are assumed to have exactly one input evaluated
to 1 in Ξ. For the second claim, suppose by contradiction that not all the almost-
evaluations of the gates Gν′,S′

b′ that are in Ξ mutually agree. We would then have
Gν1,S1
b1 and Gν2,S2

b2 in Ξ and g ∈ b1 ∩ b2 such that ν1(g) 6= ν2(g). But because T is a
tree decomposition, g appears in all the bags on the path from b1 and b2, and by
construction the almost-evaluations of the Gν′,S′

b′ on this path that are in Ξ mutually
agree, a contradiction.

Therefore, Lemma 4.4.7 allows us to define the union of the almost-evaluations
in such a trace:

Definition 4.4.8. Let χ be a valuation of the variable gates, Gν
b a gate in D that

evaluates to 1 under χ, and Ξ be a trace of D starting at Gν
b according to χ. Then

γ(Ξ) ··=
⋃
Gν
′,S′
b′ ∈Ξ ν

′ (the union of the almost-evaluations in Ξ, which is a valuation
from ⋃

Gν
′,S′
b′ ∈Ξ b

′ to {0, 1}) is properly defined. C

We now need to prove a few lemmas about the behavior of gates that are innocent
(i.e., not suspicious).

Lemma 4.4.9. Let χ be a valuation of the variable gates, Gν,S
b a gate in D that

evaluates to 1 under χ and Ξ be a trace of D starting at Gν,S
b according to χ. Let

g ∈ b be a gate that is innocent (g /∈ S). Then the following holds:

• If ν(g) is a weak value of g, then for every input g′ of g that is in the domain
of γ(Ξ) (i.e., g′ appears in a bag b′ 6 b), we have that γ(Ξ) maps g′ to a weak
value of g;

• If ν(g) is a strong value of g, then there exists an input g′ of g that is in the
domain of γ(Ξ) such that γ(Ξ)(g′) is ν(g) if g is an AND or OR gate, and
γ(Ξ)(g′) is 1− ν(g) if g is a NOT gate.

Proof. We prove the claim by bottom-up induction on b ∈ T . One can easily check
that the claim is true when b is a leaf bag, remembering that in this case we must
have S = Unj(ν) by construction (that is, all the gates that are unjustified are
suspicious). For the induction case, let bl, br be the children of b. Suppose first
that ν(g) is the weak value of g, and suppose for a contradiction that there is an
input g′ of g in the domain of γ(Ξ) such that γ(Ξ)(g′) is a strong value of g. By
the occurrence and connectedness properties of tree decompositions, there exists
a bag b′ 6 b in which both g and g′ occur. Consider the gate Gν′,S′

b′ that is in
Ξ: by Lemma 4.4.7, this gate exists and is unique. By definition of γ(Ξ) we have
ν ′(g′) = γ(Ξ)(g′). Because ν ′ is a (C, b′)-almost-evaluation that maps g′ to a strong
value of g, we must have that ν ′(g) is also a strong value of g, thus contradicting our
hypothesis that ν(g) = γ(Ξ)(g) = ν ′(g) is a weak value for g.

Suppose now that ν(g) is a strong value of g. We only treat the case when g is
an OR or an AND gate, as the case of a NOT gate is similar. We distinguish two
sub-cases:

• g is justified. Then, by definition of ν being a (C, b)-almost-evaluation, there
must exist an input g′ of g that is also in b such that ν(g′) is a strong value of
g, which proves the claim.

117

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

• g is unjustified but innocent (g /∈ S). By construction (precisely, by the second
item of Definition 4.4.5), g must then be innocent for a child of b, and the
claim clearly holds by induction hypothesis.

Lemma 4.4.9 allows us to show that for a gate g, letting b be the topmost bag
in which g appears (hence, each input of g must occur in some bag b′ 6 b), if g is
innocent then for any trace Ξ starting at a gate for bag b, γ(Ξ) respects the semantics
of g. Formally:

Lemma 4.4.10. Let χ be a valuation of the variable gates, Gν,S
b a gate in D that

evaluates to 1 under χ and Ξ be a trace of D starting at Gν,S
b according to χ.

Let g ∈ b be a gate such that b is the topmost bag in which g appears (hence
W (g) ⊆ domain(γ(Ξ))). If g is innocent (g /∈ S) then γ(Ξ) respects the semantics
of g, that is, γ(Ξ)(g) = ⊙

γ(Ξ)(W (g)) where ⊙ is the type of g.

Proof. Clearly implied by Lemma 4.4.9.

We need one last lemma about the behavior of suspicious gates, which intuitively
tells us that if we have already seen all the input gates of a gate g and g is still
suspicious, then g can never escape:

Lemma 4.4.11. Let χ be a valuation of the variable gates, Gν,S
b a gate in D that

evaluates to 1 under χ, and Ξ be a trace of D starting at Gν,S
b according to χ. Let g

be a gate such that the topmost bag b′ in which g appears is 6 b, and consider the
unique gate of the form Gν′,S′

b′ that is in Ξ. If g ∈ S ′ then b′ = b (hence Gν,S
b = Gν′,S′

b′

by uniqueness).

Proof. Let g ∈ S ′. Suppose by contradiction that b′ 6= b. Let p be the parent of b′
(which exists because b′ < b). It is clear that by construction (ν ′, S ′) is connectible
to p (recall Definition 4.4.4), hence g must be in p, contradicting the fact that b′
should have been the topmost bag in which g occurs. Hence b′ = b.

We now have all the results that we need to show that D =⇒ C, i.e., for every
valuation χ of the variables of C, if χ(D) = 1 then χ(C) = 1. We prove a stronger
result:

Lemma 4.4.12. Let χ be a valuation of the variable gates, Gν,∅
root(T) ∈ D a gate that

evaluates to 1 under χ, and Ξ a trace of D starting at Gν,∅
root(T) according to χ. Then

γ(Ξ) corresponds to the evaluation χ of C.

Proof. We prove by induction on C (as its graph is a DAG) that for all g ∈ C,
γ(Ξ)(g) = χ(g). When g is a variable gate, consider the leaf bag bg that is responsible
of g, and consider the gate Gν′,S′

bg
that is in Ξ: this gate exists and is unique according

to Lemma 4.4.7. This gate evaluates to 1 under χ (because it is in the trace), which
is only possible if Gg,ν′(g) evaluates to 1 under χ, hence by construction we must have
ν ′(g) = χ(g) and then γ(Ξ)(g) = χ(g). Now suppose that g is an internal gate, and
consider the topmost bag b′ in which g appears. Consider again the unique Gν′,S′

b′

that is in Ξ. By induction hypothesis we have that γ(Ξ)(g′) = χ(g′) for every input
g′ of g. We now distinguish two cases:

118

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

• b′ = root(T). Therefore by Lemma 4.4.10 we know that γ(Ξ) respects the
semantics of g, which means that γ(Ξ)(g) = ⊙

γ(Ξ)(W (g)) = ⊙
χ(W (g)) =

χ(g) (where the second equality comes from the induction hypothesis and the
third equality is just the definition of the evaluation χ of C), which proves the
claim.

• b′ < root(T). But then by Lemma 4.4.11 we must have g /∈ S ′ (because
otherwise we should have b′ = root(T) and then S ′ = ∅), that is g is innocent
for Gν′,S′

b′ . Therefore, again by Lemma 4.4.10, it must be the case that γ(Ξ)
respects the semantics of g, and we can again show that γ(Ξ)(g) = χ(g),
concluding the proof.

This indeed implies that D =⇒ C: let χ be a valuation of the variable gates and
suppose χ(D) = 1. Then by definition of the output of D, it means that the gate
Gν,∅

root(T) such that ν(goutput) = 1 evaluates to 1 under χ. But then, considering a trace
Ξ of D starting at Gν,∅

root(T) according to χ, we have that χ(goutput) = γ(Ξ)(goutput) =
ν(goutput) = 1.

To show the converse (C =⇒ D), one can simply observe the following
phenomenon:

Lemma 4.4.13. Let χ be a valuation of the variable gates. Then for every bag
b ∈ T , the gate Gχ|b,S

b evaluates to 1 under χ, where S is the set of gates g ∈ Unj(ν)
such that for every input g′ of g that appears in some bag b′ 6 b, then χ(g′) is a weak
value of g.

Proof. Easily proved by bottom-up induction.

Now suppose χ(C) = 1. By Lemma 4.4.13 we have that Gχ|root(T),∅
root(T) evaluates to

1 under χ, and because χ(goutput) = 1 we have that χ(D) = 1. This shows that
C =⇒ D. Hence, we have proved that D is equivalent to C.

4.4.2.3 D is Deterministic

We now prove that D is deterministic, i.e., that every OR gate in D is deterministic.
Recall that the only OR gates in D are the gates of the form Gν,S

b . We will in fact
prove that traces starting at OR gates are unique, which clearly implies that all the
OR gates are deterministic.

We start by proving the following lemma:

Lemma 4.4.14. Let χ be a valuation of the variable gates, Gν,S
b a gate in D that

evaluates to 1 under χ and Ξ be a trace of D starting at Gν,S
b according to χ. Let

g ∈ b. Then the following is true:

• if g is innocent (g /∈ S) and ν(g) is a strong value of g, then there exists an
input g′ of g such that γ(Ξ)(g) is a strong value for g.

• if g ∈ S, then for every input g′ of g that is in the domain of γ(Ξ), we have
that γ(Ξ)(g′) is a weak value for g.

Proof. We prove the two claims independently:

119

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

• Let g ∈ b such that g /∈ S and ν(g) is a strong value for g. Then the claim
directly follows from the second item of Lemma 4.4.9.

• We prove the second claim via a bottom-up induction on T . When b is a leaf
then it is trivially true because g has no input g′ in b because |b| 6 1 because
T is friendly. For the induction case, let Gνl,Sl

bl
and Gνr,Sr

br
be the (unique) gates

in Ξ corresponding to the children bl, br of b. By hypothesis we have g ∈ S.
By definition of a gate being suspicious, we know that ν(g) is a strong value
for g. To reach a contradiction, assume that there is an input g′ of g in the
domain of γ(Ξ) such that γ(Ξ)(g′) is a strong value for g. Clearly this g′ is not
in b, because g is unjustified by ν (because S ⊆ Unj(ν)). Either g′ occurs in a
bag b′l 6 bl, or it occurs in a bag b′r 6 br. The two cases are symmetric, so we
assume that we are in the former. As g ∈ b and g′ ∈ b′l, by the properties of
tree decompositions and because g′ /∈ b, we must have g ∈ bl. Hence, by the
contrapositive of the induction hypothesis on bl applied to g, we deduce that
g /∈ Sl. But then by the second item of Definition 4.4.5, g should be innocent
for Gν,S

b , that is g /∈ S, which is a contradiction.

We are ready to prove that traces starting at OR gates are unique. Let us first
introduce some useful notations: Let U , U ′ be sets of gates, ν, ν ′ be valuations
having the same domain. We write (ν, U) = (ν ′, U ′) to mean ν = ν ′ and U = U ′, and
for g in the domain of ν we write (ν, U)(g) = (ν ′, U ′)(g) to mean that ν(g) = ν ′(g)
and that we have g ∈ U iff g ∈ U ′. We show the following:

Lemma 4.4.15. Let χ be a valuation of the variable gates such that Gν,S
b evaluates

to 1 under χ. Then there is a unique trace of D starting at Gν,S
b according to χ.

Proof. We will prove the claim by bottom-up induction on T . The case when b is a
leaf is trivial because gates of the form Gν,S

b , for b a leaf of T , have either:

• exactly one input g′ that is a constant 1-gate;

• or, exactly one input that is a variable gate Gx,1, if b is responsible of x and
ν(g) = 1;

• or, exactly one input Gx,0 that is the NOT-gate NOT(Gx,1), if b is responsible
of x and ν(g) = 0.

In all cases, there can be at most one trace. For the inductive case, let b be an
internal bag with children bl and br. By induction hypothesis for every Gνl,Sl

bl
(resp.,

Gνr,Sr
br

) that evaluates to 1 under χ there exists a unique trace Ξl (resp., Ξr) of D
starting at Gνl,Sl

bl
(resp., Gνr,Sr

br
). Hence, if by contradiction there are more than two

traces of D starting at Gν,S
b , it can only be because Gν,S

b is not deterministic, i.e.,
because at least two different inputs of Gν,S

b evaluate to 1 under χ, say Gνl,Sl,νr,Sr
b

and Gν′l ,S
′
l ,ν
′
r,S
′
r

b with (νl, Sl) 6= (ν ′l , S ′l) or (νr, Sr) 6= (ν ′r, S ′r). We can suppose that it is
(νl, Sl) 6= (ν ′l , S ′l), since the other case is symmetric. Hence there exists g0 ∈ bl such
that (νl, Sl)(g0) 6= (ν ′l , S ′l)(g0). Let Ξl be the trace of D starting at Gνl,Sl

bl
and Ξ′l be

the trace of D starting at Gν′l ,S
′
l

bl
. We observe the following simple fact about Ξl and

Ξ′l:

(*) for any g, if γ(Ξl)(g) 6= γ(Ξ′l)(g) then g /∈ b.

120

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Indeed otherwise we should have ν(g) = νl(g) = γ(Ξl)(g) and ν(g) = ν ′l(g) = γ(Ξ′l)(g),
which is impossible.

Now we will define an operator θ that takes as input a gate g such that
(γ(Ξl), Sl)(g) 6= (γ(Ξ′l), S ′l)(g), and outputs another gate θ(g) which is an input
of g and such that again (γ(Ξl), Sl)(θ(g)) 6= (γ(Ξ′l), S ′l)(θ(g)). This will lead to
a contradiction because for any n ∈ N, starting with g0 and applying θ n times
consecutively we would obtain a path of n mutually distinct gates (because C is
acyclic), but C has a finite number of gates.

Let us now define θ: let g such that (γ(Ξl), Sl)(g) 6= (γ(Ξ′l), S ′l)(g). We distinguish
two cases:

• We have (γ(Ξl), Sl)(g) 6= (γ(Ξ′l), S ′l)(g) because γ(Ξl)(g) 6= γ(Ξ′l)(g). Then by
(*), we know for sure that g /∈ b. Therefore the topmost bag b′ in which g

occurs is 6 bl. Let Gν′,S′

b′ be the gate in Ξl and Gν′′,S′′

b′ the gate in Ξ′l (they exist
and are unique by Lemma 4.4.7). Then by Lemma 4.4.11 we must have g /∈ S ′
and g /∈ S ′′, because otherwise we should have b′ = b, which is not true. Hence,
by Lemma 4.4.10 we know that both γ(Ξl) and γ(Ξ′l) respect the semantics of
g. But we have γ(Ξl)(g) 6= γ(Ξ′l)(g), so there must exist an input g′ of g such
that γ(Ξl)(g′) 6= γ(Ξ′l)(g′). We can thus take θ(g) to be g′.

• We have (γ(Ξl), Sl)(g) 6= (γ(Ξ′l), S ′l)(g) because (without loss of generality)
g /∈ Sl and g ∈ S ′l. Observe that this implies that g ∈ bl, and that ν ′l(g) is a
strong value for g. We can assume that νl(g) = ν ′l(g), as otherwise we would
have γ(Ξl)(g) 6= γ(Ξ′l)(g), which is a case already covered by the last item.
Hence νl(g) is also a strong value for g, but we have g /∈ Sl, so by the first
item of Lemma 4.4.14 we know that there exists an input g′ of g that occurs in
some bag 6 bl and such that γ(Ξl)(g′) is a strong value for g. We show that
γ(Ξ′l)(g′) must in contrast be a weak value for g, so that we can take θ(g) to
be g′ and conclude the proof. Indeed suppose by way of contradiction that
γ(Ξ′l)(g′) is a strong value for g. By the contrapositive of the second item of
Lemma 4.4.14, we get that g /∈ S ′l, which contradicts our assumption.

Hence we have constructed θ, which shows a contradiction, which means that in fact
we must have Gνl,Sl,νr,Sr

b = G
ν′l ,S

′
l ,ν
′
r,S
′
r

b , so that Gν,S
b is deterministic, which proves

that there is a unique trace of D starting at Gν,S
b according to χ, which was our

goal.

This concludes the proof that D is deterministic, and thus that D is a d-SDNNF
equivalent to C.

4.4.2.4 Analysis of the Running Time

We last check that the construction can be performed in time O(|T | × f(k)), for
some function f(k) that is in O(2(4+ε)k) for any ε > 0:

• From the initial tree decomposition T of C, in time O(k|T |) we computed the
goutput-friendly tree decomposition Tfriendly of size O(k|T |);

• In linear time in Tfriendly, for every varable x ∈ Cvar we selected a leaf bag bx of
T such that λ(bx) = {x};

121

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

• We can clearly compute the v-tree T ′ in linear time in Tfriendly;

• For each bag b of Tfriendly we have 22|b| 6 22k+2 different pairs of a valuation ν
of b and of a subset S of b, and checking if ν is a (C, b)-almost-evaluation and
if S is a subset of the unjustified gates of ν can be done in polynomial time in
|b| 6 k + 1 (we access the inputs and the type of each gate in constant time
from C), hence we pay O(|Tfriendly| × p(k)× 22k) to create the gates of the form
Gν,S
b , for some polynomial p;

• We constructed and connected in time O(|Tfriendly| × p′(k)× 24k) the gates of
the form Gνl,Sl,νr,Sr

b (the polynomial is for testing if the result of (νl, Sl) and of
(νr, Sr) is an almost-evaluation);

• In time O(|Tfriendly|) we connected the gates of the form Gν,S
b for b a leaf to

their inputs.

Hence, the total time is indeed in O(|T | × f(k)), for some function f(k) that is in
O(2(4+ε)k) for any ε > 0.

4.5 Application to PQE of CFG-Datalog
In this section we show how to use the algorithm of Theorem 4.3.2 to evaluate CFG-
Datalog queries on treelike TID instances. We recall our main provenance result from
Chapter 3, which states that we can compute in FPT-bilinear time (parameterized by
kP and kI) a stratified cycluit capturing the provenance of a CFG-Datalog program
of body size 6 kP on a relational instance of treewidth 6 kI:

Theorem 3.6.1. Given a CFG-Datalog program P of body size kP and a relational
instance I of treewidth kI, we can construct in FPT-bilinear time in |I| · |P | (param-
eterized by kP and kI) a representation of the provenance of P on I as a stratified
cycluit.

Moreover, we can prove that the treewidth of C is linear in the size of the
CFG-Datalog program:

Proposition 4.5.1. The treewidth of the cycluit C constructed in Theorem 3.6.1 is
in O(|P |).

Proof. We recall how C was constructed. Imagine first that P is a CFGGN-Datalog
program. From the CFGGN-Datalog program P of body size 6 kP and the treewidth
bound kI, we used Theorem 3.5.4 to compute in FPT-linear time in |P | a Γkσ-SATWA
A that tests it on tree encodings of width 6 kI. We also computed in FPT-linear
time a tree encoding E of the instance I, i.e., a Γkσ-tree E. We then lift the
Γkσ-SATWA A in linear time using Lemma 3.6.14 to a Γkσ-SATWA A′, and used
Theorem 3.6.11 on A′ and E to compute in FPT-bilinear time the stratified cycluit
C that captures the provenance of A′ on E. Hence, to show that the treewidth of
C is linear in |P |, it suffices to prove that the treewidth of the cycluit constructed
in Theorem 3.6.11 is linear in the size of the SATWA A′. We now refer to the
construction of Theorem 3.6.11 and justify that the treewidth of C is indeed linear
in the size of the automaton. For every node w of E, we created O(|A′|) gates,

122

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

and those gates can only be connected between them or between gates created
for the neighbors of w. Hence, the treewidth of C is O(|A′|): we can compute a
tree decomposition of C where the underlying tree is the same as that of E and
where each bag b corresponding to a node w of E contains the gates defined for the
node w and for the neighbors of w. We can then observe that this argument is still
true for CFG-Datalog programs and the SATWAs with directions that we used in
Section 3.7.2.

Unfortunately, we cannot directly apply Theorem 4.3.2 because here we have a
cycluit, while our transformation takes a circuit as input. Hence, the first step will
be to convert this stratified cycluit into a circuit. A first result from existing work is
that we can remove cycles in cycluits and convert them to circuits, with a quadratic
blowup, by creating linearly many copies to materialize the fixpoint computation:

Proposition 4.5.2 ([Riedel and Bruck 2012], Theorem 2). For any stratified cycluit
C, we can compute in time O(|C|2) a Boolean circuit C ′ which is equivalent to C.

However this approach has two disadvantages for us: first, it is quadratic rather
than linear, which would imply a complexity at least quadratic in the database I if we
used it. Second, the bound of Proposition 4.5.1 on the treewidth of the cycluit is not
preserved on the resulting circuit, while we need such a bound to use Theorem 4.3.2.
Therefore, we use another cycle removal result, that proceeds in FPT-linear time
when parameterized by the treewidth of the input cycluit:

Theorem 4.5.3 ([Amarilli, Bourhis, Monet, and Senellart 2017, Theorem 34]).
There is an α ∈ N such that for any stratified cycluit C of treewidth k, we can
compute in time O(2kα |C|) a circuit C ′ which is equivalent to C and has treewidth
O(2kα).

We can then use Theorem 4.5.3 to apply our main upper bound of this chapter
(Theorem 4.3.2) on the cycluit constructed in Theorem 3.6.1 (relying on the treewidth
bound of Proposition 4.5.1) and show the following:

Theorem 4.5.4. Fix kI, kP ∈ N and consider them as constants. There is an α ∈ N
s.t., given a CFG-Datalog program P of body size kP and a TID instance (I, π) of
treewidth kI, we can compute a d-SDNNF representing the provenance of P on I in
time O(22|P |α |I|).

Proof. Let C be the stratified cycluit constructed from Theorem 3.6.1, whose
treewidth is in O(|P |) according to Proposition 4.5.1. Let α′′ be the constant
from Theorem 4.5.3. We use Theorem 4.5.3 to compute in time O(2|P |α

′′
|C|) a circuit

C ′ which is equivalent to C and has treewidth O(2|P |α
′′
). We then use Theorem 4.2.1

with ε = 1 to compute a tree decomposition T of C ′ in time O(2|P |α
′′
|C|×233×23×|P |α

′′

)
(of width O(2|P |α

′′
)). If we let α′ ··= α′′+1, we can do all of this in time O(22|P |α

′

×|C|).
Now, we use Theorem 4.3.2 with ε = 1 to compute in time O(22|P |α

′

×|C|×25×2|P |α
′′

))
a d-SDNNF equivalent to C ′. Since |C| is of size O(|I| × |P |), we can do all of this
in time O(22|P |α × |I|) for α ··= α′ + 1.

This d-SDNNF then allows us to solve PQE for this program on this instance
with the same complexity, since the Boolean circuit probability computation problem
restricted to d-DNNFs is in linear time [Darwiche 2001].

123

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

4.6 Lower Bounds on OBDDs
We now move to lower bounds on the size of structured representations of Boolean
functions, in terms of the width of a circuit for that function. Our end goal is to
obtain a lower bound for (d-)SDNNFs, that will form a counterpart to the upper
bound of Theorem 4.3.2. We will do so in Section 4.7. For now, in this section, we
consider a weaker class of lineage representations than (d-)SDNNFs, namely, OBDDs
(recall their definition from Section 1.7). Our upper bound in Section 4.3 applied to
arbitrary Boolean circuits; however, our lower bounds in this section and the next
one will already apply to much weaker formalisms for Boolean functions, namely,
monotone DNFs and monotone CNFs. Some lower bounds are already known for the
compilation of monotone CNFs into OBDDs: Bova and Slivovsky have constructed
a family of CNFs of bounded degree whose OBDD width is exponential in their
number of variable occurrences [Bova and Slivovsky 2017, Theorem 19], following an
earlier result of this type by Razgon, presented in [Razgon 2014, Corollary 1]. The
result is as follows:

Theorem 4.6.1 ([Bova and Slivovsky 2017, Theorem 19]). There is a class of
monotone CNF formulas of bounded degree and arity such that every formula ϕ in
this class has OBDD size at least 2Ω(|ϕ|).

We adapt some of these techniques to show a more general result: our lower
bound applies to any monotone DNF or monotone CNF, not to one specific family.
Specifically, we show:

Theorem 4.6.2. Let ϕ be a monotone DNF (or monotone CNF), let a := arity(ϕ)

and d := degree(ϕ). Then any OBDD for ϕ has width > 2
⌊

pw(ϕ)
a3×d2

⌋
.

From our Theorem 4.6.2, we can easily derive Theorem 4.6.1 using the fact (also
used in the proof of [Bova and Slivovsky 2017, Theorem 19]) that there exists a family
of monotone CNFs of bounded degree and arity whose treewidth (hence pathwidth)
is linear in their size, namely, the CNFs built from expander graphs (see [Grohe and
Marx 2009, Theorem 5 and Proposition 1]). Note that expander graphs can also be
used to show lower bounds for (non-deterministic and non-structured) DNNFs for
a CNF formula [Bova, Capelli, Mengel, and Slivovsky 2015]; our lower bound on
SDNNFs of Section 4.7 will not capture this result (because we need structuredness).

We observe that, for a family of formulas with bounded arity and degree, the
bound of Theorem 4.6.2 is optimal, up to constant factors in the exponent. Indeed,
following earlier work [Ferrara, Pan, and Vardi 2005; Razgon 2014], Bova and
Slivovsky have shown that any CNF ϕ can be compiled to OBDDs of width 2pw(ϕ)+2

[Bova and Slivovsky 2017, Theorem 4 and Lemma 9]. (Their upper bound result
also applies to DNFs, and does not assume monotonicity nor a bound on the arity or
degree.) In other words, for any monotone DNF or monotone CNF of bounded arity
and degree, pathwidth characterizes the width of an OBDD for the formula, in the
following sense:

Corollary 4.6.3. For any constant c, for any monotone DNF (or monotone CNF) ϕ
with arity and degree bounded by c, the smallest width of an OBDD for ϕ is 2Θ(pw(ϕ)).

This corollary talks about the pathwidth of ϕ measured as that of its hypergraph,
but note that the same result would hold when measuring the pathwidth of the

124

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

incidence graph of ϕ (i.e., the undirected graph that has as set of vertices the variables
and the clauses of ϕ, and that connects a variable and a clause iff this variable appears
in that clause) or dual hypergraph of ϕ (i.e., the hypergraph having as nodes the
clauses of ϕ, and having, for every variable v of ϕ, one hyperedge containing all
the clauses in which v appears). Indeed, all these pathwidths are within a constant
factor of one another when the degree and arity are bounded by a constant.

We prove Theorem 4.6.2 in the rest of this section. We present the proof in the
case of monotone DNFs to reuse existing lower bound techniques from [Amarilli,
Bourhis, and Senellart 2016; Amarilli 2016], but explain at the end of this section
how the proof adapts to monotone CNFs. We first present pathsplitwidth, a new
notion which intuitively measures the performance of a variable ordering for an
OBDD on the monotone DNF ϕ, and connect it to the pathwidth of ϕ. Second,
we recall the definition of dncpi-sets introduced in [Amarilli, Bourhis, and Senellart
2016; Amarilli 2016] to show lower bounds from the structure of Boolean functions.
Last, we conclude the proof by connecting pathsplitwidth to the size of dncpi-sets.

Pathsplitwidth. The first step of the proof is to rephrase the bound on pathwidth,
arity, and degree, in terms of a bound on the performance of variable orderings.
Intuitively, a good variable ordering is one which does not split too many clauses.
Formally:

Definition 4.6.4. Let H = (V,E) be a hypergraph, and v = v1, . . . , v|V | be an
ordering on the variables of V . For 1 6 i 6 |V |, we define Spliti(v, H) as the set
of hyperedges e of H that contain both a variable at or before vi, and a variable
strictly after vi, formally: Spliti(v, H) := {e ∈ E | ∃l ∈ {1, . . . , i} and ∃r ∈ {i +
1, . . . , |V |} such that {vl, vr} ⊆ e}. Note that Split|V |(v, H) is always empty.

The pathsplitwidth of v relative to H is the maximum size of the split, formally,
psw(v, H) := max16i6|V | |Spliti(v, H)|. The pathsplitwidth psw(H) of H is then the
minimum of psw(v, H) over all variable orderings v of V . C

In other words, psw(H) is the smallest integer n ∈ N such that, for any variable
ordering v of the nodes of H, there is a moment at which n hyperedges of H are
split, i.e., for n hyperedges e, we have begun enumerating the nodes of e but we have
not enumerated all of them yet. We note that the pathsplitwidth of H is exactly
the linear branch-width [Nordstrand 2017] of the dual hypergraph of H, but we
introduced pathsplitwidth because it fits our proofs better.

For a monotone DNF ϕ with hypergraph H, the quantity psw(H) is intuitively
connected to the quantity of information that an OBDD will have to remember
when evaluating ϕ following any variable ordering, which we will formalize via dncpi-
sets. This being said, the definition of pathsplitwidth is also reminiscent of that of
pathwidth, and we can indeed connect the two (up to a factor of the arity):

Lemma 4.6.5. For any hypergraph H = (V,E), we have pw(H) 6 arity(H) ×
psw(H).

Proof. Let H = (V,E) be a hypergraph, and let v be an enumeration of the
nodes of H witnessing that H has pathsplitwidth psw(H). We will construct
a path decomposition of H of width 6 arity(H) × psw(H). Consider the path
P = b1, · · · , b|V | and the labeling function λ where λ(bi) := {vi} ∪

⋃ Spliti(v, H) for

125

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

1 6 i 6 |V |. Let us show that (P, λ) is a path decomposition of H: once this is
established, it is clear that its width will be 6 arity(H)× psw(H).

First, we verify the occurrence condition. Let e ∈ E. If e is a singleton {vi} then
e is included in bi. Now, if |e| > 2, then let vi be the first element of e enumerated
by v. We have e ∈ Spliti(v, H), and therefore e is included in bi.

Second, we verify the connectedness condition. Let v be a vertex of H, then by
definition v ∈ bi iff v = vi or there exists e ∈ Spliti(v, H) with v ∈ e. We must show
that the set Tv of the bags that contain v forms a connected subpath in P . To show
this, first observe that for every e ∈ E, letting Split(e) = {vi | 1 6 i < |V | ∧ e ∈
Spliti(v, H)}, then Split(e) is clearly a connected segment of v. Second, note that
for every e with v ∈ e, then either v ∈ Split(e) or v and the connected subpath
Split(e) are adjacent (in the case where v is the last vertex of e in the enumeration).
Now, by definition Tv is the union of the bv′ for v′ ∈ Split(e) with v ∈ e and of bi, so
it is a union of connected subpaths which all contain bi or are adjacent to it: this
establishes that Tv is a connected subpath, which shows in turn that (T, λ) is a path
decomposition, concluding the proof.

For completeness with the preceding result, we note that the following also holds,
although we do not use it in the proof of Theorem 4.6.2:
Lemma 4.6.6. For any hypergraph H = (V,E), we have psw(H) 6 degree(H) ×
(pw(H) + 1).
Proof. Let P = b1 − · · · − bm be a path decomposition of H of width pw(H).
For 1 6 i 6 m we define first(bi) to be the set of all v ∈ bi such that bi is
the first bag containing v (this set can be empty). Let vi be any ordering on
first(bi). Consider the ordering v ··= v1 . . .vmv′, where v′ is any ordering of the
remaining vertices of H (i.e., those that do not appear in P because they are
not present in any hyperedge). Let n = |v| = |H|. We claim that for any 1 6
i 6 n, we have |Spliti(v, H)| 6 degree(H) × (pw(H) + 1), which clearly implies
that psw(H) 6 degree(H) × (pw(H) + 1). This is clear for vi in v′, since then
|Spliti(v, H)| = 0. Now suppose vi ∈ vj for some 1 6 j 6 m. Let e ∈ Spliti(v, H).
We will show that there exists v′ ∈ bj such that v′ ∈ e, which will imply that
|Spliti(v, H)| 6 degree(H) × (pw(H) + 1). Assume by way of contradiction that
there is no such v′. We know that e ∈ Spliti(v, H), hence there exist v−, v+ with
{v−, v+} ⊆ e and v− ∈ vj− for some j− < j and v+ ∈ vj+ for some j+ > j. But, as
P is a path decomposition of H and {v−, v+} ⊆ e, we know that v− and v+ must
appear together in a bag. Now, as bj+ is the first bag in which v+ appears, it must be
the case that v− ∈ bj+ , and therefore v− ∈ bj (otherwise the connectedness property
would be violated), which leads to a contradiction and concludes the proof.

Thanks to Lemma 4.6.5, to show Theorem 4.6.2 it suffices to show that an OBDD

for ϕ has width > 2
⌊

psw(ϕ)
(a×d)2

⌋
, which we will do in the rest of this section.

dncpi-sets. To show this lower bound, we use the technical tool of dncpi-sets
[Amarilli, Bourhis, and Senellart 2016; Amarilli 2016]. We recall the definitions here,
adapting the notation slightly. Remember that our monotone DNFs are assumed to
be minimized. Note that dncpi-sets are reminiscent of subfunction width in [Bova
and Slivovsky 2017] (see Theorem 17 in [Bova and Slivovsky 2017]), but the latter
notion is only defined for graph CNFs.

126

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Definition 4.6.7 ([Amarilli 2016, Definition 6.4.6]). Given a monotone DNF ϕ on
variables V , a disjoint non-covering prime implicant set (dncpi-set) of ϕ is a set S of
clauses of ϕ which:

• are pairwise disjoint: for any D1 6= D2 in S, we have D1 ∩D2 = ∅.

• are non-covering in the following sense: for any clause D of ϕ, if D ⊆ ⋃
S,

then D ∈ S.

The size of S is the number of clauses that it contains.
Given a variable ordering v of V , we say that v shatters a dncpi-set S if there

exists 1 6 i 6 |V | such that S ⊆ Spliti(v, H), where H is the hypergraph of ϕ. C

Observe the analogy between shattering and splitting, which we will substantiate
below. We recall the main result on dncpi-sets:

Lemma 4.6.8 ([Amarilli 2016, Lemma 6.4.7]). Let ϕ be a monotone DNF on
variables V and n ∈ N. Assume that, for every variable ordering v of V , there is
some dncpi-set S of ϕ with |S| > n, such that v shatters S. Then any OBDD for ϕ
has width > 2n.

Proof sketch. Considering the point at which the dncpi-set is shattered, the OBDD
must remember exactly the status of each clause of the set: any valuation that
satisfies a subset of these clauses gives rise to a different continuation function. This
is where we use the fact that the DNF is monotone: it ensures that we can freely
choose a valuation of the variables that do not occur in the dncpi-set without making
the formula true.

Concluding the proof. We conclude the proof of Theorem 4.6.2 by showing that
any variable ordering of the variables of a monotone DNF ϕ shatters a dncpi-set of
the right size. The formal statement is as follows:

Lemma 4.6.9. Let ϕ be a monotone DNF, H its hypergraph, and v an enumeration
of its variables. Then there is a dncpi-set S of ϕ shattered by v such that |S| >⌊

psw(H)
(arity(H)×degree(H))2

⌋
.

We prove this result in the rest of the section. Our goal is to construct a dncpi-set,
which intuitively consists of clauses that are disjoint and which do not cover another
clause. We can do so by picking clauses sufficiently “far apart”. Let the exclusion
graph of H = (V,E) be the graph on E where two edges e 6= e′ are adjacent if there
is an edge e′′ of E with which they both share a node: this is in particular the case
when e and e′ intersect as we can take e′′ := e. Formally, the exclusion graph is
GH = (E, {{e, e′} ∈ E2 | e 6= e′ ∧ ∃e′′ ∈ E, (e ∩ e′′) 6= ∅ ∧ (e′ ∩ e′′) 6= ∅}). In other
words, two hyperedges are adjacent in GH iff they are different and are at distance
at most 4 in the incidence graph of H.

Remember that an independent set in the graph GH is a subset S of E such that
no two elements of S are adjacent in GH . The definition of GH then ensures:

Lemma 4.6.10. For any monotone DNF ϕ, letting H be its hypergraph, any inde-
pendent set of the exclusion graph GH is a dncpi-set of ϕ.

127

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

Proof. The vertices of GH are clauses of ϕ by construction. Now, the elements of an
independent set S are pairwise disjoint clauses, because whenever two clauses e and
e′ intersect, then taking e′′ := e, we have that e′′ intersects both e and e′, so there is
an edge between e and e′ in the exclusion graph, so e and e′ cannot both occur in an
independent set. Now, to show why S is non-covering, assume by contradiction that
there exists a clause e′′ of ϕ which is not in S and such that e′′ ⊆ ⊔S. Remember
that ϕ has been minimized, so e′′ cannot be a strict subset of a single clause of S,
and it cannot be a clause of S by hypothesis. Hence, there must be two clauses
e 6= e′ in S such that e′′ intersects both e and e′. Thus, e′′ witnesses that there is an
edge between e and e′ in the exclusion graph, so they cannot be both part of S, a
contradiction. This concludes the proof.

In other words, our goal is to compute a large independent set of the exclusion
graph. To do this, we will use the following straightforward lemma about independent
sets:

Lemma 4.6.11. Let G = (V,E) be a graph and let V ′ ⊆ V . Then G has an
independent set S ⊆ V ′ of size at least

⌊
|V ′|

degree(G)+1

⌋
.

Proof. We construct the independent S set with the following trivial algorithm: start
with S := ∅ and, while V ′ is non-empty, pick an arbitrary vertex v in V ′, add it
to S, and remove v and all its neighbors from G. It is clear that this algorithm
terminates and add the prescribed number of vertices to S, so all that remains is to
show that S is an independent set at the end of the algorithm. This is initially true
for S = ∅; let us show that it is preserved throughout the algorithm. Assume by way
of contradiction that, at a stage of the algorithm, we add a vertex v to S and that it
stops being an independent set. This means that S contains a neighbor v′ of v which
must have been added earlier; but when we added v′ to S we have removed all its
neighbors from G, so we have removed v and we cannot add it later, a contradiction.
Hence, the algorithm is correct and the claim is shown.

Moreover, we can bound the degree of GH using the degree and arity of H:

Lemma 4.6.12. Let H be a hypergraph. Then we have degree(GH) 6 (arity(H)×
degree(H))2 − 1.

Proof. Any edge e of H contains 6 arity(H) vertices, each of which occurs in
6 degree(H) − 1 edges that are different from e, so any edge e of H intersects at
most n := arity(H) × (degree(H) − 1) edges different from e. Hence, the degree
of GH is at most n+ n2 (counting the edges that intersect e or those at distance 2
from e). Now, we have n+ n2 = n(n+ 1), and as degree(H) > 1 and arity(H) > 1
(because we assume that hypergraphs contain at least one non-empty edge), the
degree of GH is < arity(H)× degree(H)× (1 + arity(H)× (degree(H)− 1)), i.e., it
is indeed < (arity(H)× degree(H))2, which concludes.

We are now ready to conclude the proof of Lemma 4.6.9:

Proof of Lemma 4.6.9. Let ϕ be a monotone DNF, H = (V,E) its hypergraph,
and v an enumeration of its variables. By definition of pathsplitwidth, there is
vi ∈ V such that, for E ′ := Spliti(v, H), we have |E ′| > psw(H). Now, by
Lemma 4.6.11, GH has an independent set S ⊆ E ′ of size at least

⌊
|E′|

degree(GH)+1

⌋
which

128

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

is >
⌊

psw(H)
(arity(H)×degree(H))2

⌋
by Lemma 4.6.12. Hence, S is a dncpi-set by Lemma 4.6.10,

has the desired size, and is shattered since S ⊆ E ′.

Combining this result with Lemma 4.6.5 and Lemma 4.6.8 concludes the proof of
Theorem 4.6.2.

From DNFs to CNFs. We now argue that Theorem 4.6.2 also holds for monotone
CNFs. Let ϕ be a monotone CNF, a := arity(ϕ) and d := degree(ϕ), and suppose

for a contradiction that there is an OBDD O for ϕ of width < 2
⌊

pw(ϕ)
a3×d2

⌋
. Consider

the monotone DNF ϕ′ built from ϕ by replacing each ∧ by a ∨ and each ∨ by a ∧.
Now, let O′ be the OBDD built from O by replacing the label b ∈ {0, 1} of each edge
by 1− b, and replacing the label b of each leaf by 1− b. It is clear, by De Morgan’s

laws, that O′ is an OBDD for ϕ′ of size < 2
⌊

pw(ϕ)
a3×d2

⌋
, which contradicts Theorem 4.6.2

applied to monotone DNFs.

4.7 Lower Bounds on (d-)SDNNFs
In the previous section, we have shown that pathwidth measures how concisely an
OBDD can represent a monotone DNF or CNF formula with bounded degree and
arity. In this section, we move from OBDDs to (d-)SDNNFs, and show that treewidth
plays a similar role to pathwidth in this setting. Formally, we show the following
analogue of Theorem 4.6.2:

Theorem 4.7.1. Let ϕ be a monotone DNF (resp., monotone CNF), let a :=
arity(ϕ) and d := degree(ϕ). Then any d-SDNNF (resp., SDNNF) for ϕ has size

> 2
⌊

tw(ϕ)
3×a3×d2

⌋
− 1.

Combined with Theorem 4.3.2 (or with existing results specific to CNF formulas
such as [Bova and Slivovsky 2015, Corollary 1]), this yields an analogue of Corol-
lary 4.6.3. However, its statement is less neat: unlike OBDDs, (d-)SDNNFs have no
obvious notion of width, so the lower bound above refers to size rather than width,
and it does not exactly match our upper bound. We obtain:

Corollary 4.7.2. For any constant c, for any monotone DNF (resp., monotone
CNF) ϕ with arity and degree bounded by c, there is a d-SDNNF for ϕ having size
|ϕ| × 2O(tw(ϕ)), and any d-SDNNF (resp., SDNNF) for ϕ has size 2Ω(tw(ϕ)).

Our proof of Theorem 4.7.1 will follow the same overall structure as in the previous
section. We first present the proof for monotone DNFs and d-DNNFs in Section 4.7.1,
then we extend the result to monotone CNFs and SDNNFs in Section 4.7.2.

4.7.1 Monotone DNFs and d-SDNNFs
Recall that d-SDNNFs are structured by v-trees, which generalize variable orders.
We first introduce treesplitwidth, a width notion that measures the performance of
a v-tree by counting how many clauses it splits; and we connect treesplitwidth to
treewidth. We use again dncpi-sets, and argue that a d-SDNNF structured by a
v-tree must shatter a dncpi-set whose size follows the treesplitwidth of the v-tree. We

129

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

then show that shattering a dncpi-set forces d-SDNNFs to be large: instead of the
easy OBDD result of the previous section (Lemma 4.6.8), we will need a much deeper
result of Pipatsrisawat and Darwiche, rephrased in the setting of communication
complexity by Bova, Capelli, Mengel, and Slivovsky, presented in [Pipatsrisawat
and Darwiche 2010, Theorem 3] and in [Bova, Capelli, Mengel, and Slivovsky 2016].
Note that [Bova, Capelli, Mengel, and Slivovsky 2016], by a similar approach, shows
an exponential lower bound on the size of d-SDNNF which is reminiscent of ours.
However, their bound again applies to one well-chosen family of Boolean functions;
our contribution is to show a general lower bound. In essence, our result is shown by
observing that the family of functions used in their lower bound occurs “within” any
bounded-degree, bounded-arity monotone DNF. Also note that a result similar to
the lower bound of Corollary 4.7.2 is proven by Capelli in his thesis [Capelli 2016,
Corollary 6.35] as an auxiliary statement to separate structured DNNFs and FBDDs.
The result uses MIM-width, but Theorem 4.2.5 of [Vatshelle 2012], as degree and
arity are bounded, implies that we could rephrase it to treewidth; further, the result
assumes arity-2 formulas, but it could be extended to arbitrary arity as in [Capelli
2017, Theorem 12]. More importantly, the result applies only to monotone CNFs
and not to DNFs .

Treesplitwidth. Informally, treesplitwidth is to v-trees what pathsplitwidth is to
variable orders: it bounds the “best performance” of any v-tree.

Definition 4.7.3. Let H = (V,E) be a hypergraph, and T be a v-tree over V . For
any node n of T , we define Splitn(T,H) as the set of hyperedges e of H that contain
both a variable in Tn and one outside Tn (recall that Tn denotes the subtree of T
rooted at n). Formally Splitn(T,H) is defined as the following set of hyperedges:

{e ∈ E | ∃vi ∈ Leaves(Tn) and ∃vo ∈ Leaves(T \ Tn) such that {vi, vo} ⊆ e}

The treesplitwidth of T relative to H is tsw(T,H) := maxn∈T |Splitn(T,H)|. The
treesplitwidth tsw(H) of H is then the minimum of tsw(T,H) over all v-trees T
of V . C

Again, the treesplitwidth ofH is exactly the branch-width [Robertson and Seymour
1991] of the dual hypergraph of H, but treesplitwidth is more convenient for our
proofs. As with pathsplitwidth and pathwidth (Lemma 4.6.5), we can bound the
treewidth of a hypergraph by its treesplitwidth:

Lemma 4.7.4. For any hypergraph H = (V,E), we have tw(H) 6 3× arity(H)×
tsw(H).

Proof. Let H = (V,E) be a hypergraph, and T a v-tree over V witnessing that H
has treesplitwidth tsw(H). We will construct a tree decomposition T ′ of H of width
6 3× arity(H)× tsw(H). The skeleton of T ′ is the same as that of T . Now, for each
node n ∈ T , we call bn the corresponding bag of T ′, and we define the labeling λ(bn)
of bn.

If n is an internal node of T with children nl, nr (recall that v-trees are assumed to
be binary), then we define λ(bn) := ⋃ Splitn(T,H)∪⋃ Splitnl(T,H)∪⋃ Splitnr(T,H),
and if n is a variable v ∈ V (i.e., n is a leaf of T) then λ(bn) := {v}. It is clear that
the width of P is 6 max(3× arity(H)× tsw(H), 1)− 1 6 3× arity(H)× tsw(H).

130

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

The occurrence condition is verified: let e be an edge of H. If e is a singleton
edge {v} then it is included in bv. If |e| > 2 then there must exists a node n ∈ T such
that e ∈ Splitn(T,H). If n is an internal node of T then e ⊆ ⋃ Splitn(T,H) ⊆ bn,
and if n is a leaf node of T then it must have a parent p (since e is split), and
e ⊆ ⋃ Splitn(T,H) ⊆ bp.

Connectedness is proved in the same way as in the proof of Lemma 4.6.5: for
a given vertex v ∈ V , the nodes of T where each edge e containing v is split is
a connected subtree of T without its root node: more precisely, they are all the
ancestors of a leaf in e strictly lower than their the least common ancestor. Adding
the missing root to each such subtree and unioning them all will result in the subtree
of all ancestors of a vertex adjacent to v (included v itself) up to their least common
ancestor a. Consequently, the set of nodes of T ′ containing v is a connected subtree
of T ′, rooted in ba.

Moreover, using the same techniques that we used in the last section, we can show
the analogue of Lemma 4.6.9. Specifically, given a monotone DNF ϕ on variables
V , a v-tree T over V , and a dncpi-set S of ϕ, we say that T shatters S if there is a
node n in T such that S ⊆ Splitn(T, ϕ). We now show that any v-tree over V must
shatter a large dncpi-set (depending on the treewidth, degree, and arity):
Lemma 4.7.5. Let ϕ be a monotone DNF, H its hypergraph, and T be a v-tree
over its variables. Then there is a dncpi-set S of ϕ shattered by T such that |S| >⌊

tsw(H)
(arity(H)×degree(H))2

⌋
.

Proof. The proof is just like that of Lemma 4.6.9, except with the new definition of
split on v-trees. In particular, we use Lemmas 4.6.10, 4.6.11, and 4.6.12.

Hence, to prove Theorem 4.7.1, the only missing ingredient is a lower bound on
the size of d-SDNNFs that shatter large dncpi-sets. Specifically, we need an analogue
of Lemma 4.6.8:
Lemma 4.7.6. Let ϕ be a monotone DNF on variables V and n ∈ N. Assume that,
for every v-tree T over V , there is some dncpi-set S of ϕ with |S| > n, such that T
shatters S. Then any d-SDNNF for ϕ has size > 2n − 1.

We will prove Lemma 4.7.6 in the rest of this section using a recent lower bound
in [Bova, Capelli, Mengel, and Slivovsky 2016]. They bound the size of any d-SDNNF
for the set intersection function, defined as SINTn ··= (x1 ∧ y1)∨ . . .∨ (xn ∧ yn). This
bound is useful for us: a dncpi-set intuitively isolates some variables on which ϕ
computes exactly SINTn:
Lemma 4.7.7. Let ϕ be a DNF with variables V , and let S = {D1, . . . , Dn} be a
dncpi-set of ϕ where every clause has size > 2. Pick two variables xi 6= yi in Di for
each 1 6 i 6 n, and let V ′ := {x1, y1, . . . , xn, yn}. Then there is a partial valuation
ν of V with domain V \ V ′ such that ν(ϕ) = SINTn.
Proof. Define the following partial valuation ν : V \ V ′ → {0, 1} that maps all the
variables of ⋃i=1,...,n(Di \ {xi, yi}) to 1 and all the other variables of V \ ⋃S to 0.
Let us show that for a clause D ∈ ϕ \ S we have ν(D) = 0. Otherwise, as all the
variables that ν maps to 1 are in ⋃i=1,...,nXi ∪ Yi, we should have D ⊆ ⋃

S, but
because S is a dncpi-set we should have D ∈ S which is a contradiction. Now, ν
maps all the variables of Di \ {xi, yi} to 1, hence ν(ϕ) indeed captures SINTn. Note
that this result relies on monotonicity, and on the fact that ϕ is a DNF.

131

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

This observation allows us to leverage the bound of [Bova, Capelli, Mengel, and
Slivovsky 2016] on the size of d-SDNNFs that compute SINTn, assuming that they
are structured by an “inconvenient” v-tree:

Proposition 4.7.8 ([Bova, Capelli, Mengel, and Slivovsky 2016, Proposition 14]).
Let Xn = {x1, . . . , xn} and Yn = {y1, . . . , yn} for n ∈ N, and let T be a v-tree
over Xn t Yn such that there exists a node n ∈ T with Xn ⊆ Leaves(Tn) and
Yn ⊆ Leaves(T \Tn). Then any d-SDNNF structured by T computing SINTn has size
> 2n − 1.

In our setting, an “inconvenient” v-tree for a dncpi-set is one that shatters it:
each clause of the dncpi-set is then partitioned in two non-empty subsets where we
can pick xi and yi for Lemma 4.7.7. We can then prove Lemma 4.7.6:

Proof of Lemma 4.7.6. Let C be a d-SDNNF structured by a v-tree T that captures
ϕ. Consider the dncpi-set S = {D1, . . . , Dm} of size > n of ϕ that is shattered
by T (note that this implies in particular that every clause contains at least two
variables). Consider the node u of T which witnesses this. We can write each clause
Di of S as Xi t Yi, where Xi is Di ∩ Leaves(T \ Tu) and Yi is Di ∩ Leaves(Tu). Then
according to Lemma 4.7.7, there exists a valuation ν of the variables of ϕ with
domain V \ {x1, y1, . . . , xm, ym}, where xi ∈ Xi and yi ∈ Yi for 1 6 i 6 m, such
that ν(ϕ) captures the Boolean function SINTm, hence we know that ν(C) also
captures SINTm. But by Proposition 4.7.8, we have |ν(C)| > 2m− 1 > 2n− 1, hence
|C| > 2n − 1.

This concludes the proof of Theorem 4.7.1 (in the DNF case).

4.7.2 From DNFs to CNFs
We now argue that Theorem 4.7.1 also holds for monotone CNFs and SDNNFs. Note
that we cannot use a dualization argument as we did in the previous section, as
we are now working with DNNFs that are not necessarily deterministic. Observe
that Definition 4.6.7 and Lemma 4.7.5 can also apply to monotone CNFs as these
only use the hypergraph corresponding to the formula, not the semantics of the
formula. Hence, in order to apply the same arguments as in the DNF case and
prove an analogue of Lemma 4.7.6 in the CNF case, the only difference is that we
would need to consider the function fn ··= (x1 ∨ y1) ∧ . . . ∧ (xn ∨ yn) and obtain
analogues of Lemma 4.7.7 and Proposition 4.7.8 for that function. This is clear for
Lemma 4.7.7, so we only need to check that the analogue of Proposition 4.7.8 holds.
To understand why, we need to go deeper into the proof from [Bova, Capelli, Mengel,
and Slivovsky 2016]. They paraphrase a result of [Pipatsrisawat and Darwiche 2010]
in the following way:

Theorem 4.7.9 ([Bova, Capelli, Mengel, and Slivovsky 2016, Theorem 13] and
[Pipatsrisawat and Darwiche 2010, Theorem 3]). Let C be a SDNNF on variables V
structured by a v-tree T , and let f be the function that it captures. For every
node n ∈ T , the function f has a rectangle cover of size 6 |C| with partition
(V ∩ Leaves(Tn), V ∩ Leaves(T \ Tn)).

132

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Here, a rectangle cover of a Boolean function f : X t Y → {0, 1} with partition
(X, Y) is a disjunction

m∨
i=1

(gi(X) ∧ hi(Y)) equivalent to f such that gi (resp., hi) is
a Boolean function on variables X (resp., on variables Y), and m is its size. This
notion is a standard tool for showing lower bounds in communication complexity.
Therefore, we are interested in the smallest size of a rectangle cover for the function
fn : X tY 7→ (x1 ∨ y1)∧ . . .∧ (xn ∨ yn) under partition (X, Y). But it is known from
communication complexity that any rectangle cover for the function set disjunction
SDISJn : X t Y 7→ (¬x1 ∨ ¬y1) ∧ . . . ∧ (¬xn ∨ ¬yn) has size > 2n (see paragraph
“Fooling set method”, page 5 of [Sherstov 2014]). Moreover, it is easy to see that we
can turn any rectangle cover of size m for fn with partition (X, Y) into a rectangle
cover for SDISJn of the same size and under the same partition, which implies that
any such cover for fn must be of size at least > 2n and concludes the proof of
Theorem 4.7.1 for CNFs and SDNNFs. Indeed, let

m∨
i=1

(gi(X) ∧ hi(Y)) be a rectangle
cover for fn with partition (X, Y). When ν is a Boolean valuation from S to {0, 1},
let us write ν for the Boolean valuation from S to {0, 1} defined by ν(s) := 1− ν(s)
for s ∈ S. We then define gi for 1 6 i 6 n (resp., hi) to be the Boolean function
from X (resp., Y) to {0, 1} defined by gi(ν) := gi(ν) for all valuations ν : X → {0, 1}
(resp., hi(ν) := hi(ν)). One can then check that

m∨
i=1

(gi(X) ∧ hi(Y)) is a rectangle
cover for SDISJn of size m with partition (X, Y).

Hence, we have shown that, up to constant factors in the arity and degree of a
DNF (resp., CNF) ϕ, any equivalent d-SDNNF (resp., SDNNF) must have size at
least exponential in the treewidth of ϕ, thus generalizing our lower bound on OBDDs
from Section 4.6. We will now use our lower bound on d-SDNNF in the context of
lineage representation.

4.8 Application to Query Lineages
In this section, we adapt the lower bound of the previous section to the computation
of query lineages on relational instances. Like in [Amarilli, Bourhis, and Senellart
2016], for technical reasons, we must assume a graph signature. We first recall some
preliminaries and then state our result.

Preliminaries. We consider σ-instances, where σ is a fixed arity-2 relational
signature, i.e., a relational signature whose relations all have arities in {1, 2}, and
with at least one relation of arity 2.

Recall from Section 1.2 the definition of unions of conjunctive queries with
disequalities (UCQ6=). We say that a UCQ 6= is connected if the Gaifman graph of
each disjunct (seen as an instance, and ignoring 6=-atoms) is connected. For instance,
letting σR consist of one arity-2 relation R, the following connected UCQ6= tests if
there are two facts that share one element: Qp : ∃xyz (R(x, y)∨R(y, x)))∧ (R(y, z)∨
R(z, y))∧ x 6= z. While Qp is not given as a disjunction of CQ6=s, it can be rewritten
to one using distributivity, as follows:

Qp : (∃xyz R(x, y) ∧R(y, z) ∧ x 6= z)
∨(∃xyz R(x, y) ∧R(z, y) ∧ x 6= z)
∨(∃xyz R(y, x) ∧R(y, z) ∧ x 6= z)

133

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

We then see that Qp is connected.

Problem statement. We study when query lineages can be computed efficiently
in data complexity. A first question asks which queries have tractable lineages on all
instances: Jha and Suciu showed that inversion-free UCQ6= queries admit OBDD
representations in this sense [Jha and Suciu 2012, Theorem 3.9], and Bova and
Szeider have recently shown that UCQ6= queries with inversions do not even have
tractable d-SDNNF lineages [Bova and Szeider 2017, Theorem 5]. A second question
asks which instance classes ensure that all queries have tractable lineages on them.
This was studied for OBDD representations in [Amarilli, Bourhis, and Senellart
2016]: bounded-treewidth instances have tractable OBDD lineage representations for
any MSO query ([Amarilli, Bourhis, and Senellart 2016, Theorem 6.5], using [Jha
and Suciu 2012]); conversely there are intricate queries (a class of connected UCQ6=
queries) whose lineages never have tractable OBDD representations in the instance
treewidth [Amarilli, Bourhis, and Senellart 2016, Theorem 8.7]. The idea behind
intricate queries is that the treewidth of their lineage (as a DNF) cannot be lower
than the treewidth of the instances (under some conditions, that we will explain
latter in the proof). We recall here the definition of an intricate connected UCQ6=.
For this, we will need the notion of a line instance:

Definition 4.8.1 ([Amarilli, Bourhis, and Senellart 2016, Definition 8.4]). A line
instance is an instance I of the following form: a domain a1, . . . , an, and, for 1 6 i < n,
one single binary fact between ai and ai+1: either R(ai, ai+1) or R(ai+1, ai) for some
binary R ∈ σ (Recall that σ includes at least one binary relation.) C

Definition 4.8.2 ([Amarilli, Bourhis, and Senellart 2016, Definition 8.5]). A con-
nected UCQ6= Q is intricate if, for every line instance I with |I| = 2|Q|+ 2, letting F
and F ′ be the two facts of I incident to the middle element an+2, there is a minimal
match of Q on I that includes both F and F ′. C

Here, by a minimal match of a UCQ6= Q, we mean a subinstance I ′ of I that
satisfies Q and that is minimal by inclusion. The query Qp above is an example of
an intricate query on the signature σR. Amarilli, Bourhis, and Senellart then showed
the following:

Theorem 4.8.3 ([Amarilli, Bourhis, and Senellart 2016, Lemma 8.2] and [Amarilli,
Bourhis, and Senellart 2016, Theorem 8.7]). There is a constant d ∈ N such that the
following is true. Let σ be an arity-2 signature, and Q a connected UCQ6= which is
intricate on σ. For any instance I on σ, any OBDD representing the lineage of Q
on I has size 2Ω(tw(I)1/d).

This result shows that we must bound instance treewidth for intricate queries
to have tractable OBDDs, but leaves the question open for more expressive lineage
representations.

Result. Our bound in the previous section allows us to extend Theorem 4.8.3 from
OBDDs to d-SDNNFs, yielding the following:

Theorem 4.8.4. There is a constant d ∈ N such that the following is true. Let σ
be an arity-2 signature, and Q a connected UCQ6= which is intricate on σ. For any
instance I on σ, any d-SDNNF representing the lineage of Q on I has size 2Ω(tw(I)1/d).

134

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Hence, given an instance family I satisfying the constructibility requirement
of Theorem 8.1 of [Amarilli, Bourhis, and Senellart 2016], there are two regimes:
(i.) I has bounded treewidth and then all MSO queries have d-SDNNF lineages on
instances of I that are computable in linear time; or (ii.) the treewidth is unbounded
and then there are UCQ6= queries (the intricate ones) whose lineages on instances
of I have no d-SDNNF representations polynomial in the instance size.

We prove Theorem 4.8.4 in the rest of this section. We will need the notion of a
topological minor of an undirected graph:

Definition 4.8.5. An embedding of an undirected graph H in a (undirected) graph
G is an injective mapping f from the vertices of H to the vertices of G and a
mapping g that maps the edges {u, v} of H to paths in G from f(u) to f(v), all
paths being vertex-disjoint. A graph H is a topological minor of a graph G if there
is an embedding of H in G. C

We also recall that a graph is degree-3 if each vertex has at most 3 adjacent
neighbors. Because the proof of Theorem 4.8.4 is quite technical, we first want to
give a high-level intuition of how it works:

Proof sketch. As in [Amarilli, Bourhis, and Senellart 2016], we use a result of [Chekuri
and Chuzhoy 2014] to show that the Gaifman graph of I has a degree-3 topological
minor S of treewidth Ω(tw(I)1/d) for some constant d ∈ N; we also ensure that S
has sufficiently high girth relative to Q. We focus on a subinstance I ′ of I that
corresponds to S: this suffices to show our lower bound, because we can always
compute a tractable representation of ϕ(Q, I ′) from one of ϕ(Q, I). Now, we can
represent ϕ(Q, I ′) as a minimized DNF ψ by enumerating its minimal matches: ψ has
constant arity because the number of atoms of Q is fixed, and it has constant degree
because S has constant degree and Q is connected. Further, as Q is intricate and I ′
has high girth relative to Q, we can ensure that this DNF has treewidth Ω(tw(I ′)).
We conclude by Theorem 4.7.1: all d-SDNNFs representing ϕ(Q, I ′), hence ϕ(Q, I),
have size 2Ω(tw(I)1/d).

We are now ready to formally prove Theorem 4.8.4. We will use the restatement
of the main result of [Chekuri and Chuzhoy 2014] given in [Amarilli, Bourhis, and
Senellart 2016] (where a degree-3 graph is one where the maximal degree is 3):

Lemma 4.8.6 ([Chekuri and Chuzhoy 2014], rephrased as [Amarilli, Bourhis, and
Senellart 2016, Lemma 4.4]). There is c ∈ N such that, for any degree-3 planar graph
H, for any graph G of treewidth > |V (H)|c, H is a topological minor of G.

We set d := 2c, where c is given as in Lemma 4.8.6. Fix the arity-2 signature σ
and the intricate query Q. As σ is nonempty, the tautological and vacuous UCQ 6=
queries are not intricate, so we can assume that Q is not trivial in this sense. We
denote by |Q| the number of atoms of Q.

We now define the class of subgraphs that we wish to extract. Recall that
the girth of an undirected graph is defined as the length of the shortest simple
cycle in the graph (or ∞ if the graph is acyclic). Let us define an infinite family
S = S2, . . . , Sn, . . . of graphs to extract, such that, for each i ∈ N, the graph Si has:

1. maximal degree 3;

135

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

2. treewidth i;

3. 6 α× i2 vertices for some constant α > 1 depending only on Q;

4. no vertex of degree 1;

5. girth > 2 |Q|+ 2;

We can define each Si by starting, for instance, with a wall graph [Dragan, Fomin,
and Golovach 2011], to satisfy the first three conditions (for some fixed α). We then
iteratively remove all vertices of degree 1, which does not impact treewidth since:

• Treewidth cannot increase when we do this;

• The graph cannot become empty (because its initial treewidth is > 2, so it has
a cycle, which will never be removed);

• Treewidth cannot decrease either. Indeed, if we consider a graph G and the
resultG′ of removing one vertex v of degree 1 inG, given a tree decomposition T ′
of G′, we can construct a tree decomposition T of G by adding one bag with v
and its one incident vertex w, and connecting it to a bag containing w in T ′
(if one exists; we connect it arbitrarily otherwise); the result is clearly a tree
decomposition of G, and the width is unchanged because the maximal bag size
in T ′ is > 2 (since G′ is non-empty by the previous bullet point).

Hence, the graph obtained when we have removed all vertices of degree 1 satisfies
requirements 1–4. Last, we subdivide each edge into a path of length 2 |Q|+ 3 to
ensure that the girth condition is respected: this satisfies requirement 5, does not
affect requirements 1–2 or 4, and requirement 3 is still satisfied up to multiplying α
by 3× (2 |Q|+ 2) + 1 (each path replacing an edge introduces (2 |Q|+ 2) new vertices,
and since the graph is degree-3, an upper bound on the number of edges is three
times the number of vertices).

We now make explicit the function hidden in the Ω-notation in the exponent of
the bound that we wish to show in the statement of Theorem 4.8.4. This function
will only depend on Q. Define the increasing function f : k 7→ 1

α
k1/d, and let k0 ∈ N

be the smallest value of k such that f(k) > 2. We will show that the size of a
d-SDNNF for an input instance I is > 2βf(tw(I)) when tw(I) is large enough, for some
constant β > 0 to be defined later, depending only on Q. This means indeed that
βf(tw(I)) is in Ω(tw(I)1/d). We assume tw(I) > k0 (and thus f(k) > 2) in what
follows.

Let I be the input instance on σ, let G be the Gaifman graph of I, and let
k := tw(I) = tw(G). Let k′ := bf(k)c, and consider Sk′ , which is well-defined
because k′ is an integer which is > 2. We know that the number nk′ of vertices of Sk′
is such that nk′ 6 αk′2, hence we have nk′ 6 k1/c, so the treewidth k of G is > nck′ .
Hence, we know by Lemma 4.8.6 that Sk′ is a topological minor of G. Let G′ be the
subgraph of G corresponding to this topological minor: it is a subgraph of G, and a
subdivision of Sk′ .

We will extract a corresponding subinstance I ′ of I whose Gaifman graph is G′.
For simplicity, we will ensure that I ′ is Gaifman-tight. An instance I0 is Gaifman-
tight if two conditions hold: first, letting G0 be the Gaifman graph of I0, for each
edge {a, b} of G0, there is exactly one fact of I0 containing a and b (hence, of the

136

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

form R(a, b) or R(b, a), with a 6= b); second, every fact of I0 is a binary fact with
two distinct elements (of the form R(c, d) with c 6= d). Intuitively, an instance is
Gaifman-tight if it is exactly obtained from its Gaifman graph by choosing one
relation name and orientation for each edge of the Gaifman graph.

We define a Gaifman-tight subinstance I ′ of I with Gaifman graph G′ by keeping,
for every edge {a, b} of G′, exactly one binary fact of I containing the two elements
a and b (which must exist by definition of the Gaifman graph). By construction, the
Gaifman graph of I ′ is then G′. Hence, we know the following about the subinstance
I ′ of I and its Gaifman graph G′ (the numbering of this list follows the list of
conditions on S):

1. For every element a of I ′, there are at most 3 facts where a occurs (because G′
has maximal degree 3).

2. The treewidth of I ′ is k′.

3. (N/A: There is no analogue of the requirement 3 imposed on S)

4. There are no vertices of degree 1 in G′.

5. The girth of G′ is > 2 |Q| + 2 (because as a subdivision of Sk′ its girth is at
least that of Sk′).

6. I ′ is Gaifman-tight.

We will now define a DNF representation of ϕ(Q, I ′). Remember that Q is a
UCQ6=, so it is monotone, hence we can define ϕ(Q, I ′) to be a monotone DNF. As Q
is not trivial, ϕ(Q, I ′) will contain at least one nonempty clause. Further, the DNF
can be computed as a minimized DNF by taking the disjunction of conjunctions that
stand for each minimal match of Q in I ′. The following is then easy to see (and this
monotone DNF representation is clearly unique):

ϕ(Q, I ′) :=
∨

M minimal
match of Q

in I′

∧
F∈M

F

Let H be the hypergraph of this DNF. To be able to usefully apply Theorem 4.7.1,
we must show that the arity and degree ofH are constant, and that tw(H) is Ω(tw(I ′)).
We first show the first claim. The arity of H is clearly bounded from above by the
size of a minimal match of Q in I ′, whose size is clearly bounded from above by |Q|,
which is constant. As for the degree of H, as Q is a connected query, any minimal
match of Q on I ′ involving some fact F must be contained in the subinstance of I ′
induced by the ball of radius |Q| centered around the elements of F in G′: as the
degree of G′ is at most 3, this ball has constant size, so, as σ is fixed, F can only
occur in constantly many different matches, and the degree is constant. We now
show that tw(H) is Ω(tw(I ′)): we show this in the following lemma, which captures
the essence of intricate queries (namely: under some conditions, their lineage never
has lower treewidth than the input instance):

Lemma 4.8.7. Let σ be an arity-2 signature, let Q be a connected UCQ 6= which is
intricate for σ, and let I ′ be a Gaifman-tight instance on σ whose Gaifman graph
has no degree-1 vertex and has girth > 2 |Q|+ 2. Then, letting H be the hypergraph
of the monotone DNF representing ϕ(Q, I ′), we have tw(H) >

⌊
tw(I′)

2

⌋
.

137

CHAPTER 4. FROM CYCLUITS TO d-DNNFs AND LOWER BOUNDS

Let us conclude the proof of Theorem 4.8.4 using Lemma 4.8.7, and show
Lemma 4.8.7 afterwards. As the arity and degree of H are bounded by constants, by
Theorem 4.7.1, we know that any d-SDNNF for ϕ(Q, I ′) has size > 2β′tw(H) for some
constant β′ > 0 (depending only on the arity and degree bounds on I ′ given above,
which depend only on Q), which by Lemma 4.8.7 is > 2βtw(I′) for a different constant
β > 0 and tw(I ′) large enough. By definition of Sk′ , we obtain the lower bound of
2βf(k) for k large enough. Now, to conclude, we must show that this lower bound
also applies to any d-SDNNF for ϕ(Q, I). But it is clear that, from any d-SDNNF
C for ϕ(Q, I), we can obtain a d-SDNNF C ′ for ϕ(Q, I ′) which is no larger than C
(structured by a v-tree obtained from that of C), simply by evaluating to 0 all inputs
corresponding to facts of I \ I ′. Hence, the lower bound also applies to a d-SDNNF
for ϕ(Q, I), establishing the result of Theorem 4.8.4.

All that remains is to show Lemma 4.8.7. Let us fix the graph signature σ, the
connected UCQ6= Q which is intricate for σ, and the instance I ′ on σ satisfying the
conditions. We say that two different facts R(a, b) and S(c, d) of I ′ touch if they
share an element, formally, |{a, b} ∩ {c, d}| = 1: as I ′ is Gaifman-tight, remember
that we must have a 6= b, c 6= d, and {a, b} 6= {c, d}. The key for Lemma 4.8.7 is
then captured in the following auxiliary claim:

Claim 4.8.8. Let F and F ′ be two facts of I ′ that touch. Then there is a minimal
match M of Q such that {F, F ′} ⊆M .

Proof. Let G be the Gaifman graph of I ′. Consider the two edges e and e′ standing
for F and F ′ in G: these edges are incident in G, so we write without loss of generality
e = {u, v} and e′ = {v, w}. Fix n := |Q|. Define a path π = uu1 . . . un in G of |Q|
edges by exploring G from u: initially we are at u and call v the predecessor vertex,
and whenever we reach some vertex x, we visit a neighbor of x which is different
from the predecessor of x, and set x to be the new predecessor. Such a path exists,
because this exploration can only get stuck on a vertex of degree 1 (i.e., a vertex that
we cannot exit except by going back on its predecessor), and this cannot happen by
our assumption that G has no vertex of degree 1. We define a path π′ = ww1 . . . wn
in G of |Q| edges by exploring from w with predecessor v in the same way. Now, we
consider the path ρ obtained by concatenating the reverse of π, e, e′, and π′, namely:
ρ : un, . . . , u1, u, v, w, w1, . . . , wn. We claim that this path is a simple path, i.e., no
two vertices in the path are the same. Indeed, by definition, no two consecutive
vertices can be the same in π, in π′, or in u, v, w. Further, two vertices separated by
one single vertex cannot be the same: this is the case in π and π′ because we do not
go back to the predecessor vertex in the exploration, and initially we do not go back
on v: and for u and w we know that they are different because F and F ′ touch and I ′
is Gaifman-tight. Last, two vertices further apart in ρ cannot be equal, because
otherwise the path ρ would contain a simple cycle of G, which would contradict the
hypothesis on the girth of G.

Hence, ρ is a simple path of the Gaifman graph G of I ′. Consider the sequence of
facts L of I ′ that witness the existence of each edge of ρ, which is unique because I ′ is
Gaifman-tight; in particular we choose F and F ′ as witnesses for e and e′. Recall now
the definition of a line instance, and of a UCQ6= Q being intricate (Definitions 4.8.1
and 4.8.2). The sequence of facts L is a line instance, with |L| = 2 |Q| + 2, and
the two facts incident to the middle element are F and F ′. Hence, the definition of

138

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

intricate queries ensures that there is a minimal match M of Q on L that includes
both F and F ′. As L is a subinstance of I ′, the match M is still a match of Q on I ′,
and it is still minimal, because any match M ′ ⊆M would also satisfy M ′ ⊆ L and
contradict the minimality of M on L. Hence, M is the desired minimal match, which
concludes the proof.

We are now ready to prove Lemma 4.8.7 from Claim 4.8.8, which is the only
missing part of the proof of Theorem 4.8.4:

Proof of Lemma 4.8.7. Fix σ, Q, and I ′, consider the monotone DNF representation
of ϕ(Q, I ′) and its hypergraph H. To show the desired inequality, it suffices to show
that, from a tree decomposition T of H where the maximal bag size is k, we can
construct a tree decomposition T ′ of I ′ whose maximal bag size is no greater than 2k.
Let T be a tree decomposition of H, and construct T ′ to have same skeleton as T .
We define the labeling λ(b′) of every bag b′ of T ′ to be the set of vertices occurring in
the label λ(b) of the corresponding bag b of T (which consists of variables of ϕ(Q, I ′),
hence of facts of I ′): this clearly satisfies the size requirements. We must now show
that T ′ is a tree decomposition of I ′.

To show the occurrence requirement, we must show that for every fact F of I ′,
there is a bag of T ′ containing its two elements. To show this, it suffices to show
that there is a bag of T that contains F (as a vertex of H). As the Gaifman graph
of I ′ has no vertex of degree 1, there must be a fact F ′ of I ′ that touches F , and we
can conclude using a consequence of Claim 4.8.8: F must occur in a minimal match
of Q on I ′ (together with F ′, but we do not use this), hence it occurs in a clause
of ϕ(Q, I ′), and the occurrence requirement on T ensures that F occurs in a bag
of T .

To show the connectedness requirement, pick an element a of I ′. Its occurrences
in T ′ are the union of the occurrences in T of the facts that contain a, which are
connected subtrees of T by the connectedness requirement of T . Hence, it suffices
to show that their union is connected. To do this, let us show that for any two
facts F and F ′ that contain a, then the subtrees TF and TF ′ of their occurrences
in T necessarily intersect. This is trivial if F = F ′; now, if F 6= F ′, since I ′ is
Gaifman-tight, the facts F and F ′ must touch in I ′ (they cannot share exactly the
same elements). Now, we use Claim 4.8.8 to conclude that F and F ′ occur together
in a minimal match M of Q on I ′. Hence, there is a clause of ϕ(Q, I ′) which contains
both F and F ′, which ensures that F and F ′ occur together in a bag of T , so TF
and TF ′ intersect. This shows that T ′ is indeed a tree decomposition of I ′, which
concludes the proof.

Conclusion. This concludes the proof of Theorem 4.8.4 and the presentation of
our work in Chapter 4 on the connections between width-based and structure-based
circuits classes of knowledge compilation. Specifically, we have seen how to efficiently
convert bounded-treewidth Boolean circuits to d-SDNNF and were able to use this
result for PQE of CFG-Datalog. We have also shown lower bounds on knowledge
compilation formalisms and applied these to point to the limits of the intensional
approach for PQE.

139

Conclusion and Perspectives

In this chapter we first give a summary of our contributions, then present a brief
overwiew of open questions left open by our work, and finally give general perspectives
about our thesis.

Summary
In this thesis, we have investigated questions related to the combined complexity
of the probabilistic query evaluation problem. We have explored three major axes:
(i) the combined complexity of the probabilistic graph homomorphism problem, which
can be seen as PQE of conjunctive queries on arity-two tuple independent databases,
(ii) the combined complexity of evaluating CFG-Datalog of bounded body size
on bounded treewidth (non-probabilistic) databases, (iii) the connections between
width-based and structure-based representations of Boolean functions in knowledge
compilation, and their applications to PQE. Unrelated to combined complexity and
not presented in this thesis, I have also studied the compilation of safe queries to
deterministic decomposable circuits (this work was published in AMW’2018 [Monet
and Olteanu 2018]).

Probabilistic graph homomorphism. In Chapter 2 we have introduced the
probabilistic graph homomorphism problem, also known in the database community
as probabilistic evaluation of conjunctive queries on TID instances, and studied its
combined complexity for various restricted classes of query and instance graphs. Our
classes illustrate the impact on PHom of various features: acyclicity, two-wayness,
branching, connectedness, and labeling. As we show, the landscape is already quite
enigmatic, even for those seemingly restricted classes. In particular, we have identified
four incomparable maximal tractable cases, reflecting various trade-offs between the
expressiveness that we can allow in the queries and in the instances:

• arbitrary queries on unlabeled downward trees (Proposition 2.3.6);

• one-way path queries on labeled downward trees (Proposition 2.4.9);

• connected queries on two-way labeled path instances (Proposition 2.4.10);

• downward tree queries on unlabeled polytrees (Proposition 2.5.3).

These results all extend to disconnected instances, as shown in Section 2.3.3. The
tractability border is described in Tables 2.1 page 39, 2.2 page 43, and 2.3 page 51.
In particular, our tractability results are essentially always about paths, i.e., when
the instance or the query is a path, or can be converted to a path. Our proofs
appeal to various seemingly unrelated notions (e.g., β-acyclic lineages, tree automata
techniques, graded DAGS, etc.), and we wonder if one could develop a general theory
to better unify our framework.

141

CONCLUSION AND PERSPECTIVES

CFG-Datalog on treelike instances. In Chapter 3, we introduced CFG-Datalog,
a stratified Datalog fragment whose evaluation and provenance computation has
FPT-linear complexity when parameterized by instance treewidth and program body
size. For the case of conjunctive queries, we showed that bounding their treewidth
is not the right way to ensure FPT translatability to automata, and we introduced
the class of bounded-simplicial-width conjunctive queries, which solves this problem.
CFG-Datalog can be understood as an extension of this fragment to disjunction,
clique-guardedness, stratified negation, and inflationary fixpoints, that preserves
tractability.

The complexity result is obtained via compilation to a variant of alternating
two-way automata, and via the computation of a provenance representation in the
form of stratified cycluits, a generalization of provenance circuits that we hope to be
of independent interest. Our results captures the tractability of such query classes
as two-way regular path queries and α-acyclic conjunctive queries.

On connecting width and structure in knowledge compilation. In Chap-
ter 4 we have shown tight connections between structured circuit classes and width
measures on circuits. Our main upper bound is to constructively rewrite bounded-
treewidth circuits to d-SDNNFs in time linear in the circuit and singly exponential in
the treewidth. We show lower bounds for arbitrary monotone CNFs or DNFs under
degree and arity assumptions; we also show a lower bound for pathwidth and OBDDs.
Our results have applications to tasks that extend query evaluation: probabilistic
query evaluation, computation of lineages, enumeration, etc. In particular, we were
able to transform provenance cycluits of CFG-Datalog on treelike instances into
d-SDNNF, allowing us to solve PQE for these classes in linear time in the data
and doubly exponential in the query. This contrasts with the nonelementary bound
of [Amarilli, Bourhis, and Senellart 2015]. We also used our lower bound on d-SDNNF
size to show that any d-SDNNF representing the provenance of an intricate query
must have size that is exponential in the treewidth of the database.

Open Questions and Directions for Future Work
Our work raises a number of open questions and directions for future work, some of
which we present here.

First, the query and instance features studied in Chapter 2 could be completed
by other dimensions: e.g., studying an unweighted case inspired by counting CSP
where all probabilities are 1

2 (as our hardness proofs seem to heavily rely on some
edges being certain); imposing symmetry in the sense of [Beame, Van den Broeck,
Gribkoff, and Suciu 2015]; or alternatively restricting the degree of graphs (though
all our hardness proofs on polytrees and lower classes can seemingly be modified to
work on bounded-degree). Another option would be to modify some of the existing
dimensions: first, polytrees could be generalized to bounded-treewidth instances, as
we believe that the relevant tractability result (Proposition 2.5.3) adapts to this
setting; second, non-branching instances could be generalized to bounded-pathwidth
instances, or caterpillar graphs (graphs in which all nodes are at distance at most
one from a central path [Harary and Schwenk 1973]) or maybe general instances
with the X-property (recall Definition 2.4.11).

142

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Of course, another natural direction would be to lift the arity-two restriction,
although it is not immediate to generalize the definition of our classes to work in
higher arity signatures. We could also extend the query language: in particular, allow
unions of conjunctive queries as in [Dalvi and Suciu 2012]; allow a descendant axis in
the spirit of XML query languages [Benedikt and Koch 2009]; or more generally allow
fixpoint constructs as done in Chapter 3 in the non-probabilistic case. An interesting
question is whether an extended query language could capture the tractability results
obtained in the context of probabilistic XML by [Cohen, Kimelfeld, and Sagiv
2009] (remembering, however, that such results crucially depend on having an order
relation on node children [Amarilli 2014]). Another possibility would be to search
for extensions of the β-acyclicity approach, and investigate which restrictions on the
queries and instances ensure that the lineages are β-acyclic. The connection to CSP
would seem to warrant further investigation. In particular, we do not know whether
one could show a general dichotomy result on the combined complexity of query
evaluation on TID instances, to provide a probabilistic analogue to the Feder–Vardi
conjecture [Feder and Vardi 1998].

Concerning our work on CFG-Datalog, a careful inspection of the proofs seems
to indicate that our results can be used to derive PTIME combined complexity
results on arbitrary instances, e.g., XP membership when parameterizing only by
program size; this would recapture in particular the tractability of some query
languages on arbitrary instances, such as α-acyclic queries or SAC2RPQs. For
conjunctive queries of bounded simplicial width, we could investigate if computing a
simplicial tree decomposition is FPT (parameterized by the simplicial width), as in
Theorem 1.5.2 for the case of treewidth. We also wonder if we could easily extend our
cycluit framework to support more expressive provenance semirings than Boolean
provenance (e.g., formal power series [Green, Karvounarakis, and Tannen 2007]).

Last, our work in Chapter 4 also raises a number of open questions. The d-SDNNF
obtained in the proof of Theorem 4.3.2 does not respect the definition of a sentential
decision diagram (SDD) [Darwiche 2011]. Can this be fixed, and Theorem 4.3.2
extended to SDDs? Or is it impossible, which could solve the open question [Bova
2016] of separating SDDs and d-SDNNFs? Can we weaken the hypotheses of bounded
degree and arity in Corollaries 4.6.3 and 4.7.2, and can we rephrase the latter to
a notion of (d-)SDNNF width to match more closely the statement of the former?
More importantly, can we merge the acyclification procedure of Theorem 4.5.3 with
our upper bound of Theorem 4.3.2 into one algorithm, in order to have only one
exponential in the treewidth? This would imply a combined complexity of PQE for
bounded body-size CFG-Datalog programs P on treelike instances I in time linear
in |I| and singly exponential in |P |, instead of the double exponential in |P | that
we currently have in Theorem 4.5.4. Eventually, Section 4.8 shows that d-SDNNF
representations of the lineages of intricate queries are exponential in the treewidth;
we conjecture a similar result for pathwidth and OBDDs, but this would require a
pathwidth analogue of the minor extraction results of [Chekuri and Chuzhoy 2014].

Perspectives
On using the TID model. One general limitation of our work is the use of the
TID model. First, in a vast majority of practical applications, performing exact
probability computation is not crucial. Indeed, the sheer meaning of the probabilities

143

CONCLUSION AND PERSPECTIVES

of tuples is often not very clear in practice: these are usually obtained from statistical
methods, or roughly estimated by humans (e.g., in the example from Table 1.2). In
this regard, approximate probability computation seems to be closer to real-world
applications than exact probability computation. However, our point of view was
that one first has to understand the difficulties of exact probability computation in
order to determine if approximating methods are needed.

Second, as we have observed in Section 1.3, the TID model cannot represent
arbitrary probability distributions, whereas in practice correlations naturally arise.
We could have used more expressive formalisms for probabilistic databases, such as
the pc-tables model, or the block independent model (BID). For instance, [Amarilli,
Bourhis, and Senellart 2015] shows that probabilistic evaluation of a fixed MSO
query can be done in linear time on bounded-treewidth pc-tables, provided that the
correlations are themselves of bounded treewidth.

Third, another weakness of the TID model is that it uses the closed world
assumption, which in this case amounts to saying that tuples not present in the
database have probability zero. However, in many applications, the fact that a tuple
is not present does not mean that it cannot be true, but rather that our confidence
about this tuple is below a certain threshold. Hence, a probabilistic model that
would be closer these applications could be a model where absent tuples have in fact
a low threshold probability; this resembles the symmetric model used in [Beame, Van
den Broeck, Gribkoff, and Suciu 2015], for instance. In some other applications, the
fact that a tuple is not present does not mean anything about its probability to be
true. For instance in the context of knowledge bases, it is known that many true facts
are not present, because the knowledge base is not necessarily complete [Galárraga,
Razniewski, Amarilli, and Suchanek 2017]: the missing facts can include very likely
facts, even facts that can be logically deduced from the existing ones.

Practical implementations. In this thesis we have not investigated practical
implementations of the upper bounds we have derived. We discuss this matter
here. First, it is debatable whether the tractable classes we have identified in
Chapter 2 yield interesting tractable cases for practical applications. The settings
of Propositions 2.3.6, 2.5.3, and 2.4.10 may look restrictive, as both labels and
branching are important features of real-world database instances, though some
situations may involve unlabeled treelike instances, or labeled words. The setting of
Proposition 2.4.9 may be richer, and is reminiscent of probabilistic XML [Kimelfeld
and Senellart 2013]: the instance is a labeled (downward) tree, while the query is a
path evaluated on that tree.

Concerning our work on CFG-Datalog, we have good hopes that this approach
can give efficient results in practice, in part from our experiments with a preliminary
provenance prototype [Monet 2016; Amarilli, Maniu, and Monet 2016]. Optimizations
are possible, for instance by not representing the full automata but building them on
the fly when needed in query evaluation. However, we think that implementing our
algorithms for CFG-Datalog would be quite difficult, given how complex the automata
construction is. Another promising direction supported by experiments, to deal with
real-world datasets that are not treelike, is to use partial tree decompositions [Maniu,
Cheng, and Senellart 2017; Amarilli, Maniu, and Monet 2016].

Finally, we think our algorithm from Theorem 4.3.2 could easily be implemented
and could be useful to compute the probability of Boolean circuits of low treewidth.

144

Appendix: résumé en français

This appendix is a summary in French of my PhD thesis. It is a translation of the
General Introduction chapter and contains no added information.

Cet appendice est un résumé en français de ma thèse. Il s’agit d’une traduction
du chapitre General Introduction qui n’apporte pas de nouvelles informations.

Le besoin de stocker, accéder et interroger des données a donné naissance au
domaine de la recherche en bases de données. Les fondations de ce domaine sont
sans doute à chercher dans le modèle relationnel, introduit par Edgar Codd à la
fin des années soixante [Codd 1970] et qui se base sur le formalisme alors bien
établi de la logique du premier ordre. Le modèle relationnel doit son succès à sa
généricité : il offre une manière abstraite d’envisager les données, ce qui permet
son utilisation dans de nombreux contextes. Ce succès peut s’observer à travers
l’utilisation quotidienne de systèmes de gestion de bases de données (SGBDs) tels
qu’Oracle, MySQL, PostgreSQL, et bien d’autres encore, partout dans le monde.

La recherche traditionnelle en bases de données fait souvent l’hypothèse que les
données sont fiables et complètes. Pourtant, dans de nombreuses situations de la vie
réelle, les données sont par nature incertaines. Cette incertitude peut prendre des
formes diverses. Par exemple, quand les données sont extraites automatiquement à
partir de pages web arbitraires, de l’incertitude est générée à cause de l’ambigüité in-
hérente aux méthodes d’analyse du langage naturel. Dans les systèmes de surveillance
routière, l’incertitude peut venir du manque d’informations récentes sur le trafic [Hua
et Pei 2010] : y a-t-il un embouteillage ? Y a-t-il une déviation ? En sciences ex-
périmentales, des erreurs de mesures peuvent s’introduire dans des données, qui
sont souvent collectées par des capteurs à la précision imparfaite [Asthana, King,
Gibbons et Roth 2004]. Même quand des données nettes peuvent être obtenues,
il se pourrait que nous ne fassions pas confiance à ceux qui les ont récoltées, ou à
la manière dont elles nous ont été envoyées. Interroger ces données sans prendre en
compte cette incertitude peut mener à des réponses incorrectes. Pour certains de ces
scénarios, des algorithmes spécifiques ont été développés pour gérer cette incertitude,
mais ces algorithmes dépendent en grande partie du domaine d’application et ne
forment ainsi pas un cadre unifié. Pour tenter de capturer l’incertitude des données de
manière générique, les SGBDs utilisent souvent la notion de NULLs. Cependant, les
NULLs se limitent à représenter des données manquantes ou inconnues, et ne peuvent
certainement pas représenter de l’incertitude quantitative à propos des données.

Pour répondre à ce besoin, la notion de base de données probabilistes a été
développée [Suciu, Olteanu, Ré et Koch 2011]. L’objectif est ici de capturer de
manière abstraite l’incertitude des données et d’être capable de raisonner sur des
données incertaines, à l’instar du modèle relationnel, qui avait été introduit pour
travailler de manière générique sur des données non probabilistes. Une première idée
pour capturer l’incertitude des données serait de représenter explicitement tous les
états possibles de l’information, c’est à dire toutes les bases de données possibles
(appelées mondes possibles), et d’associer à chaque monde une certaine probabilité.
La probabilité qu’une base de donnée satisfasse une requête booléenne donnée est

145

APPENDIX : RÉSUMÉ EN FRANÇAIS

alors la somme des probabilités des mondes possibles qui satisfont la requête. C’est
le problème d’évaluation probabiliste de requêtes, ou PQE : étant donné une requête
booléenne Q et une base de données probabilistes D, calculer la probabilité que D
satisfasse Q. La problème avec cette approche est qu’il y a généralement un trop
grand nombre de mondes possibles, et donc qu’il n’est pas possible en pratique de
représenter l’information et de l’interroger de la sorte. Néanmoins, nous pouvons
représenter efficacement des données incertaines si nous faisons des hypothèses
d’indépendance : par exemple, chaque fait (tuple) pourrait être annoté par une
probabilité d’être présent ou absent, indépendamment des autres faits. Il s’agit là du
modèle de base de données probabilistes dit à tuples indépendants (modèle TID). Des
systèmes plus élaborés de représentation de données probabilistes existent [Barbará,
Garcia-Molina et Porter 1992 ; Ré et Suciu 2007 ; Green et Tannen 2006 ;
Huang, Antova, Koch et Olteanu 2009 ; Suciu, Olteanu, Ré et Koch 2011],
mais nous ne travaillerons dans cette thèse qu’avec le modèle TID. En effet comme
nous allons le voir, ce modèle à première vue simple pose déjà des problèmes difficiles
à résoudre.

Et de fait : être capable de représenter efficacement des données incertaines
(via l’hypothèse d’indépendance des tuples) ne permet pas pour autant d’interroger
ces données efficacement. Par exemple, considérons la requête conjonctive suivante
qhard : ∃xy R(x) ∧ S(x, y) ∧ T (y). Calculer la probabilité de cette requête sur des
bases de données TID arbitraires est un problème intractable [Dalvi et Suciu 2007].
Spécifiquement, ce problème est #P-difficile, où #P est la classe de complexité
des problèmes de comptage dont la solution peut s’exprimer comme le nombre
de chemin acceptants d’une machine de Turing non déterministe qui termine en
temps polynomial. Un exemple typique de problème #P-complet est #SAT, qui
consiste à compter le nombre de valuations satisfaisant une formule propositionnelle
donnée [Valiant 1979].

Pour s’attaquer à l’intractabilité de PQE sur des bases de données TID, trois
approches générales ont été proposées. La première approche consiste à relâcher
légèrement le problème, en demandant une approximation de la probabilité qu’on
souhaiterait calculer. Il est en effet toujours possible de faire appel à la méthode de
Monte Carlo [Fishman 1986 ; Ré, Dalvi et Suciu 2007 ; Jampani et al. 2008], qui
fournit une approximation additive de la probabilité de la requête. Cette méthode
n’est en revanche pas très utile quand les probabilités sont basses, puisque le temps de
calcul de la méthode de Monte-Carlo est quadratique en la précision désirée. Comme
nous ne nous intéresserons pas dans cette thèse aux méthodes d’approximation,
concentrons nous sur les deux autres approches. Notre point de vue est qu’il faut
d’abord comprendre les difficultés des méthodes exactes afin de déterminer si des
méthodes d’approximation sont requises.

Les deux autres approches se basent sur une idée assez générale en informatique :
lorsqu’on est face à un problème intractable, imposer des restrictions sur les entrées
peut parfois ramener la complexité à la raison. Au delà de leur intérêt théorique, de
telles restrictions peuvent aussi être utiles en pratique. En effet dans des problèmes
concrets l’entrée n’est généralement pas complètement arbitraire et est au contraire
souvent structurée d’une manière bien spécifique, ce qui peut ainsi permettre la
conception d’algorithmes efficaces. Dans notre cas, la première approche exploite la
structure de la requête, tandis que la seconde approche exploite celle des données :

146

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

• Restreindre les requêtes. Dalvi et Suciu [Dalvi et Suciu 2012] ont réussi
à caractériser entièrement les unions de requêtes conjonctives (UCQs) pour
lesquelles PQE est tractable sur des bases de données TID : une UCQ est soit
prudente et PQE est en temps polynomial (PTIME), soit n’est pas prudente
et PQE est #P-difficile. Malheureusement, il se trouve que de nombreuses
requêtes, parfois mêmes très simple en apparence, ne sont pas prudentes ; c’est
le cas par exemple de la requête qhard vue plus haut.

• Restreindre les données. Des travaux récents de notre groupe [Amarilli,
Bourhis et Senellart 2015] ont montré que lorsque les bases de données TID
sont restreintes à être de largeur d’arbre bornée, il devient possible d’évaluer
en temps linéaire n’importe quelle requête fixée Q exprimable en logique
monadique du second ordre (MSO). MSO est une extension de la logique du
premier ordre où la quantification d’ensembles d’éléments est autorisée (MSO
peut donc entre autres exprimer n’importe quelle UCQ).

La largeur d’arbre est une mesure de théorie des graphes qui quantifie à quel point
un graphe ressemble à un arbre. Borner la largeur d’arbre des bases de données est
une technique connue pour assurer la faisabilité de nombreux problèmes qui sont
NP-difficiles sur des bases de données arbitraires.

Ces deux approches s’intéressent à ce qui est communément appelé la complexité
en données, c’est à dire la complexité du problème en tant que fonction de la
taille de la base de données d’entrée, en considérant que la requête est fixée à
l’avance. Les algorithmes ainsi conçus peuvent donc avoir un coût arbitrairement
grand en la requête. Pourtant, en pratique les requêtes ne sont pas fixées mais sont
aussi fournies en entrée par l’utilisateur, donc la complexité en la requête devrait
aussi être raisonnable. Une meilleure mesure de la complexité de PQE est donc la
complexité combinée, c’est à dire la complexité du problème en tant que fonction
de la taille des données et de la requête. Pour cette mesure, l’algorithme de [Dalvi
et Suciu 2012] est superexponentiel [Suciu, Olteanu, Ré et Koch 2011], et
celui de [Amarilli, Bourhis et Senellart 2015] n’est même pas élémentaire
élémentaire [Thatcher et Wright 1968 ; Meyer 1975]. Ainsi, même quand PQE
est tractable en complexité en données, la tâche peut quand même être infaisable à
cause de constances prohibitivement grandes qui dépendent de la requête.

À première vue, il semble déraisonnable de vouloir une complexité combinée trac-
table pour PQE puisque déjà dans le cas non probabiliste la complexité combinée n’est
généralement pas tractable. Par exemple, évaluer une requête conjonctive booléenne
(CQ) sur une base de données arbitraire est un problème NP-complet. Néanmoins,
dans le cadre non probabiliste des recherches ont déjà été menées pour isoler des lan-
gages de requêtes pour lesquels l’évaluation est faisable en complexité combinée. Par
exemple l’algorithme de Yannakakis peut évaluer des CQs α-acycliques sur des bases
de données non probabilistes avec une complexité combinée tractable [Yannakakis
1981]. Pour ces raisons je pense qu’il est également important de mieux comprendre
la complexité combinée de PQE, et si possible d’isoler des cas où le problème se com-
porte bien en complexité combinée. Cela motive la principale question qui sous-tend
cette thèse : pour quelles classes de requêtes et de bases de données le problème PQE
a-t-il une complexité combinée raisonnable ?

Afin de parvenir à une complexité combinée raisonnable, l’idée de cette thèse est
d’imposer des restrictions sur à la fois les requêtes et sur les données. Nous soulignons

147

APPENDIX : RÉSUMÉ EN FRANÇAIS

ici brièvement les contributions principales de cette thèse, avant de les présenter plus
en détails dans le reste de ce résumé :

1. J’ai étudié PQE de requêtes conjonctives sur des signatures binaires, ce qui
peut aussi se formuler comme un problème d’homomorphisme de graphes
probabilistes. Nous restreignons les graphes des requêtes et des données à être
des arbres et montrons l’impact sur la complexité combinée de nombreuses
caractéristiques telles que la présence d’étiquettes sur les arrêtes, la capacité
de branchement ou la connectivité. Ce travail débouche sur un paysage de
résultats surprenants, mais où les cas tractables sont malheureusement très
limités.

2. J’ai montré que, dans le cadre non probabiliste, l’évaluation d’un fragment
spécifique de requêtes Datalog sur des bases de données de largeur d’arbre
bornée peut se faire en temps linéaire en le produit de la taille des données
et de la taille de la requête. Pour montrer ce résultat nous avons utilisé
des techniques d’automates d’arbres et de calcul de provenance, et avons
introduit un nouveau formalisme de représentation de la provenance, à base de
circuits booléens cycliques. Notre résultat capture la tractabilité de langages de
requêtes tels que les chemins d’expression régulière bidirectionnels (2RPQs) ou
les CQs α-acycliques. De plus, nous pouvons connecter ces résultats de calcul
de provenance au problème PQE, ainsi qu’expliqué dans le prochain point.

3. La troisième contribution est de montrer comment appliquer les résultats de la
seconde contribution au problème PQE, en transformant les circuits cycliques
construits en des circuits booléens ayant de fortes propriété sémantiques venant
du domaine de la compilation de connaissances, comme par exemple les circuits
déterministes et décomposables en forme normale (d-DNNFs). En utilisant
les propriété sémantiques de ces circuits il devient alors facile de faire de
l’évaluation probabiliste. Cela nous permet alors de résoudre PQE pour notre
classe de requêtes Datalog (du point précédent) sur des données de largeur
d’arbre bornée avec une complexité linéaire en les données et doublement
exponentiel en la requête. Ce résultat contraste ainsi avec la complexité non
élémentaire de [Amarilli, Bourhis et Senellart 2015] pour les requêtes
MSO. Plus généralement, nous étudions les connections entre différentes classes
de circuits habituellement considérés en compilation de connaissances, et nous
montrons les limites de certaines de ces techniques en prouvant des bornes
inférieures générales sur ces formalismes.

4. Sans lien avec la complexité combinée de PQE, j’ai aussi travaillé sur le
compilation des requêtes prudentes de [Dalvi et Suciu 2012] en d-DNNFs et
mené des expériences qui suggèrent qu’un certain sous-ensemble des requêtes
prudentes peut en effet être efficacement compilé vers de tels circuits. Ayant
décidé de ne pas incorporer ce travail dans ma thèse, ne ne le présenterai pas
plus avant dans le reste du résumé.

Bien que j’aie décidé de présenter mon travail de recherche sous l’angle des bases de
données probabilistes, l’étendue des contributions ne se limite pas à PQE. Par exemple,
notre travail sur l’évaluation de Datalog sur des données arborescentes implique de
nouveaux résultats sur la complexité combinée de l’évaluation non probabiliste et sur

148

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

le calcul de provenance. La troisième contribution a des applications dans le domaine
de la compilation de connaissance, et la première contribution a des liens avec les
problèmes de satisfaction de contraintes.

Nous présentons maintenant plus en détails nos contributions dans les parties
suivantes de ce résumé.

Limites de la tractabilité combinée de PQE
Dans le chapitre 2 de la thèse nous étudions la complexité combinée de PQE pour
des requêtes conjonctives (CQs) sur des bases de données TID. Ce langage de
requêtes est l’un des plus simples qui soit habituellement utilisé sur des données
relationnelles : ces requêtes correspondent en effet aux requêtes SQL construites
avec les opérateurs SELECT, FROM, et WHERE. Notre objectif est d’isoler des
cas fournissant des garanties de tractabilité assez fortes, à savoir, une complexité
combinée en temps polynomial. Rappelons nous que cela n’est pas possible en général
puisque la complexité en données de PQE peut être #P-difficile sur des bases de
données TID arbitraires, et ce déjà à requête fixée. Nous allons donc devoir imposer
des restrictions sur le problème.

La première restriction générale que nous allons imposer est de restreindre notre
attention à des signatures binaires, c’est à dire où chaque relation est d’arité deux. Il
s’agit d’une limitation assez naturelle qui est commune au monde des bases de données
orientées graphe ou des bases de connaissances. Par exemple une base de connaissances
enregistre de l’information sous forme de triplets tels que (Elvis,Aime, donuts). Ce
triplet peut se voir comme un fait Aime(Elvis, donuts) sur le prédicat d’arité deux
Aime. Cette manière de stocker l’information peut également se voir comme un
graphe orienté où les arrêtes portent des étiquettes ; par exemple ici nous aurions
deux nœuds, “Elvis” et “donuts”, et une arrête allant du premier au deuxième
nœud, portant l’étiquette “Aime”. Par simplicité de présentation, nous définirons
donc le problème en termes de graphes. Étant donnés un graphe requête G et un
graphe données H, où chaque arrête est annotée par une étiquette, nous disons
que H satisfait G lorsqu’il existe un homomorphisme de G vers H (c’est à dire
intuitivement, une fonction des nœuds de G à ceux de H qui respecte la structure
de G). Le problème devient ainsi le suivant : étant donnés un graphe requête et un
graphe données probabiliste, où chaque arrête est annotée par une probabilité (et
par une étiquette), nous devons déterminer la probabilité que le graphe données
satisfasse le graphe requête, à savoir la somme des sous graphes de H qui satisfont
G, en supposant l’indépendance entre les arrêtes probabilistes.

La seconde restriction générale sera d’imposer le graphes des requêtes et des
données à avoir la forme d’arbres. Plus formellement, nous les restreindrons à être
des polyarbres, c’est à dire des graphes dirigés dont les graphes non dirigés sous-
jacent sont des arbres. Malheureusement comme nous allons le voir, cette restriction
ne suffira pas à assurer la tractabilité, et nous étudierons alors l’effet de plusieurs
caractéristiques additionnelles :

• Étiquettes, c’est à dire, si les arrêtes de la requête et des données peuvent être
étiquetées par un alphabet fini comportant plus de deux éléments.

• Déconnexion, c’est à dire, permettre aux graphes d’être déconnectés ou non.

149

APPENDIX : RÉSUMÉ EN FRANÇAIS

• Branchement, c’est à dire permettre aux graphes de brancher, ou au contraire
leur imposer la forme de chemins.

• Bidirectionnalité, c’est à dire autoriser aux arrêtes une orientation arbitraire,
plutôt que d’imposer à toutes les arrêtes d’être dans la même direction.

En conséquence, nous étudierons la complexité combinée de PQE pour des graphes
étiquetés et pour des graphes non étiquetés, et quand la requête et les données
font partie des classes suivantes, qui couvrent toutes les combinaisons possibles des
caractéristiques ci-dessus : chemins unidirectionnels et bidirectionnels, arbres vers le
bas et polyarbres, et unions de ces classes. Les figures 1 et 2 montrent des exemples
de chemin unidirectionnel et bidirectionnel avec étiquettes, et d’arbre vers le bas et
de polyarbre sans étiquettes.

Résultats. Nos résultats classifient entièrement la complexité combinée de PQE
pour toutes les combinaisons considérées de restrictions de requêtes et données, dans
le cas étiqueté et dans le cas non étiqueté. En particulier, nous avons identifié quatre
cas maximaux incomparables de tractabilité, qui reflètent les divers compromis dans
l’expressivité que l’on autorise dans la requête et dans les données :

• dans le cas non étiqueté, requêtes arbitraires sur des arbres vers le bas ;

• dans le cas étiqueté, requêtes chemins unidirectionnels sur des arbres vers le
bas ;

• dans le cas étiqueté, requêtes connectées sur des chemins bidirectionnels ;

• dans le cas non étiqueté, requêtes arbres vers le bas sur des polyarbres ;

Ces résultats de tractabilité s’étendent tous à des graphes données déconnectés,
et nous montrons que tous les autres cas non capturés par ces restrictions sont
#P-difficiles. La (sinueuse) frontière de tractabilité peut être observée dans les
tableaux 2.1, 2.2 et 2.3 aux pages 39, 43 et 51.

Malheureusement, ces résultats indiquent que la complexité combinée de PQE
devient très rapidement intractable, pour la notion forte de tractabilité que nous
avions considérée. Cependant cela n’exclue pas des résultats de tractabilité pour PQE
sur des requêtes/données plus générales, si on considère une notion moins restrictive
de tractabilité.

Tractabilité à paramètre fixé du calcul de prove-
nance
Ayant réalisé que les cas où PQE est tractable en complexité combinée sont très limités,
nous diminuons maintenant nos attentes vis-à-vis de la complexité en les requêtes.
Nous aimerions trouver un langage de requêtes plus expressif et des classes de données
plus générales pour lesquels PQE soit tractable en les données et “raisonnable” en
la requête, cette asymétrie étant justifiée par le fait qu’en pratique la taille des
données est beaucoup plus grande que celle de la requête. Pour atteindre notre
but, nous nous concentrerons d’abord sur la complexité combinée du calcul de

150

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

provenance sur des données relationnelles non probabilistes. En effet, une approche
bien connue pour évaluer des requêtes sur des bases de données probabilistes est
l’approche intensionnelle. Cette approche consiste à calculer dans un premier temps
une représentation du lignage (ou de la provenance) de la requête sur les données, qui
intuitivement décrit comment le résultat de la requête dépend des tuples possibles
de la base de donnée ; puis d’utiliser ce lignage pour calculer la probabilité de la
requête, ce qui dans certains cas peut se faire efficacement. Ainsi dans le chapitre 3
de la thèse nous nous intéresserons au calcul de provenance, dans l’espoir de pouvoir
utiliser plus tard les lignages obtenus pour faire du calcul de probabilités.

Notre point de départ est le travail de Courcelle, initialement présenté dans [Cour-
celle 1990] et résumé dans [Flum, Frick et Grohe 2002], qui prouve que pour
n’importe quelle requête MSO fixée Q et constante k, il est possble d’évaluer Q en
temps linéaire sur des bases de données de largeur d’arbre bornée par k. Intuitivement,
les données de largeur d’arbre bornée peuvent être décomposées en plusieurs petits
“morceaux” qui sont connectés entre eux en suivant une structure d’arbre (on parle
alors de décomposition arborescente). Nous l’avions déjà mentionné : borner la largeur
d’arbre des données est une méthode connue pour s’assurer que la complexité de nom-
breux problèmes (qui sont habituellement NP-difficiles) soit en temps polynomial. La
preuve du résultat de Courcelle suit la structure suivante : d’abord, la requête Q est
traduite en un automate d’arbres A, cette traduction ne dépendant que de la requête
et de la constante k, mais pas des données. La base de données D de largeur d’arbre
6 k est transformée en ce qu’on appelle un encodage d’arbre T , qui est simplement
une décomposition arborescente encodée sur un alphabet fini de sorte à pouvoir être
lue par un automate d’arbres. L’automate A est conçu de telle sorte que A accepte T
si et seulement si D satisfait Q (ce qui s’écrit D |= Q), ce qui permet alors d’évaluer
Q sur D en temps linéaire, en complexité en données. De plus, [Amarilli, Bourhis
et Senellart 2015] montre comment il est possible d’utiliser cet automate pour
construire des circuits de provenance, encore avec une complexité en données linéaire.
Cependant, ces résultats ne nous disent rien sur la complexité combinée. En effet la
complexité de calculer l’automate est non élémentaire en la requête MSO, ce qui fait
que le procédé complet est limité par cette étape de traduction. D’où les questions
que nous étudierons dans le chapitre 3 : quelles sont les requêtes qui peuvent être
traduites efficacement en automates ? Pour ces requêtes, peut-on efficacement faire
du calcul de provenance ?

Résultats. Pour tenter de mieux comprendre ce qui fait que la traduction en
automates est inefficace, nous nous placerons dans cadre de la complexité paramé-
trée [Flum et Grohe 2006]. La théorie de la complexité paramétrée est une branche
de la théorie de la complexité qui étudie la dépendance d’un paramètre d’entrée
sur la complexité d’un problème. Cette théorie a été introduite dans les années
quatre-vingt dix par Downey et Fellows (voir, par exemple, [Downey et Fellows
1992]). Dans notre cas, plutôt que de se restreindre à une classe fixe de requêtes
“efficaces”, nous étudierons des classes de requêtes dites paramétrées, c’est à dire
que nous définirons une classe de requêtes pour chaque valeur distincte d’un certain
paramètre. Nous ferons de plus l’hypothèse que la signature est fixée ; en particulier
son arité sera constante. Ceci nous permettra de viser une complexité combinée
raisonnable pour l’évaluation de nos requêtes, à savoir tractable à paramètre fixé avec
un temps linéaire en le produit de la requête et des données, ce que nous appellerons

151

APPENDIX : RÉSUMÉ EN FRANÇAIS

complexité FPT-bilinéaire.
La traduction de langages restreints de requêtes vers des automates d’arbres pour

des données arborescentes a déjà été utilisé dans le contexte des logiques gardées, pour
résoudre des problèmes de satisfiabilité [Benedikt, Bourhis et Vanden Boom
2016] et d’implication [Barceló, Romero et Vardi 2014]. Une technique pour la
satisfiabilité consiste à montrer une propriété de modèles arborescents, ce qui permet
de limiter la recherche de modèles à des modèles de faible largeur d’arbre, et ensuite
de traduire la formule en un automate d’arbre et de tester si le langage reconnu par
cet automate est vide ou non. Inspirés par ces fragments logiques, nous définissons
le langage de Datalog à frontière clique-gardée (CFG Datalog), et mettons au point
un algorithme FPT-linéaire qui effectue la traduction en automates, paramétrisé
par la taille maximale des règles du programme CFG-Datalog. Ceci implique une
complexité combinée FPT-bilinéaire de l’évaluation de notre langage sur des données
arborescentes (paramétrisé par la largeur d’arbre des données et par la taille maximale
des règles du programme). Nous montrons comment ce résultat capture la tractabilité
de langages de requêtes tels que les 2RPQs α-acycliques [Barceló 2013] ou encore
les requêtes conjonctives α-acycliques. Les RPQs sont au cœur de la plupart des
langages de requêtes pour les bases de données orientées graphe, tandis que les CQs
α-acycliques [Yannakakis 1981] sont la classe principale de CQs pour laquelle la
complexité combinée de l’évaluation sur des données arbitraires est tractable.

À la place des automates d’arbres descendant utilisés dans [Courcelle 1990 ;
Flum, Frick et Grohe 2002], et plus tard dans [Amarilli, Bourhis et Senel-
lart 2015] (qui étend le résultat de Courcelle à PQE, mais toujours en complexité en
données), nous utilisons le formalisme des automates d’arbres alternants bidirection-
nels. Ces automates sont plus succincts que les automates d’arbres descendants, ce
qui permet une traduction plus efficace ; et de fait, nous prouvons que les automates
d’arbres descendants ne sont déjà pas assez succincts pour traduire efficacement les
CQs α-acycliques.

Nous pouvons maintenant utiliser notre langage de CFG-Datalog pour comprendre
ce qui rend la traduction des requêtes conjonctives en automates inefficace. Pour les
requêtes conjonctives, nous montrons que la largeur d’arbre de la requête n’est pas le
bon paramètre à borner pour assurer une traduction efficace, même en utilisant les
automates d’arbres les plus expressifs. En revanche, la traduction efficace de CFG-
Datalog implique la tractabilité combinée de l’évaluation pour les CQs de largeur
d’arbre bornée qui satisfont une propriété additionnelle (dans les décompositions
arborescentes, les interfaces entre les “sacs” doivent être clique-gardés). Cette notion
de décomposition arborescente se trouve en fait être la notion de décomposition
simpliciale, précédemment étudiée par Tarjan dans [Tarjan 1985]. CFG-Datalog
peut se comprendre comme une extension de ce fragment où l’on aurait rajouté
de la disjonction, de la négation stratifiée et des points fixes inflationaires, tout en
préservant la tractabilité combinée de l’évaluation.

Nous nous intéressons ensuite au calcul de provenance pour notre langage CFG-
Datalog, toujours sur des données de largeur d’arbre bornée. Nous rappelons ici
que [Amarilli, Bourhis et Senellart 2015] a montré comment utiliser les auto-
mates descendants de Courcelle pour calculer des circuits booléens de provenance.
Malheureusement cette technique ne fonctionne pas telle quelle sur des automates
d’arbres alternants bidirectionnels. Pour cette raison, nous introduisons la notion
de circuit cyclique de provenance, que nous baptisons cycluits. Ces cycluits sont

152

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

facilement utilisables pour représenter la provenance d’automates alternants bidirec-
tionnels, puisqu’ils traitent de façon naturelle à la fois la récursion et la traversée
d’un encodage d’arbre dans plusieurs directions. De plus, nous pensons que cette
généralisation naturelle des circuits booléens peut avoir un intérêt en soi, et il sem-
blerait que ces circuits booléens cycliques n’aient jamais été étudiés en détail. Nous
montrons ainsi comment ces cycluits peuvent être évalués en temps linéaire. Nous
montrons ensuite que la provenance d’un automate d’arbres alternant bidirectionnel
sur un arbre peut être représenté par un cycluit, et que la construction peut se faire
en temps FPT-bilinéaire. Ceci généralise ainsi le résultat de [Amarilli, Bourhis
et Senellart 2015] qui calculait des circuits (non cycliques) pour des automates
d’arbres descendants

Cela implique qu’il est possible de calculer en temps FPT-bilinéaire la provenance
d’un programme CFG-Datalog sur des données de l’argeur d’arbre bornée, sous la
forme d’un cycluit (le tout étant paramétrisé par la largeur d’arbre des données et
par la taille maximale des règles du programme). Nous montrerons ensuite comment
utiliser ces cycluits pour faire de l’évaluation probabiliste, en suivant l’approche
intensionnelle pour PQE.

Des cycluits aux d-DNNFs et bornes inférieures
Dans le chapitre 4 de la thèse nous étudions les connexions entre divers formalismes de
représentation qui sont habituellement utilisés dans l’approche intensionnelle de PQE,
et en montrerons les conséquences pour notre langage de CFG-Datalog du chapitre 3.
Rappelons que l’approche intensionnelle consiste en deux étape. La première étape
est de calculer une représentation du lignage (provenance) de la requête sur les
données. La provenance d’une requête booléenne sur une base de donnée est une
fonction booléenne ayant pour variables les tuples de la base de données et qui décrit
comment la réponse à la requête dépend de ces tuples. Cette fonction booléenne peut
être représentée par n’importe quel formalisme servant à représenter des fonctions
booléennes : formules booléennes, circuits booléens, diagrammes de décision binaires,
etc. La seconde étape est de calculer la probabilité de cette fonction booléenne, qui est
par définition précisément la probabilité que la base de données probabilistes satisfasse
la requête. On peut voir cette étape comme une version pondérée du comptage de
modèles (ici, on compte le nombre de valuations qui satisfont la fonction booléenne).
Afin que cette étape soit efficace, le formalisme de représentation utilisé ne peut pas
être arbitraire. Le domaine de la compilation de connaissances étudie (entre autres)
quels sont les formalismes qui permettent ce calcul de probabilité de manière efficace,
quelles sont les propriétés entre ces formalismes et les liens qu’ils entretiennent. Ainsi
pour évaluer des requêtes sur les bases de données probabilistes, nous pouvons utiliser
des algorithmes de compilation de connaissance pour transformer des circuits (ou
même les cycluits que nous avons calculé au chapitre 3) en des formalismes tractables ;
inversement, des bornes inférieure en compilation de connaissances peuvent aider à
identifier les limites de l’approche intensionnelle.

Dans cette partie de la thèse, nous étudions les liens entre deux sortes de classes
de circuits tractables en compilation de connaissances : les classes de largeur bornée,
spécifiquement, les circuits de largeur d’arbre ou de largeur de chemin bornée ; et
les classes structurées, spécifiquement, les OBDDs (diagrammes de décision binaires
ordonnés[Bryant 1992], qui suivent un ordre sur les variables) et les d-SDNNFs

153

APPENDIX : RÉSUMÉ EN FRANÇAIS

(circuits structurés déterministes décomposables en forme normale [Pipatsrisawat
et Darwiche 2008], qui suivent un v-arbre). Les circuits de largeur d’arbre bornée
peuvent s’obtenir lorsque l’on fait de l’évaluation de requêtes [Jha, Olteanu et
Suciu 2010 ; Amarilli, Bourhis et Senellart 2015], tandis que les OBDDs et
d-DNNFs ont été étudiés pour trouver des caractérisations théoriques des langages de
requêtes dont ils peuvent représenter la provenance [Jha et Suciu 2011]. Ces deux
types de classes de circuits permettent de faire du calcul probabiliste : pour les classes
de largeur bornée, en utilisant du passage de messages [Lauritzen et Spiegelhal-
ter 1988], en temps linéaire en le circuit et exponentiel en la largeur d’arbre ; pour
les circuits structurés, en temps linéaire de par la définition de ces classes [Darwiche
2001]. D’où la question que nous étudierons dans le chapitre 4 : peut-on compiler
efficacement les classes de largeur bornée vers des classes structurées ?

Résultats. Nous étudions d’abord comment effectuer cette transformation, et
montrons donc des bornes supérieures. Des travaux existants ayant déjà étudié la
compilation de circuits de largeur d’arbre bornée vers des OBDDs [Jha et Suciu 2012 ;
Amarilli, Bourhis et Senellart 2016], nous nous tournons vers la compilation de
ces circuits en d-SDNNFs. Nous montrons comment transformer un circuit booléen
C de largeur d’arbre bornée par k en une d-SDNNF équivalent à C en temps
O(|C| × f(k)), où f est simplement exponentiel. Ceci nous permet d’être compétitifs
avec la technique de passage de messages (qui elle aussi est simplement exponentielle
en k), tout en proposant une technique plus modulaire. Au delà de l’évaluation
probabiliste, notre résultat implique que toutes les tâches qui sont efficaces sur des
d-SDNNFs le sont aussi sur des circuits de largeur d’arbre bornée (par exemple,
l’énumération [Amarilli, Bourhis, Jachiet et Mengel 2017] ou l’inférence de la
valuation satisfaisante la plus probable [Fierens et al. 2015]).

Nous pouvons alors utiliser cette construction pour étendre la tractabilité com-
binée de l’évaluation de CFG-Datalog sur des bases de donnée (non probabilistes)
arborescentes au cas probabiliste (PQE). En effet, la largeur d’arbre du cycluit de
provenance construit est linéaire en la taille du programme Datalog. Seulement, nous
ne pouvons pas appliquer directement notre transformation (qui va des circuits de
largeur d’arbre bornée aux d-SDNNFs) puisqu’ici nous avons à faire à des cycluits.
La première étape est donc de transformer ce cycluit en un circuit, tout en préservant
une borne sur la largeur d’arbre du circuit résultant. Nous montrons comment un
cycluit de largeur d’arbre k peut être converti en un circuit équivalent et dont la
largeur d’arbre est simplement exponentielle en k. Nous pouvons alors appliquer
ces deux constructions successivement, ce qui permet de calculer une d-SDNNF qui
représente la provenance d’un programme CFG-Datalog Q de taille de règles bornée
sur une base de donnée D de largeur d’arbre bornée, le tout avec une complexité
linéaire en la base de données et doublement exponentielle en la requête Q. Cette
d-SDNNF nous permet ensuite de résoudre PQE pour Q sur D, et ce avec la même
complexité. Bien que non polynomiale, nous considérons que la complexité en la
requête est assez raisonnable, étant donné que notre langage CFG-Datalog est plutôt
expressif (en tous cas, bien plus que les langages très limités de requêtes conjonctives
que l’on a étudié au chapitre 2).

Nous montrons ensuite des bornes inférieures sur la compilation des classes de
largeur bornée vers les classes structurées. Nos bornes fonctionnent déjà sur des
formalismes plus faibles que les circuits, à savoir les formules en forme normale

154

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

conjonctive (CNF) monotones et en forme normale disjonctive (DNF) monotones de
largeur d’arbre bornée. Nous connectons la largeur de chemin des CNFs/DNFs à la
taille minimale de leur représentation sous forme d’OBDDs en prouvant que n’importe
quel OBDD représentant une CNF ou DNF monotone doit être de taille au moins
exponentielle en la largeur d’arbre de la formule (à arité (taille maximale des clauses
de la formule) et degré (nombre maximal d’occurrences d’une variable) bornés). Parce
qu’il s’applique à n’importe quelle CNF/DNF monotone, notre résultat généralise
plusieurs bornes inférieures existantes en compilation de connaissances qui séparent
exponentiellement les CNFs des OBDDs, par exemple [Devadas 1993] et [Bova et
Slivovsky 2017, Theorem 19]. Nous prouvons de même une borne analogue pour la
largeur d’arbre et les (d)-SDNNFs (encore en supposant que l’arité et le degré des
formules sont bornés) : n’importe quelle d-SDNNF (resp., SDNNF) représentant une
DNF (resp., CNF) monotone doit être de taille au moins exponentielle en la largeur
d’arbre de la formule.

Pour prouver nos bornes inférieures, nous reformulons la largeur d’arbre et de
chemin en des nouvelles notions, que nous nommons pathsplitwidth et treesplitwidth,
et qui intuitivement mesurent la performance d’un ordre sur les variables ou d’un
v-arbre. Nous utilisons également la notion de dncpi-sets introduite dans [Amarilli,
Bourhis et Senellart 2016 ; Amarilli 2016], ainsi que des techniques récentes
de complexité de communication développées dans [Bova, Capelli, Mengel et
Slivovsky 2016].

Nous appliquons ensuite nos bornes inférieures à l’approche intensionnelle de
PQE. Nous réutilisons la notion de requêtes intriquées de [Amarilli, Bourhis et
Senellart 2016] et montrons qu’une d-SDNNF représentant la provenance d’une
requête intriquée sur n’importe quelle base de données D doit être de taille au moins
exponentielle en la largeur d’arbre de D. Ce résultat généralise celui de [Amarilli,
Bourhis et Senellart 2016], qui lui était montré pour des OBDDs. Ce résultat
montre que, en arité-deux et sous des hypothèses de constructibilité, la largeur d’arbre
est la bonne notion sur les données pour s’assurer que n’importe quelle requête MSO
ait des lignages représentables succinctement par des d-SDNNFs.

Structure de la thèse
Nous commençons par des préliminaires techniques dans le chapitre 1. Nous nous
attaquons ensuite au contenu propre de la thèse, en exposant dans le chapitre 2
notre travail sur la complexité combinée du problème d’homomorphisme de graphes
probabilistes. Nous continuons, dans le chapitre 3, avec l’évaluation de programmes
CFG-Datalog sur des bases de données non probabilistes de largeur d’arbre bornée.
Enfin, nous montrons dans le chapitre 4 comment étendre ces résultats à de l’éva-
luation probabiliste, et y prouvons des bornes inférieures sur des formalismes de
compilation de connaissances. Puis nous concluons.

155

Self-References

Peer-Reviewed Journal Articles
Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart (2018). “Evalu-

ating Datalog via Tree Automata and Cycluits”. In: Theory of Computing Systems
(cit. on p. 57).

Peer-Reviewed Conference Articles
Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart (2017). “Com-

bined Tractability of Query Evaluation via Tree Automata and Cycluits”. In:
ICDT (cit. on pp. 57, 64, 107, 108, 113, 123).

Antoine Amarilli, Silviu Maniu, and Mikaël Monet (2016). “Challenges for Efficient
Query Evaluation on Structured Probabilistic Data”. In: SUM (cit. on p. 144).

Antoine Amarilli, Mikaël Monet, and Pierre Senellart (2017). “Conjunctive Queries
on Probabilistic Graphs: Combined Complexity”. In: PODS (cit. on p. 31).

Antoine Amarilli, Mikaël Monet, and Pierre Senellart (2018). “Connecting Width
and Structure in Knowledge Compilation”. In: ICDT (cit. on p. 107).

Peer-Reviewed Workshop Articles
Mikaël Monet (2016). “Probabilistic Evaluation of Expressive Queries on Bounded-

Treewidth Instances”. In: SIGMOD/PODS PhD Symposium (cit. on p. 144).

Mikaël Monet and Dan Olteanu (2018). “Towards Deterministic Decomposable
Circuits for Safe Queries”. In: AMW (cit. on pp. 12, 141).

157

http://dx.doi.org/10.1007/s00224-018-9901-2
http://dx.doi.org/10.1007/s00224-018-9901-2
https://arxiv.org/abs/1612.04203
https://arxiv.org/abs/1612.04203
https://arxiv.org/abs/1607.05538
https://arxiv.org/abs/1607.05538
https://arxiv.org/abs/1703.03201
https://arxiv.org/abs/1703.03201
https://arxiv.org/abs/1709.06188
https://arxiv.org/abs/1709.06188
http://mikael-monet.net/publications/monet2016probabilistic.pdf
http://mikael-monet.net/publications/monet2016probabilistic.pdf
http://mikael-monet.net/publications/monet2018towards.pdf
http://mikael-monet.net/publications/monet2018towards.pdf

Other References

Serge Abiteboul, Richard Hull, and Victor Vianu (1995). Foundations of Databases.
Addison-Wesley (cit. on pp. 15, 16, 31, 57, 74, 98).

Alfred V. Aho and John E. Hopcroft (1974). The Design and Analysis of Computer
Algorithms. Addison-Wesley (cit. on p. 19).

Noga Alon, Raphael Yuster, and Uri Zwick (1997). “Finding and Counting Given
Length Cycles”. In: Algorithmica (cit. on p. 59).

Antoine Amarilli (2014). “The Possibility Problem for Probabilistic XML”. In: AMW
(cit. on p. 143).

Antoine Amarilli (2016). “Leveraging the Structure of Uncertain Data”. PhD thesis.
Télécom ParisTech (cit. on pp. 10, 25, 89, 110, 125–127, 155).

Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel (2017). “A
Circuit-Based Approach to Efficient Enumeration”. In: ICALP (cit. on pp. 9, 28,
108, 113, 154).

Antoine Amarilli, Pierre Bourhis, and Pierre Senellart (2015). “Provenance Circuits
for Trees and Treelike Instances”. In: ICALP (cit. on pp. 2–4, 6–9, 24, 25, 27, 31,
33, 51–54, 59, 61, 80, 85, 89, 107, 109, 112, 113, 142, 144, 147, 148, 151–154).

Antoine Amarilli, Pierre Bourhis, and Pierre Senellart (2016). “Tractable Lineages
on Treelike Instances: Limits and Extensions”. In: PODS (cit. on pp. 9, 10, 31,
51, 52, 54, 108, 110, 125, 126, 133–135, 154, 155).

Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski (1987). “Complexity
of Finding Embeddings in a k-tree”. In: SIAM Journal on Algebraic and Discrete
Methods (cit. on p. 23).

Chandra K. Ashok and Moshe Y. Vardi (1985). “The Implication Problem for
Functional and Inclusion Dependencies is Undecidable”. In: SIAM Journal on
Computing (cit. on p. 74).

Saurabh Asthana, Oliver D. King, Francis D. Gibbons, and Frederick P. Roth
(2004). “Predicting Protein Complex Membership Using Probabilistic Network
Reliability”. In: Genome Research (cit. on pp. 1, 145).

Gilles Audemard and Laurent Simon (2009). “Predicting Learnt Clauses Quality in
Modern SAT Solvers”. In: IJCAI (cit. on p. 11).

Vince Bárány, Balder ten Cate, and Martin Otto (2012). “Queries with Guarded
Negation”. In: PVLDB (cit. on p. 74).

Vince Bárány, Balder ten Cate, and Luc Segoufin (2015). “Guarded Negation”. In:
Journal of the ACM (cit. on pp. 73, 74).

159

http://webdam.inria.fr/Alice/
https://dl.acm.org/citation.cfm?id=578775
https://dl.acm.org/citation.cfm?id=578775
https://link.springer.com/article/10.1007/BF02523189
https://link.springer.com/article/10.1007/BF02523189
http://ceur-ws.org/Vol-1189/paper_2.pdf
https://tel.archives-ouvertes.fr/tel-01345836
https://arxiv.org/abs/1702.05589
https://arxiv.org/abs/1702.05589
https://arxiv.org/abs/1511.08723
https://arxiv.org/abs/1511.08723
https://arxiv.org/abs/1604.02761
https://arxiv.org/abs/1604.02761
https://dl.acm.org/citation.cfm?id=37183
https://dl.acm.org/citation.cfm?id=37183
https://epubs.siam.org/doi/abs/10.1137/0214049
https://epubs.siam.org/doi/abs/10.1137/0214049
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC419795/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC419795/
http://ijcai.org/Proceedings/09/Papers/074.pdf
http://ijcai.org/Proceedings/09/Papers/074.pdf
https://arxiv.org/abs/1203.0077
https://arxiv.org/abs/1203.0077
https://hal.inria.fr/hal-01184763/document

OTHER REFERENCES

Daniel Barbará, Hector Garcia-Molina, and Daryl Porter (1992). “The Management of
Probabilistic Data”. In: IEEE Transactions on Knowledge and Data Engineering
(cit. on pp. 1, 18, 146).

Pablo Barceló (2013). “Querying Graph Databases”. In: PODS (cit. on pp. 7, 17, 58,
60, 76, 152).

Pablo Barceló, Miguel Romero, and Moshe Y. Vardi (2014). “Does Query Evaluation
Tractability Help Query Containment?” In: PODS (cit. on pp. 7, 58, 61, 76, 152).

Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu (2017). “Exact Model Counting of
Query Expressions: Limitations of Propositional Methods”. In: ACM Transactions
on Database Systems (cit. on p. 11).

Paul Beame and Vincent Liew (2015). “New Limits for Knowledge Compilation and
Applications to Exact Model Counting”. In: UAI (cit. on p. 109).

Paul Beame, Guy Van den Broeck, Eric Gribkoff, and Dan Suciu (2015). “Symmetric
Weighted First-order Model Counting”. In: PODS (cit. on pp. 142, 144).

Michael Benedikt, Pierre Bourhis, and Pierre Senellart (2012). “Monadic Datalog
Containment”. In: ICALP (cit. on p. 64).

Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom (2016). “A Step Up
in Expressiveness of Decidable Fixpoint Logics”. In: LICS (cit. on pp. 7, 58, 74,
152).

Michael Benedikt, Balder ten Cate, and Michael Vanden Boom (2014). “Effective
Interpolation and Preservation in Guarded Logics”. In: LICS (cit. on pp. 73, 74).

Michael Benedikt and Georg Gottlob (2010). “The Impact of Virtual Views on
Containment”. In: PVLDB (cit. on p. 69).

Michael Benedikt and Christoph Koch (2009). “XPath Leashed”. In: ACM Computing
Surveys (cit. on p. 143).

Anne Berry, Romain Pogorelcnik, and Geneviève Simonet (2010). “An Introduction
to Clique Minimal Separator Decomposition”. In: Algorithms (cit. on p. 65).

Dietmar Berwanger and Erich Grädel (2001). “Games and Model Checking for
Guarded Logics”. In: LPAR (cit. on pp. 60, 61, 70, 74).

Jean-Camille Birget (1993). “State-Complexity of Finite-State Devices, State Com-
pressibility and Incompressibility"”. In: Mathematical systems theory (cit. on
p. 63).

Hans L Bodlaender (1996). “A Linear-Time Algorithm for Finding Tree-Decompositions
of Small Treewidth”. In: SIAM Journal of Computing (cit. on pp. 23, 110).

Hans L. Bodlaender and Arie M. C. A. Koster (2010). “Treewidth Computations I.
Upper Bounds”. In: Information and Computation (cit. on p. 98).

Simone Bova (2016). “SDDs are Exponentially More Succinct than OBDDs”. In:
AAAI (cit. on p. 143).

160

https://dl.acm.org/citation.cfm?id=627535
https://dl.acm.org/citation.cfm?id=627535
https://dl.acm.org/citation.cfm?id=2465216
http://citeseerx.ist.psu.edu/viewdoc/download?-doi=10.1.1.715.6869&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?-doi=10.1.1.715.6869&rep=rep1&type=pdf
https://dl.acm.org/citation.cfm?id=2984632
https://dl.acm.org/citation.cfm?id=2984632
https://arxiv.org/abs/1506.02639v2
https://arxiv.org/abs/1506.02639v2
https://arxiv.org/abs/1412.1505
https://arxiv.org/abs/1412.1505
http://pierre.senellart.com/publications/benedikt2012monadic.pdf
http://pierre.senellart.com/publications/benedikt2012monadic.pdf
https://www.cs.ox.ac.uk/people/michael.vandenboom/papers/LICS16-gnfpup-long.pdf
https://www.cs.ox.ac.uk/people/michael.vandenboom/papers/LICS16-gnfpup-long.pdf
https://www.cs.ox.ac.uk/people/michael.vandenboom/papers/CSL-LICS14-gnfi-long.pdf
https://www.cs.ox.ac.uk/people/michael.vandenboom/papers/CSL-LICS14-gnfi-long.pdf
http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R26.pdf
http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R26.pdf
https://infoscience.epfl.ch/record/166852/files/25-leashed.pdf
https://hal.inria.fr/lirmm-00485851/
https://hal.inria.fr/lirmm-00485851/
https://link.springer.com/chapter/10.1007/3-540-45653-8_5
https://link.springer.com/chapter/10.1007/3-540-45653-8_5
https://link.springer.com/article/10.1007/BF01371727
https://link.springer.com/article/10.1007/BF01371727
https://dl.acm.org/citation.cfm?id=243727
https://dl.acm.org/citation.cfm?id=243727
https://dl.acm.org/citation.cfm?id=1739693
https://dl.acm.org/citation.cfm?id=1739693
https://arxiv.org/abs/1601.00501

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky (2015). “A
Strongly Exponential Separation of DNNFs from CNF Formulas”. In: CoRR
(cit. on p. 124).

Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky (2016). “Knowl-
edge Compilation Meets Communication Complexity”. In: IJCAI (cit. on pp. 10,
109, 110, 130–132, 155).

Simone Bova and Friedrich Slivovsky (2015). “On Compiling Structured CNFs to
OBDDs”. In: CSR (cit. on p. 129).

Simone Bova and Friedrich Slivovsky (2017). “On Compiling Structured CNFs to
OBDDs”. In: Theoretical Computer Science (cit. on pp. 10, 109, 110, 124, 126,
155).

Simone Bova and Stefan Szeider (2017). “Circuit Treewidth, Sentential Decision, and
Query Compilation”. In: PODS (cit. on pp. 11, 108, 111, 112, 134).

Johann Brault-Baron (2014). “Hypergraph Acyclicity Revisited”. In: ArXiv e-prints
(cit. on p. 47).

Johann Brault-Baron, Florent Capelli, and Stefan Mengel (2015). “Understanding
Model Counting for β-Acyclic CNF-Formulas”. In: STACS (cit. on pp. 6, 33,
47–49).

Randal E. Bryant (1992). “Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams”. In: ACM Computing Surveys (cit. on pp. 9, 153).

Andrei A. Bulatov (2013). “The Complexity of the Counting Constraint Satisfaction
Problem”. In: Journal of the ACM (cit. on p. 32).

Thierry Cachat (2002). “Two-Way Tree Automata Solving Pushdown Games”. In:
Automata Logics, and Infinite Games (cit. on pp. 63, 79, 101).

Andrea Calí, Florent Capelli, and Igor Razgon (2017). “Non-FPT Lower Bounds for
Structural Restrictions of Decision DNNF”. In: CoRR (cit. on p. 109).

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzeniri, and Moshe Y. Vardi
(2000). “Containment of Conjunctive Regular Path Queries with Inverse”. In: KR
(cit. on pp. 17, 76).

Florent Capelli (2016). “Structural Restrictions of CNF-Formulas: Applications to
Model Counting and Knowledge Compilation”. PhD thesis. Université Paris-
Diderot (cit. on pp. 109, 130).

Florent Capelli (2017). “Understanding the Complexity of #SAT Using Knowledge
Compilation”. In: LICS (cit. on pp. 109, 130).

Romain Daniel Cazé, Mark Humphries, and Boris Gutkin (2013). “Passive Dendrites
Enable Single Neurons to Compute Linearly Non-separable Functions”. In: PLOS
Computational Biology. Code available at https://github.com/rcaze/PlosCB2013
(cit. on p. 11).

Ismail Ilkan Ceylan, Adnan Darwiche, and Guy Van den Broeck (2016). “Open-World
Probabilistic Databases”. In: KR (cit. on p. 31).

161

https://arxiv.org/abs/1411.1995v3
https://arxiv.org/abs/1411.1995v3
https://www.ijcai.org/Proceedings/16/Papers/147.pdf
https://www.ijcai.org/Proceedings/16/Papers/147.pdf
https://arxiv.org/abs/1411.5494
https://arxiv.org/abs/1411.5494
https://link.springer.com/article/10.1007/s00224-016-9715-z
https://link.springer.com/article/10.1007/s00224-016-9715-z
https://arxiv.org/abs/1701.04626
https://arxiv.org/abs/1701.04626
https://arxiv.org/abs/1403.7076
http://drops.dagstuhl.de/opus/volltexte/2015/4963/pdf/lipics-vol30-stacs2015-complete.pdf
http://drops.dagstuhl.de/opus/volltexte/2015/4963/pdf/lipics-vol30-stacs2015-complete.pdf
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1217&context=compsci
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1217&context=compsci
https://www.cs.sfu.ca/~abulatov/papers/counting-acm.pdf
https://www.cs.sfu.ca/~abulatov/papers/counting-acm.pdf
https://hal.archives-ouvertes.fr/hal-00019914/document
https://arxiv.org/abs/1708.07767v1
https://arxiv.org/abs/1708.07767v1
https://www.inf.unibz.it/~calvanese/papers/calv-degi-lenz-vard-KR-2000.pdf
https://www.dcs.bbk.ac.uk/~florent/these_capelli.pdf
https://www.dcs.bbk.ac.uk/~florent/these_capelli.pdf
https://arxiv.org/abs/1701.01461
https://arxiv.org/abs/1701.01461
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002867
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002867
https://github.com/rcaze/PlosCB2013
http://web.cs.ucla.edu/~guyvdb/papers/CeylanKR16.pdf
http://web.cs.ucla.edu/~guyvdb/papers/CeylanKR16.pdf

OTHER REFERENCES

Chandra Chekuri and Julia Chuzhoy (2014). “Polynomial Bounds for the Grid-Minor
Theorem”. In: STOC (cit. on pp. 135, 143).

Edward F. Codd (1970). “A Relational Model of Data for Large Shared Data Banks”.
In: Communications of the ACM (cit. on pp. 1, 145).

Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv (2009). “Running Tree Automata
on Probabilistic XML”. In: PODS (cit. on pp. 32, 52, 143).

H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi (2007). Tree Automata: Techniques and Applications (cit. on
pp. 63, 66, 78).

Bruno Courcelle (1990). “The Monadic Second-Order Logic of Graphs. I. Recognizable
Sets of Finite Graphs”. In: Information and Computation (cit. on pp. 6, 7, 57,
60, 151, 152).

Radu Curticapean and Daniel Marx (2014). “Complexity of Counting Subgraphs:
Only the Boundedness of the Vertex-Cover-Number Counts”. In: FOCS (cit. on
p. 32).

Nilesh N. Dalvi and Dan Suciu (2007). “Efficient Query Evaluation on Probabilistic
Databases”. In: VLDB Journal (cit. on pp. 1, 2, 31, 35, 146).

Nilesh N. Dalvi and Dan Suciu (2012). “The Dichotomy of Probabilistic Inference
for Unions of Conjunctive Queries”. In: Journal of the ACM (cit. on pp. 2–4, 10,
11, 31, 143, 147, 148).

Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov (2001). “Com-
plexity and expressive power of logic programming”. In: ACM Comput. Surv.
(Cit. on p. 83).

Adnan Darwiche (2001). “On the Tractable Counting of Theory Models and its
Application to Truth Maintenance and Belief Revision”. In: Journal of Applied
Non-Classical Logics (cit. on pp. 9, 54, 107, 112, 123, 154).

Adnan Darwiche (2003). “A Differential Approach to Inference in Bayesian Networks”.
In: Journal of the ACM (cit. on p. 113).

Adnan Darwiche (2011). “SDD: A New Canonical Representation of Propositional
Knowledge Bases”. In: IJCAI (cit. on p. 143).

Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen (2014). “Circuits for
Datalog Provenance.” In: ICDT (cit. on pp. 27, 58, 80).

Srinivas Devadas (1993). “Comparing Two-Level and Ordered Binary Decision Dia-
gram Representations of Logic Functions”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (cit. on pp. 10, 109, 155).

Reinhard Diestel (1989). “Simplicial Decompositions of Graphs: a Survey of Applica-
tions”. In: Discrete Mathematics 75.1 (cit. on p. 64).

William F. Dowling and Jean H. Gallier (1984). “Linear-Time Algorithms for Testing
the Satisfiability of Propositional Horn Formulae”. In: J. Log. Program. (Cit. on
p. 83).

162

https://arxiv.org/abs/1305.6577
https://arxiv.org/abs/1305.6577
https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
http://www.cs.huji.ac.il/~sara/papers/running-tree-automata.pdf
http://www.cs.huji.ac.il/~sara/papers/running-tree-automata.pdf
http://www.grappa.univ-lille3.fr/tata
http://www.labri.fr/perso/courcell/Textes1/MSOL01(1990).pdf
http://www.labri.fr/perso/courcell/Textes1/MSOL01(1990).pdf
https://arxiv.org/abs/1407.2929
https://arxiv.org/abs/1407.2929
https://homes.cs.washington.edu/~suciu/vldbj-probdb.pdf
https://homes.cs.washington.edu/~suciu/vldbj-probdb.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
http://cs.roosevelt.edu/~dantsin/research/pdf/DEGV01.pdf
http://cs.roosevelt.edu/~dantsin/research/pdf/DEGV01.pdf
https://arxiv.org/abs/cs/0003044
https://arxiv.org/abs/cs/0003044
https://-doi.org/10.1145/765568.765570
https://-doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://-doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://users.cs.duke.edu/~sudeepa/icdt2014-datalog-provenance.pdf
https://users.cs.duke.edu/~sudeepa/icdt2014-datalog-provenance.pdf
https://pdfs.semanticscholar.org/38dc/c9f4.pdf
https://pdfs.semanticscholar.org/38dc/c9f4.pdf
https://www.sciencedirect.com/science/article/pii/0012365X89900848
https://www.sciencedirect.com/science/article/pii/0012365X89900848
https://core.ac.uk/download/pdf/82477946.pdf
https://core.ac.uk/download/pdf/82477946.pdf

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Rodney G. Downey and Michael R. Fellows (1992). “Fixed Parameter Tractability
and Completeness”. In: Complexity Theory: Current Research (cit. on pp. 7, 20,
151).

Feodor F. Dragan, Fedor V. Fomin, and Petr A. Golovach (2011). “Spanners in
Sparse Graphs”. In: Journal of Computer and System Sciences (cit. on p. 136).

Ronald Fagin (1983). “Degrees of Acyclicity for Hypergraphs and Relational Database
Schemes”. In: Journal of the ACM (cit. on p. 59).

Tomás Feder and Moshe Y. Vardi (1998). “The Computational Structure of Monotone
Monadic SNP and Constraint Satisfaction: A Study Through Datalog and Group
Theory”. In: SIAM Journal on Computing (cit. on p. 143).

Andrea Ferrara, Guoqiang Pan, and Moshe Y. Vardi (2005). “Treewidth in Verifica-
tion: Local vs. Global”. In: LPAR (cit. on p. 124).

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd
Gutmann, Ingo Thon, Gerda Janssens, and Luc De Raedt (2015). “Inference and
Learning in Probabilistic Logic Programs Using Weighted Boolean Formulas”. In:
Theory and Practice of Logic Programming (cit. on pp. 9, 108, 113, 154).

George S. Fishman (1986). “A Comparison of Four Monte Carlo Methods for Estimat-
ing the Probability of s-t Connectedness”. In: IEEE Transactions on Reliability
35.2 (cit. on pp. 2, 146).

Jörg Flum, Markus Frick, and Martin Grohe (2002). “Query Evaluation via Tree-
Decompositions”. In: Journal of the ACM (cit. on pp. 6, 7, 25, 59, 60, 63, 69,
151, 152).

Jörg Flum and M. Grohe (2006). Parameterized Complexity Theory. Springer (cit. on
pp. 7, 20, 21, 151).

Luis Galárraga, Simon Razniewski, Antoine Amarilli, and Fabian M. Suchanek (2017).
“Predicting Completeness in Knowledge Bases”. In: WSDM (cit. on p. 144).

Fǎnicǎ Gavril (1974). “The Intersection Graphs of Subtrees in Trees are Exactly the
Chordal Graphs”. In: Journal of Combinatorial Theory (cit. on pp. 65, 98).

Georg Gottlob, Erich Grädel, and Helmut Veith (2002). “Datalog LITE: a Deductive
Query Language with Linear Time Model Checking”. In: ACM Transactions on
Computational Logic (cit. on p. 60).

Georg Gottlob, Gianluigi Greco, and Francesco Scarcello (2014). “Treewidth and
Hypertree Width”. In: Tractability: Practical Approaches to Hard Problems. Cam-
bridge University Press. Chap. 1 (cit. on p. 59).

Georg Gottlob, Christoph Koch, and Klaus U. Schulz (2006). “Conjunctive Queries
Over Trees”. In: Journal of the ACM (cit. on pp. 33, 50).

Georg Gottlob, Nicola Leone, and Francesco Scarcello (2002). “Hypertree Decom-
positions and Tractable Queries”. In: Journal of Computer and System Sciences
(cit. on p. 59).

163

http://www.mrfellows.net/papers/DF95_FPTandCompletenessI.pdf
http://www.mrfellows.net/papers/DF95_FPTandCompletenessI.pdf
http://www.sciencedirect.com/science/article/pii/S0022000010001303
http://www.sciencedirect.com/science/article/pii/S0022000010001303
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.8164&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.8164&rep=rep1&type=pdf
https://epubs.siam.org/doi/abs/10.1137/S0097539794266766
https://epubs.siam.org/doi/abs/10.1137/S0097539794266766
https://epubs.siam.org/doi/abs/10.1137/S0097539794266766
https://www.cs.rice.edu/~vardi/papers/lpar052.pdf
https://www.cs.rice.edu/~vardi/papers/lpar052.pdf
https://www.cambridge.org/core/journals/theory-and-practice-of-logic-programming/article/inference-and-learning-in-probabilistic-logic-programs-using-weighted-boolean-formulas/
https://www.cambridge.org/core/journals/theory-and-practice-of-logic-programming/article/inference-and-learning-in-probabilistic-logic-programs-using-weighted-boolean-formulas/
https://ieeexplore.ieee.org/document/4335388/
https://ieeexplore.ieee.org/document/4335388/
https://dl.acm.org/citation.cfm?id=602222
https://dl.acm.org/citation.cfm?id=602222
http://yaroslavvb.com/upload/flum.pdf
https://arxiv.org/abs/1612.05786
https://www.sciencedirect.com/science/article/pii/009589567490094X
https://www.sciencedirect.com/science/article/pii/009589567490094X
https://dl.acm.org/citation.cfm?id=504079
https://dl.acm.org/citation.cfm?id=504079
https://www.cambridge.org/core/books/tractability/treewidth-and-hypertree-width/
https://www.cambridge.org/core/books/tractability/treewidth-and-hypertree-width/
https://arxiv.org/abs/cs/0602004
https://arxiv.org/abs/cs/0602004
https://www.mat.unical.it/~leone/papers/jcss.pdf
https://www.mat.unical.it/~leone/papers/jcss.pdf

OTHER REFERENCES

Georg Gottlob, Nicola Leone, and Francesco Scarcello (2003). “Robbers, Marshals,
and Guards: Game Theoretic and Logical Characterizations of Hypertree Width”.
In: Journal of Computer and System Sciences (cit. on p. 60).

Georg Gottlob, Reinhard Pichler, and Fang Wei (2010). “Monadic Datalog Over Finite
Structures of Bounded Treewidth”. In: ACM Transactions on Computational
Logic (cit. on pp. 57, 61, 76).

Erich Grädel (2002). “Guarded Fixed Point Logics and the Monadic Theory of
Countable Trees”. In: Theoretical of Computer Science (cit. on p. 74).

Todd J Green, Grigoris Karvounarakis, and Val Tannen (2007). “Provenance Semir-
ings”. In: PODS (cit. on pp. 27, 58, 80, 143).

Todd J. Green and Val Tannen (2006). “Models for Incomplete and Probabilistic
Information”. In: IIDB (cit. on pp. 2, 18, 146).

Martin Grohe (2007). “The Complexity of Homomorphism and Constraint Satis-
faction Problems Seen from the Other Side”. In: Journal of the ACM (cit. on
p. 32).

Martin Grohe and Dániel Marx (2009). “On Tree Width, Bramble Size, and Expan-
sion”. In: Journal of Combinatorial Theory (cit. on p. 124).

Martin Grohe and Dániel Marx (2014). “Constraint Solving via Fractional Edge
Covers”. In: TALG (cit. on p. 59).

Wolfgang Gutjahr, Emo Welzl, and Gerhard Woeginger (1992). “Polynomial Graph-
Colorings”. In: Discrete Applied Mathematics (cit. on pp. 6, 33, 50).

Frank Harary and Allen J. Schwenk (1973). “The Number of Caterpillars”. In:
Discrete Mathematics (cit. on p. 142).

Ming Hua and Jian Pei (2010). “Probabilistic Path Queries in Road Networks: Traffic
Uncertainty Aware Path Selection”. In: EDBT (cit. on pp. 1, 145).

Jiewen Huang, Lyublena Antova, Christoph Koch, and Dan Olteanu (2009). “MayBMS:
a Probabilistic Database Management System”. In: SIGMOD (cit. on pp. 2, 18,
146).

Tomasz Imielinski and Witold Lipski Jr. (1984). “Incomplete Information in Rela-
tional Databases”. In: Journal of the ACM (cit. on pp. 27, 80).

Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher M. Jermaine,
and Peter J. Haas (2008). “MCDB: a Monte Carlo Approach to Managing
Uncertain Data”. In: SIGMOD (cit. on pp. 2, 146).

Abhay Kumar Jha, Dan Olteanu, and Dan Suciu (2010). “Bridging the Gap Between
Intensional and Extensional Query Evaluation in Probabilistic Databases”. In:
EDBT (cit. on pp. 9, 107, 154).

Abhay Kumar Jha and Dan Suciu (2011). “Knowledge Compilation Meets Database
Theory: Compiling Queries to Decision Diagrams”. In: ICDT (cit. on pp. 9, 107,
154).

164

https://www.sciencedirect.com/science/article/pii/S0022000003000308
https://www.sciencedirect.com/science/article/pii/S0022000003000308
http://www.dbai.tuwien.ac.at/research/project/tractability/toclGottlobPW10.pdf
http://www.dbai.tuwien.ac.at/research/project/tractability/toclGottlobPW10.pdf
https://www.sciencedirect.com/science/article/pii/S0304397501001517
https://www.sciencedirect.com/science/article/pii/S0304397501001517
http://users.ics.forth.gr/~gregkar/publications/pods2007.pdf
http://users.ics.forth.gr/~gregkar/publications/pods2007.pdf
http://web.cs.ucdavis.edu/~green/courses/ecs289f-w10/iidb06.pdf
http://web.cs.ucdavis.edu/~green/courses/ecs289f-w10/iidb06.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?-doi=10.1.1.86.9013&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?-doi=10.1.1.86.9013&rep=rep1&type=pdf
http://www.sciencedirect.com/science/article/pii/S0095895608000683
http://www.sciencedirect.com/science/article/pii/S0095895608000683
https://dl.acm.org/citation.cfm?id=2636918
https://dl.acm.org/citation.cfm?id=2636918
http://www.sciencedirect.com/science/article/pii/0166218X9290294K
http://www.sciencedirect.com/science/article/pii/0166218X9290294K
http://www.sciencedirect.com/science/article/pii/0012365X73900678
https://www.cs.sfu.ca/~jpei/publications/prob-path-edbt10-camera.pdf
https://www.cs.sfu.ca/~jpei/publications/prob-path-edbt10-camera.pdf
https://dl.acm.org/citation.cfm?id=1559984
https://dl.acm.org/citation.cfm?id=1559984
https://dl.acm.org/citation.cfm?id=1886
https://dl.acm.org/citation.cfm?id=1886
https://dl.acm.org/citation.cfm?id=1376686
https://dl.acm.org/citation.cfm?id=1376686
http://www.cs.ox.ac.uk/dan.olteanu/papers/jos-edbt10.pdf
http://www.cs.ox.ac.uk/dan.olteanu/papers/jos-edbt10.pdf
http://openproceedings.org/2011/conf/icdt/JhaS11.pdf
http://openproceedings.org/2011/conf/icdt/JhaS11.pdf

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Abhay Kumar Jha and Dan Suciu (2012). “On the Tractability of Query Compilation
and Bounded Treewidth”. In: ICDT (cit. on pp. 9, 107, 108, 134, 154).

Abhay Jha and Dan Suciu (2013). “Knowledge Compilation Meets Database Theory:
Compiling Queries to Decision Diagrams”. In: Theory of Computing Systems
(cit. on p. 11).

Sanjeev Khanna, Sudeepa Roy, and Val Tannen (2011). “Queries with Difference on
Probabilistic Databases”. In: PVLDB (cit. on p. 37).

Benny Kimelfeld and Pierre Senellart (2013). “Probabilistic XML: Models and
Complexity”. In: Advances in Probabilistic Databases for Uncertain Information
Management (cit. on pp. 32, 144).

Laks V. S. Lakshmanan, Nicola Leone, Robert B. Ross, and V. S. Subrahmanian
(1997). “ProbView: A Flexible Probabilistic Database System”. In: ACM Trans-
actions on Database Systems (cit. on p. 1).

Steffen L. Lauritzen and David J. Spiegelhalter (1988). “Local Computations with
Probabilities on Graphical Structures and their Application to Expert Systems”.
In: Journal of the Royal Statistical Society (cit. on pp. 9, 107, 112, 154).

Hanns-Georg Leimer (1993). “Optimal Decomposition by Clique Separators”. In:
Discrete Mathematics (cit. on p. 65).

Dirk Leinders, Maarten Marx, Jerzy Tyszkiewicz, and Jan Van den Bussche (2005).
“The Semijoin Algebra and the Guarded Fragment”. In: Journal of Logic, Language
and Information (cit. on p. 59).

Sharad Malik (1993). “Analysis of Cyclic Combinational Circuits”. In: ICCAD (cit.
on p. 59).

Silviu Maniu, Reynold Cheng, and Pierre Senellart (2017). “An Indexing Framework
for Queries on Probabilistic Graphs”. In: ACM Transactions on Database Systems
(cit. on p. 144).

Emily A. Marshall and David R. Wood (2014). “Circumference and Pathwidth of
Highly Connected Graphs”. In: Journal of Graph Theory (cit. on p. 109).

Alberto O. Mendelzon and Peter T. Wood (1989). “Finding Regular Simple Paths in
Graph Databases”. In: VLDB (cit. on p. 76).

Albert R. Meyer (1975). “Weak Monadic Second Order Theory of Succesor is not
Elementary-Recursive”. In: Logic Colloquium (cit. on pp. 3, 57, 60, 147).

John C. Mitchell (1983). “The Implication Problem for Functional and Inclusion
Dependencies”. In: Information and Control (cit. on p. 74).

Joakim Alme Nordstrand (2017). “Exploring Graph Parameters Similar to Tree-
Width and Path-Width”. MA thesis. University of Bergen (cit. on p. 125).

Shinsuke Odagiri and Hiroyuki Goto (2014). “On the Greatest Number of Paths and
Maximal Paths for a Class of Directed Acyclic Graphs”. In: IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences (cit. on
pp. 6, 33, 40).

165

https://homes.cs.washington.edu/~suciu/file37_paper.pdf
https://homes.cs.washington.edu/~suciu/file37_paper.pdf
https://link.springer.com/article/10.1007/s00224-012-9392-5
https://link.springer.com/article/10.1007/s00224-012-9392-5
https://users.cs.duke.edu/~sudeepa/VLDB11-probdb-difference.pdf
https://users.cs.duke.edu/~sudeepa/VLDB11-probdb-difference.pdf
http://pierre.senellart.com/publications/kimelfeld2013probabilistic.pdf
http://pierre.senellart.com/publications/kimelfeld2013probabilistic.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.293&rep=rep1&type=pdf
https://www.eecis.udel.edu/~shatkay/Course/papers/Lauritzen1988.pdf
https://www.eecis.udel.edu/~shatkay/Course/papers/Lauritzen1988.pdf
https://www.sciencedirect.com/science/article/pii/0012365X9390510Z
http://alpha.uhasselt.be/~lucp1510/pub/SAvsGF.pdf
https://ieeexplore.ieee.org/document/580150/
http://pierre.senellart.com/publications/maniu2017indexing.pdf
http://pierre.senellart.com/publications/maniu2017indexing.pdf
https://arxiv.org/abs/1309.7683
https://arxiv.org/abs/1309.7683
http://www.vldb.org/conf/1989/P185.PDF
http://www.vldb.org/conf/1989/P185.PDF
https://people.csail.mit.edu/meyer/monadic-TM38.pdf
https://people.csail.mit.edu/meyer/monadic-TM38.pdf
https://www.sciencedirect.com/science/article/pii/S0019995883800023
https://www.sciencedirect.com/science/article/pii/S0019995883800023
http://bora.uib.no/handle/1956/16325
http://bora.uib.no/handle/1956/16325
https://www.jstage.jst.go.jp/article/transfun/E97.A/6/E97.A_1370/_article
https://www.jstage.jst.go.jp/article/transfun/E97.A/6/E97.A_1370/_article

OTHER REFERENCES

Knot Pipatsrisawat and Adnan Darwiche (2008). “New Compilation Languages
Based on Structured Decomposability”. In: AAAI (cit. on pp. 9, 28, 154).

Knot Pipatsrisawat and Adnan Darwiche (2010). “A Lower Bound on the Size of
Decomposable Negation Normal Form”. In: AAAI (cit. on pp. 109, 130, 132).

J. Scott Provan and Michael O. Ball (1983). “The Complexity of Counting Cuts and
of Computing the Probability That a Graph is Connected”. In: SIAM Journal of
Computing (cit. on p. 43).

Igor Razgon (2014). “On OBDDs for CNFs of Bounded Treewidth”. In: KR (cit. on
pp. 109, 124).

Chris Ré, Nilesh N. Dalvi, and Dan Suciu (2007). “Efficient Top-k Query Evaluation
on Probabilistic Data”. In: ICDE (cit. on pp. 2, 146).

Christopher Ré and Dan Suciu (2007). “Materialized Views in Probabilistic Databases:
For Information Exchange and Query Optimization”. In: PVLDB (cit. on pp. 2,
18, 146).

Marc D. Riedel and Jehoshua Bruck (2012). “Cyclic Boolean Circuits”. In: Discrete
Applied Mathematics (cit. on pp. 59, 81, 123).

Neil Robertson and Paul D. Seymour (1984). “Graph Minors. III. Planar Tree-
Width”. In: Journal of Combinatorial Theory (cit. on p. 21).

Neil Robertson and Paul D. Seymour (1986). “Graph Minors. II. Algorithmic Aspects
of Tree-Width”. In: Journal of Algorithms (cit. on p. 57).

Neil Robertson and Paul D. Seymour (1991). “Graph Minors. X. Obstructions to
Tree-Decomposition”. In: Journal of Combinatorial Theory (cit. on p. 130).

Bernd Schröder (2016). Ordered Sets. An Introduction with Connections from Com-
binatorics to Topology. Birkhäuser (cit. on pp. 33, 40).

Alexander A. Sherstov (2014). “Communication Complexity Theory: Thirty-Five
Years of Set Disjointness”. In: MFCS (cit. on p. 133).

Richard Stanley (1997). Enumerative Combinatorics. Cambridge University Press
(cit. on p. 40).

Tamon Stephen and Timothy Yusun (2014). “Counting Inequivalent Monotone
Boolean Functions”. In: Discrete Applied Mathematics (cit. on p. 11).

Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch (2011). Probabilistic
Databases. Morgan & Claypool (cit. on pp. 1–3, 18, 31, 43, 46, 50, 51, 145–147).

Robert E. Tarjan (1972). “Depth-First Search and Linear Graph Algorithms”. In:
SIAM Journal on Computing (cit. on p. 84).

Robert E. Tarjan (1985). “Decomposition by Clique Separators”. In: Discrete Mathe-
matics 55.2 (cit. on pp. 8, 58, 152).

Robert E Tarjan and Mihalis Yannakakis (1984). “Simple Linear-Time Algorithms
to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively
Reduce Acyclic Hypergraphs”. In: SIAM Journal on computing (cit. on p. 63).

166

https://www.aaai.org/Papers/AAAI/2008/AAAI08-082.pdf
https://www.aaai.org/Papers/AAAI/2008/AAAI08-082.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1856/1991
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1856/1991
https://epubs.siam.org/doi/abs/10.1137/0212053?journalCode=smjcat
https://epubs.siam.org/doi/abs/10.1137/0212053?journalCode=smjcat
https://www.aaai.org/ocs/index.php/KR/KR14/paper/download/7982/7918
https://homes.cs.washington.edu/~suciu/Multisimulation_ICDE07.pdf
https://homes.cs.washington.edu/~suciu/Multisimulation_ICDE07.pdf
https://www.cs.stanford.edu/people/chrismre/papers/prob_materialized_views_TR.pdf
https://www.cs.stanford.edu/people/chrismre/papers/prob_materialized_views_TR.pdf
https://www.sciencedirect.com/science/article/pii/S0166218X1200159X
https://www.sciencedirect.com/science/article/pii/0095895684900133
https://www.sciencedirect.com/science/article/pii/0095895684900133
https://www.sciencedirect.com/science/article/pii/0196677486900234
https://www.sciencedirect.com/science/article/pii/0196677486900234
http://www.sciencedirect.com/science/article/pii/009589569190061N
http://www.sciencedirect.com/science/article/pii/009589569190061N
https://www.springer.com/la/book/9783319297866
http://web.cs.ucla.edu/~sherstov/pdf/mfcs-disjointness.pdf
http://web.cs.ucla.edu/~sherstov/pdf/mfcs-disjointness.pdf
http://www-math.mit.edu/~rstan/ec/ec1.pdf
http://www-math.mit.edu/~rstan/ec/ec1.pdf
http://www-math.mit.edu/~rstan/ec/ec1.pdf
https://dl.acm.org/citation.cfm?id=2031527
https://dl.acm.org/citation.cfm?id=2031527
https://epubs.siam.org/doi/abs/10.1137/0201010
https://www.sciencedirect.com/science/article/pii/0012365X85900512
https://epubs.siam.org/doi/abs/10.1137/0213035
https://epubs.siam.org/doi/abs/10.1137/0213035
https://epubs.siam.org/doi/abs/10.1137/0213035

Mikaël Monet Combined Complexity of Probabilistic Query Evaluation

Alfred Tarski (1955). “A Lattice-Theoretical Fixpoint Theorem and its Applications”.
In: Pacific Journal of Mathematics (cit. on p. 81).

James W. Thatcher and Jesse B. Wright (1968). “Generalized Finite Automata
Theory with an Application to a Decision Problem of Second-Order Logic”. In:
Mathematical Systems Theory (cit. on pp. 3, 147).

Ken Thompson (1968). “Programming Techniques: Regular Expression Search Algo-
rithm”. In: Communications of the ACM (cit. on p. 76).

Leslie G. Valiant (1979). “The Complexity of Enumeration and Reliability Problems”.
In: SIAM Journal on Computing (cit. on pp. 2, 19, 146).

Moshe Y. Vardi (1982). “The Complexity of Relational Query Languages”. In: STOC
(cit. on p. 57).

Moshe Y. Vardi (1995). “On the Complexity of Bounded-Variable Queries”. In: PODS
(cit. on pp. 35, 60).

Martin Vatshelle (2012). “New Width Parameters of Graphs”. PhD thesis. University
of Bergen (cit. on p. 130).

Mihalis Yannakakis (1981). “Algorithms for Acyclic Database Schemes”. In: VLDB
(cit. on pp. 3, 7, 31, 57, 59, 147, 152).

167

https://projecteuclid.org/euclid.pjm/1103044538
https://link.springer.com/article/10.1007/BF01691346
https://link.springer.com/article/10.1007/BF01691346
https://dl.acm.org/citation.cfm?id=363387
https://dl.acm.org/citation.cfm?id=363387
https://www.math.cmu.edu/~af1p/Teaching/MCC17/Papers/enumerate.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.331.6045
https://www.cs.rice.edu/~vardi/papers/pods95.ps.gz
https://www.ii.uib.no/~martinv/Papers/MartinThesis.pdf
https://www.researchgate.net/profile/Mihalis_Yannakakis/publication/200034379_Algorithms_for_Acyclic_Database_Schemes/links/5745c2a708ae9f741b430b62.pdf

Titre: Complexité combinée d’évaluation de requêtes sur des données probabilistes

Mots clés: Bases de données, Probabilités, Complexité combinée

Résumé : L’évaluation de requêtes sur des
données probabilistes (probabilistic query evalua-
tion ou PQE) est généralement très coûteuse en
ressources et ce même à requête fixée. Bien que
certaines restrictions sur les requêtes et les don-
nées aient été proposées pour en diminuer la com-
plexité, les résultats existants ne s’appliquent pas
à la complexité combinée, c’est-à-dire quand la
requête n’est pas fixe. Ma thèse s’intéresse à la
question de déterminer pour quelles requêtes et
données l’évaluation probabiliste est faisable en
complexité combinée.

La première contribution de cette thèse est
d’étudier PQE pour des requêtes conjonctives
sur des schémas d’arité 2. Nous imposons que les
requêtes et les données aient la forme d’arbres
et montrons l’importance de diverses caractéris-
tiques telles que la présence d’étiquettes sur les
arêtes, les bifurcations ou la connectivité. Les

restrictions imposées dans ce cadre sont assez
sévères, mais la deuxième contribution de cette
thèse montre que si l’on est prêts à augmenter la
complexité en la requête, alors il devient possible
d’évaluer un langage de requête plus expressif
sur des données plus générales. Plus précisément,
nous montrons que l’évaluation probabiliste d’un
fragment particulier de Datalog sur des données
de largeur d’arbre bornée peut s’effectuer en
temps linéaire en les données et doublement ex-
ponentiel en la requête. Ce résultat est prouvé
en utilisant des techniques d’automates d’arbres
et de compilation de connaissances. La troisième
contribution de ce travail est de montrer les li-
mites de certaines de ces techniques, en prouvant
des bornes inférieures générales sur la taille de
formalismes de représentation utilisés en compi-
lation de connaissances et en théorie des auto-
mates.

Title: Combined Complexity of Probabilistic Query Evaluation

Keywords: Databases, Probabilities, Combined Complexity

Abstract: Query evaluation over probabilis-
tic databases (probabilistic query evaluation or
PQE) is known to be intractable in many cases,
even in data complexity, i.e., when the query is
fixed. Although some restrictions of the queries
and instances have been proposed to lower the
complexity, these known tractable cases usually
do not apply to combined complexity, i.e., when
the query is not fixed. My thesis investigates the
question of which queries and instances ensure
the tractability of PQE in combined complexity.

My first contribution is to study PQE of
conjunctive queries on binary signatures, which
we rephrase as a probabilistic graph homomor-
phism problem. We restrict the query and in-
stance graphs to be trees and show the impact

on the combined complexity of diverse features
such as edge labels, branching, or connectedness.
While the restrictions imposed in this setting
are quite severe, my second contribution shows
that, if we are ready to increase the complexity
in the query, then we can evaluate a much more
expressive language on more general instances.
Specifically, we show that PQE for a particular
class of Datalog queries on instances of bounded
treewidth can be solved with linear complexity
in the instance and doubly exponential complex-
ity in the query. To prove this result, we use
techniques from tree automata and knowledge
compilation. The third contribution is to show
the limits of some of these techniques by proving
general lower bounds on knowledge compilation
and tree automata formalisms.

	Abstract
	Remerciements
	Table of Contents
	General Introduction
	Limits of Combined Tractability of PQE
	Fixed-Parameter Tractability of Provenance Computation
	From Cycluits to d-DNNFs and Lower Bounds
	d-DNNFs for Safe Queries
	Structure of the Thesis

	Background and General Preliminaries
	Relational Databases, Graphs, Hypergraphs
	Query Languages
	Tuple-Independent Databases
	Complexity Classes
	Trees, Treewidth, Pathwidth
	Tree Automata and Tree Encodings
	Provenance and Knowledge Compilation Circuit Classes

	Limits of Combined Tractability of PQE
	Introduction
	Preliminaries on Probabilistic Graph Homomorphism
	Disconnected Case
	Labeled Connected Queries
	Unlabeled Connected Queries

	Fixed Parameter Tractability of Provenance Computation
	Introduction
	Approaches for Tractability
	Conjunctive Queries on Treelike Instances
	CFG-Datalog on Treelike Instances
	Translation to Automata
	Provenance Cycluits
	Proof of Translation

	From Cycluits to d-DNNFs and Lower Bounds
	Introduction
	Preliminaries on Tree Decompositions
	Upper Bound
	Proof of the Upper Bound
	Application to PQE of CFG-Datalog
	Lower Bounds on OBDDs
	Lower Bounds on (d-)SDNNFs
	Application to Query Lineages

	Conclusion and Perspectives
	Summary
	Open Questions and Directions for Future Work
	Perspectives

	Appendix: résumé en français
	Limites de la tractabilité combinée de PQE
	Tractabilité à paramètre fixé du calcul de provenance
	Des cycluits aux d-DNNFs et bornes inférieures
	Structure de la thèse

	Self-References
	Other References

