
Bounded-delay enumeration of regular languages

Mikaël Monet, Antoine Amarilli

STACS 2023, Hamburg, Germany

March 8, 2023



My co-author

Joint work with Antoine Amarilli

arXiv: https://arxiv.org/abs/2209.14878

1 / 22

https://arxiv.org/abs/2209.14878


Outline

Introduction

Main results

Defining the magic t

Proof sketch of the upper bound

Conclusion

2 / 22



Introduction



Gray code for n-bit words

• Gray code over n-bit words: an ordering

w1,w2, . . . ,w2n

of (a + b)n such that wi ,wi+1 differ by exactly one bit.

• Concatenate Gray codes for n = 0,1,2, . . .: we obtain an ordering w1,w2, . . .

of (a + b)∗ where consecutive words are at Levenshtein distance one.

• In general, let L ⊆ Σ∗ be any language over some alphabet Σ. We say that L is
orderable for the Levenshtein distance if there exists d ∈ N and an ordering

w1,w2, . . .

of L such that consecutive words are at Levenshtein distance at most ≤ d .

3 / 22



Gray code for n-bit words

• Gray code over n-bit words: an ordering

w1,w2, . . . ,w2n

of (a + b)n such that wi ,wi+1 differ by exactly one bit.

• Concatenate Gray codes for n = 0,1,2, . . .: we obtain an ordering w1,w2, . . .

of (a + b)∗ where consecutive words are at Levenshtein distance one.

• In general, let L ⊆ Σ∗ be any language over some alphabet Σ. We say that L is
orderable for the Levenshtein distance if there exists d ∈ N and an ordering

w1,w2, . . .

of L such that consecutive words are at Levenshtein distance at most ≤ d .

3 / 22



Gray code for n-bit words

• Gray code over n-bit words: an ordering

w1,w2, . . . ,w2n

of (a + b)n such that wi ,wi+1 differ by exactly one bit.

• Concatenate Gray codes for n = 0,1,2, . . .: we obtain an ordering w1,w2, . . .

of (a + b)∗ where consecutive words are at Levenshtein distance one.

• In general, let L ⊆ Σ∗ be any language over some alphabet Σ. We say that L is
orderable for the Levenshtein distance if there exists d ∈ N and an ordering

w1,w2, . . .

of L such that consecutive words are at Levenshtein distance at most ≤ d .

3 / 22



Orderability for the Levenshtein distance

Definition
A language L ⊆ Σ∗ is orderable for the Levenshtein distance if there exists d ∈ N and
an ordering w1,w2, . . . of L such that any two consecutive words at at Levenshtein
distance at most d .

Examples: Are these languages orderable for the Levenshtein distance?

• any finite language

yes

• for k ∈ N, the language (ak)∗ yes

• a∗b∗ yes (Hamiltonian path in the N ×N grid)

• a∗ + b∗ no!

4 / 22



Orderability for the Levenshtein distance

Definition
A language L ⊆ Σ∗ is orderable for the Levenshtein distance if there exists d ∈ N and
an ordering w1,w2, . . . of L such that any two consecutive words at at Levenshtein
distance at most d .

Examples: Are these languages orderable for the Levenshtein distance?

• any finite language yes

• for k ∈ N, the language (ak)∗ yes

• a∗b∗ yes (Hamiltonian path in the N ×N grid)

• a∗ + b∗ no!

4 / 22



Orderability for the Levenshtein distance

Definition
A language L ⊆ Σ∗ is orderable for the Levenshtein distance if there exists d ∈ N and
an ordering w1,w2, . . . of L such that any two consecutive words at at Levenshtein
distance at most d .

Examples: Are these languages orderable for the Levenshtein distance?

• any finite language yes

• for k ∈ N, the language (ak)∗

yes

• a∗b∗ yes (Hamiltonian path in the N ×N grid)

• a∗ + b∗ no!

4 / 22



Orderability for the Levenshtein distance

Definition
A language L ⊆ Σ∗ is orderable for the Levenshtein distance if there exists d ∈ N and
an ordering w1,w2, . . . of L such that any two consecutive words at at Levenshtein
distance at most d .

Examples: Are these languages orderable for the Levenshtein distance?

• any finite language yes

• for k ∈ N, the language (ak)∗ yes

• a∗b∗ yes (Hamiltonian path in the N ×N grid)

• a∗ + b∗ no!

4 / 22



Orderability for the Levenshtein distance

Definition
A language L ⊆ Σ∗ is orderable for the Levenshtein distance if there exists d ∈ N and
an ordering w1,w2, . . . of L such that any two consecutive words at at Levenshtein
distance at most d .

Examples: Are these languages orderable for the Levenshtein distance?

• any finite language yes

• for k ∈ N, the language (ak)∗ yes

• a∗b∗

yes (Hamiltonian path in the N ×N grid)

• a∗ + b∗ no!

4 / 22



Orderability for the Levenshtein distance

Definition
A language L ⊆ Σ∗ is orderable for the Levenshtein distance if there exists d ∈ N and
an ordering w1,w2, . . . of L such that any two consecutive words at at Levenshtein
distance at most d .

Examples: Are these languages orderable for the Levenshtein distance?

• any finite language yes

• for k ∈ N, the language (ak)∗ yes

• a∗b∗ yes (Hamiltonian path in the N ×N grid)

• a∗ + b∗ no!

4 / 22



Orderability for the Levenshtein distance

Definition
A language L ⊆ Σ∗ is orderable for the Levenshtein distance if there exists d ∈ N and
an ordering w1,w2, . . . of L such that any two consecutive words at at Levenshtein
distance at most d .

Examples: Are these languages orderable for the Levenshtein distance?

• any finite language yes

• for k ∈ N, the language (ak)∗ yes

• a∗b∗ yes (Hamiltonian path in the N ×N grid)

• a∗ + b∗

no!

4 / 22



Orderability for the Levenshtein distance

Definition
A language L ⊆ Σ∗ is orderable for the Levenshtein distance if there exists d ∈ N and
an ordering w1,w2, . . . of L such that any two consecutive words at at Levenshtein
distance at most d .

Examples: Are these languages orderable for the Levenshtein distance?

• any finite language yes

• for k ∈ N, the language (ak)∗ yes

• a∗b∗ yes (Hamiltonian path in the N ×N grid)

• a∗ + b∗ no!

4 / 22



Other distances: definitions

We can also consider other distances in this definition:

• the push-pop distance. Defined like the Levenshtein distance, but the basic
operations are:

• popL and popR, to delete the last (resp., the first) letter of the word; and
• pushL(α) and pushR(α) for α ∈ Σ, to add the letter α at the beginning (resp., at

the end) the word.

• the push-pop-right distance. Defined like the push-pop distance, but only
allows popR and pushR(α) for α ∈ Σ.

5 / 22



Other distances: definitions

We can also consider other distances in this definition:

• the push-pop distance. Defined like the Levenshtein distance, but the basic
operations are:

• popL and popR, to delete the last (resp., the first) letter of the word; and
• pushL(α) and pushR(α) for α ∈ Σ, to add the letter α at the beginning (resp., at

the end) the word.

• the push-pop-right distance. Defined like the push-pop distance, but only
allows popR and pushR(α) for α ∈ Σ.

5 / 22



Questions

We focus on regular languages

• What are the regular languages that are orderable:
• for the Levenshtein distance?
• for the push-pop distance?
• for the push-pop-right distance?

• Can we recognize them? (e.g., given a DFA)

• Can we always partition a regular language into a finite number of orderable
languages? (as in a∗ + b∗)

• When L is orderable, can we design an enumeration algorithm for it? With what
delay? (poly, constant?)

6 / 22



Questions

We focus on regular languages

• What are the regular languages that are orderable:
• for the Levenshtein distance?
• for the push-pop distance?
• for the push-pop-right distance?

• Can we recognize them? (e.g., given a DFA)

• Can we always partition a regular language into a finite number of orderable
languages? (as in a∗ + b∗)

• When L is orderable, can we design an enumeration algorithm for it? With what
delay? (poly, constant?)

6 / 22



Questions

We focus on regular languages

• What are the regular languages that are orderable:
• for the Levenshtein distance?
• for the push-pop distance?
• for the push-pop-right distance?

• Can we recognize them? (e.g., given a DFA)

• Can we always partition a regular language into a finite number of orderable
languages? (as in a∗ + b∗)

• When L is orderable, can we design an enumeration algorithm for it? With what
delay? (poly, constant?)

6 / 22



Questions

We focus on regular languages

• What are the regular languages that are orderable:
• for the Levenshtein distance?
• for the push-pop distance?
• for the push-pop-right distance?

• Can we recognize them? (e.g., given a DFA)

• Can we always partition a regular language into a finite number of orderable
languages? (as in a∗ + b∗)

• When L is orderable, can we design an enumeration algorithm for it? With what
delay? (poly, constant?)

6 / 22



Questions

We focus on regular languages

• What are the regular languages that are orderable:
• for the Levenshtein distance?
• for the push-pop distance?
• for the push-pop-right distance?

• Can we recognize them? (e.g., given a DFA)

• Can we always partition a regular language into a finite number of orderable
languages? (as in a∗ + b∗)

• When L is orderable, can we design an enumeration algorithm for it? With what
delay? (poly, constant?)

6 / 22



Main results



Main results (Levenshtein and push-pop)

Let L be regular. We show:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.
→ This shows L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

7 / 22



Main results (Levenshtein and push-pop)

Let L be regular. We show:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.

→ This shows L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

7 / 22



Main results (Levenshtein and push-pop)

Let L be regular. We show:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.
→ This shows L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

7 / 22



Main results (Levenshtein and push-pop)

Let L be regular. We show:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.
→ This shows L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

7 / 22



Enumeration algorithms with push-pop edit scripts

Let L regular, e.g., (ϵ + a)b∗. GOAL: enumerate L with a delay that is independent
from the length of the current word.

Example of a push-pop program for this language:

int main{
output();
while (true) {

pushR(b); output();
pushL(a); output();
popL();

}
}

The current word is maintained on a
doubly-ended queue

An edit script is a sequence of push or pop operations executed between two output()
instructions. This push-pop program enumerates (ϵ + a)b∗ with bounded delay.

8 / 22



Enumeration algorithms with push-pop edit scripts

Let L regular, e.g., (ϵ+ a)b∗. GOAL: enumerate L (in a certain sense) with a delay that
is independent from the length of the current word.

Example of a push-pop program for
this language:

int main{
output();
while (true) {

pushR(b); output();
pushL(a); output();
popL();

}
}

The current word is maintained on a
doubly-ended queue

An edit script is a sequence of push or pop operations executed between two output()
instructions. This push-pop program enumerates (ϵ + a)b∗ with bounded delay.

8 / 22



Enumeration algorithms with push-pop edit scripts

Let L regular, e.g., (ϵ+ a)b∗. GOAL: enumerate L (in a certain sense) with a delay that
is independent from the length of the current word. Example of a push-pop program for
this language:

int main{
output();
while (true) {

pushR(b); output();
pushL(a); output();
popL();

}
}

The current word is maintained on a
doubly-ended queue

An edit script is a sequence of push or pop operations executed between two output()
instructions. This push-pop program enumerates (ϵ + a)b∗ with bounded delay.

8 / 22



Enumeration algorithms with push-pop edit scripts

Let L regular, e.g., (ϵ+ a)b∗. GOAL: enumerate L (in a certain sense) with a delay that
is independent from the length of the current word. Example of a push-pop program for
this language:

int main{
output();
while (true) {

pushR(b); output();
pushL(a); output();
popL();

}
}

The current word is maintained on a
doubly-ended queue

An edit script is a sequence of push or pop operations executed between two output()
instructions. This push-pop program enumerates (ϵ + a)b∗ with bounded delay.

8 / 22



Defining the magic t



Result statement

Theorem
For a regular language L, there exist regular L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance. Moreover L cannot be partitioned
into less than t orderable languages for the Levenshtein distance.

We will now define this number t and show that it is optimal

9 / 22



Result statement

Theorem
For a regular language L, there exist regular L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance. Moreover L cannot be partitioned
into less than t orderable languages for the Levenshtein distance.

We will now define this number t and show that it is optimal

9 / 22



Connectivity and compatibility of loopable states

Let A = (Q,Σ,q0,F , δ) be a DFA for L. For q ∈ Q, define Aq to be A where the initial
state and final state is q.

Definition: loopable state

A state q ∈ Q is loopable if L(Aq) ≠ {ϵ}. In other words, when there is a non-empty
run that starts and ends at q.

Definition: connectivity

Two loopable states q,q′ ∈ Q are connected when there is a directed path in A from q

to q′, or a directed path in A from q′ to q

Definition: compatibility

Two loopable states q,q′ ∈ Q are compatible when L(Aq) ∩ L(Aq′) ≠ {ϵ}.

10 / 22



Connectivity and compatibility of loopable states

Let A = (Q,Σ,q0,F , δ) be a DFA for L. For q ∈ Q, define Aq to be A where the initial
state and final state is q.

Definition: loopable state

A state q ∈ Q is loopable if L(Aq) ≠ {ϵ}. In other words, when there is a non-empty
run that starts and ends at q.

Definition: connectivity

Two loopable states q,q′ ∈ Q are connected when there is a directed path in A from q

to q′, or a directed path in A from q′ to q

Definition: compatibility

Two loopable states q,q′ ∈ Q are compatible when L(Aq) ∩ L(Aq′) ≠ {ϵ}.

10 / 22



Connectivity and compatibility of loopable states

Let A = (Q,Σ,q0,F , δ) be a DFA for L. For q ∈ Q, define Aq to be A where the initial
state and final state is q.

Definition: loopable state

A state q ∈ Q is loopable if L(Aq) ≠ {ϵ}. In other words, when there is a non-empty
run that starts and ends at q.

Definition: connectivity

Two loopable states q,q′ ∈ Q are connected when there is a directed path in A from q

to q′, or a directed path in A from q′ to q

Definition: compatibility

Two loopable states q,q′ ∈ Q are compatible when L(Aq) ∩ L(Aq′) ≠ {ϵ}.

10 / 22



Interchangeability of loopable states

Definition: interchangeability
Interchangeability is the equivalence relation on loopable states that is defined to be
the transitive closure of the union of the connectivity and compatibility relations.

In other words, two loopable states q,q′ ∈ Q are interchangeable if there is a sequence
q = q0, . . . ,qn = q

′ of loopable states such that for all 0 ≤ i < n, the states qi and qi+1
are either connected or compatible.

We then define t to be the number of interchangeable classes
Some examples follow

11 / 22



Interchangeability of loopable states

Definition: interchangeability
Interchangeability is the equivalence relation on loopable states that is defined to be
the transitive closure of the union of the connectivity and compatibility relations.

In other words, two loopable states q,q′ ∈ Q are interchangeable if there is a sequence
q = q0, . . . ,qn = q

′ of loopable states such that for all 0 ≤ i < n, the states qi and qi+1
are either connected or compatible.

We then define t to be the number of interchangeable classes
Some examples follow

11 / 22



Example: (a + b)∗

0

a,b

• Loopable states: 0

Ô⇒ t = 1

12 / 22



Example: (a + b)∗

0

a,b

• Loopable states: 0

Ô⇒ t = 1

12 / 22



Example: (a + b)∗

0

a,b

• Loopable states: 0

Ô⇒ t = 1

12 / 22



Example: a∗b∗

0 1

a b

b

• Loopable states: 0 and 1

• 0 and 1 are connected, hence interchangeable

Ô⇒ t = 1

13 / 22



Example: a∗b∗

0 1

a b

b

• Loopable states: 0 and 1

• 0 and 1 are connected, hence interchangeable

Ô⇒ t = 1

13 / 22



Example: a∗b∗

0 1

a b

b

• Loopable states: 0 and 1

• 0 and 1 are connected, hence interchangeable

Ô⇒ t = 1

13 / 22



Example: a∗b∗

0 1

a b

b

• Loopable states: 0 and 1

• 0 and 1 are connected, hence interchangeable

Ô⇒ t = 1

13 / 22



Example: a∗ + b∗

0

1

2

a

b

a

b

• Loopable states: 1 and 2

• 1 and 2 are neither connected, nor compatible, so they are not interchangeable

Ô⇒ t = 2

14 / 22



Example: a∗ + b∗

0

1

2

a

b

a

b

• Loopable states: 1 and 2

• 1 and 2 are neither connected, nor compatible, so they are not interchangeable

Ô⇒ t = 2

14 / 22



Example: a∗ + b∗

0

1

2

a

b

a

b

• Loopable states: 1 and 2

• 1 and 2 are neither connected, nor compatible, so they are not interchangeable

Ô⇒ t = 2

14 / 22



Example: a∗ + b∗

0

1

2

a

b

a

b

• Loopable states: 1 and 2

• 1 and 2 are neither connected, nor compatible, so they are not interchangeable

Ô⇒ t = 2
14 / 22



Example: compatibility

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Loopable states: 1,2,3,4 and 6
• 1 and 2 are connected hence interchangeable
• 4, 3 and 6 are connected hence interchangeable
• 1 and 4 are compatible (with the word bc), hence interchangeable

Ô⇒ t = 1

15 / 22



Example: compatibility

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Loopable states: 1,2,3,4 and 6

• 1 and 2 are connected hence interchangeable
• 4, 3 and 6 are connected hence interchangeable
• 1 and 4 are compatible (with the word bc), hence interchangeable

Ô⇒ t = 1

15 / 22



Example: compatibility

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Loopable states: 1,2,3,4 and 6
• 1 and 2 are connected hence interchangeable

• 4, 3 and 6 are connected hence interchangeable
• 1 and 4 are compatible (with the word bc), hence interchangeable

Ô⇒ t = 1

15 / 22



Example: compatibility

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Loopable states: 1,2,3,4 and 6
• 1 and 2 are connected hence interchangeable
• 4, 3 and 6 are connected hence interchangeable

• 1 and 4 are compatible (with the word bc), hence interchangeable
Ô⇒ t = 1

15 / 22



Example: compatibility

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Loopable states: 1,2,3,4 and 6
• 1 and 2 are connected hence interchangeable
• 4, 3 and 6 are connected hence interchangeable
• 1 and 4 are compatible (with the word bc), hence interchangeable

Ô⇒ t = 1

15 / 22



Example: compatibility

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Loopable states: 1,2,3,4 and 6
• 1 and 2 are connected hence interchangeable
• 4, 3 and 6 are connected hence interchangeable
• 1 and 4 are compatible (with the word bc), hence interchangeable

Ô⇒ t = 1 15 / 22



Proof sketch of the upper bound



Upper bound: existence of an ordering

Theorem

Let A be a DFA A and t its magic number. We can partition L(A) into

L = L1 ⊔ . . . ⊔ Lt

each Li is orderable for the Levenshtein distance.

Enough to show:

Upper bound: existence
Let A be a DFA that has only one class of interchangeable loopable states (t = 1).
Then L(A) is orderable for the push-pop distance.

Let δpp denote the push-pop distance on Σ∗

16 / 22



Upper bound: existence of an ordering

Theorem

Let A be a DFA A and t its magic number. We can partition L(A) into

L = L1 ⊔ . . . ⊔ Lt

each Li is orderable for the Levenshtein distance.

Enough to show:

Upper bound: existence
Let A be a DFA that has only one class of interchangeable loopable states (t = 1).
Then L(A) is orderable for the push-pop distance.

Let δpp denote the push-pop distance on Σ∗

16 / 22



Upper bound: existence of an ordering

Theorem

Let A be a DFA A and t its magic number. We can partition L(A) into

L = L1 ⊔ . . . ⊔ Lt

each Li is orderable for the Levenshtein distance.

Enough to show:

Upper bound: existence
Let A be a DFA that has only one class of interchangeable loopable states (t = 1).
Then L(A) is orderable for the push-pop distance.

Let δpp denote the push-pop distance on Σ∗

16 / 22



The graph GL,d

Definition
Let L a language and d ∈ N. Define the graph GL,d whose nodes are words of L and
where two words are connected by an edge if they are at push-pop distance ≤ d .

• Note: if L is orderable with distance d , then GL,d is connex.

→ the converse is not true! (G(a∗+b∗),1 is connex but a∗ + b∗ is not even orderable)

• We show a kind of converse for finite languages in the next slide

17 / 22



The graph GL,d

Definition
Let L a language and d ∈ N. Define the graph GL,d whose nodes are words of L and
where two words are connected by an edge if they are at push-pop distance ≤ d .

• Note: if L is orderable with distance d , then GL,d is connex.

→ the converse is not true! (G(a∗+b∗),1 is connex but a∗ + b∗ is not even orderable)

• We show a kind of converse for finite languages in the next slide

17 / 22



The graph GL,d

Definition
Let L a language and d ∈ N. Define the graph GL,d whose nodes are words of L and
where two words are connected by an edge if they are at push-pop distance ≤ d .

• Note: if L is orderable with distance d , then GL,d is connex.

→ the converse is not true! (G(a∗+b∗),1 is connex but a∗ + b∗ is not even orderable)

• We show a kind of converse for finite languages in the next slide

17 / 22



The graph GL,d

Definition
Let L a language and d ∈ N. Define the graph GL,d whose nodes are words of L and
where two words are connected by an edge if they are at push-pop distance ≤ d .

• Note: if L is orderable with distance d , then GL,d is connex.

→ the converse is not true! (G(a∗+b∗),1 is connex but a∗ + b∗ is not even orderable)

• We show a kind of converse for finite languages in the next slide

17 / 22



GL,d connex implies orderability with distance 3d for finite languages

Proposition
For any finite language L, if GL,d is connex then L is orderable with distance 3d .

Proof: take a spanning tree T of GL,d . Apply visit_even to the root of T :

void visit_even(node n){
enumerate(n);
for (child ch of n)

visit_odd(ch);
}
void visit_odd(node n){

for (child ch of n)
visit_even(ch);

enumerate(n);
}

This yields an ordering of the nodes of GL,d

where consecutive nodes are at distance at
most 3.
Hence the corresponding words are at
distance ≤ 3d for δpp.

18 / 22



GL,d connex implies orderability with distance 3d for finite languages

Proposition
For any finite language L, if GL,d is connex then L is orderable with distance 3d .

Proof: take a spanning tree T of GL,d . Apply visit_even to the root of T :

void visit_even(node n){
enumerate(n);
for (child ch of n)

visit_odd(ch);
}
void visit_odd(node n){

for (child ch of n)
visit_even(ch);

enumerate(n);
}

This yields an ordering of the nodes of GL,d

where consecutive nodes are at distance at
most 3.
Hence the corresponding words are at
distance ≤ 3d for δpp.

18 / 22



Using this for infinite languages

Definition
For L a language and i , ℓ ∈ N, define the i-th ℓ-stratum of L as

Si = {w ∈ L ∣ (i − 1)ℓ ≤ ∣w ∣ < iℓ}

We can show (technical):

Proposition

Let L = L(A) with A having only one interchangeable class of loopable states (t = 1).
Letting ℓ = 8∣A∣2 and d = 16∣A∣2, the graph GSi ,d of any ℓ-stratum is connex.

We conclude by concatenating orderings for S1,S2, . . . obtained with the enumeration
technique of the previous slide, with well-chosen starting and ending points.

19 / 22



Using this for infinite languages

Definition
For L a language and i , ℓ ∈ N, define the i-th ℓ-stratum of L as

Si = {w ∈ L ∣ (i − 1)ℓ ≤ ∣w ∣ < iℓ}

We can show (technical):

Proposition

Let L = L(A) with A having only one interchangeable class of loopable states (t = 1).
Letting ℓ = 8∣A∣2 and d = 16∣A∣2, the graph GSi ,d of any ℓ-stratum is connex.

We conclude by concatenating orderings for S1,S2, . . . obtained with the enumeration
technique of the previous slide, with well-chosen starting and ending points.

19 / 22



Using this for infinite languages

Definition
For L a language and i , ℓ ∈ N, define the i-th ℓ-stratum of L as

Si = {w ∈ L ∣ (i − 1)ℓ ≤ ∣w ∣ < iℓ}

We can show (technical):

Proposition

Let L = L(A) with A having only one interchangeable class of loopable states (t = 1).
Letting ℓ = 8∣A∣2 and d = 16∣A∣2, the graph GSi ,d of any ℓ-stratum is connex.

We conclude by concatenating orderings for S1,S2, . . . obtained with the enumeration
technique of the previous slide, with well-chosen starting and ending points.

19 / 22



Conclusion



Main results (Levenshtein and push-pop)

Let L be regular. Then:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.
→ This shows that L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

20 / 22



Main results (Levenshtein and push-pop)

Let L be regular. Then:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.

→ This shows that L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

20 / 22



Main results (Levenshtein and push-pop)

Let L be regular. Then:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.
→ This shows that L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

20 / 22



Main results (Levenshtein and push-pop)

Let L be regular. Then:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.
→ This shows that L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

20 / 22



Other results

Other results:

• It is NP-hard, given a DFA A such that L(A) is orderable (for Levenshtein or
push-pop), to determine the minimal d such that L(A) is orderable for distance d .

• A regular language is partitionable into finitely many orderable languages for the
push-pop-right distance if and only if it is slender.

• Further, the optimal number of languages can also be computed from the automaton
• We can also enumerate in bounded delay

21 / 22



Future work

Open questions and future work:

• Make the delay polynomial in ∣A∣? (currently it is exp)

• What about enumeration in radix order? in lexicographic order?

• What about the push-left pop-right distance? the padded Hamming distance?

• What about regular tree languages?

• Other uses of the enumeration model?

• Implementation and real-life use-cases?

Thanks for your attention!

22 / 22



Future work

Open questions and future work:

• Make the delay polynomial in ∣A∣? (currently it is exp)

• What about enumeration in radix order? in lexicographic order?

• What about the push-left pop-right distance? the padded Hamming distance?

• What about regular tree languages?

• Other uses of the enumeration model?

• Implementation and real-life use-cases?

Thanks for your attention!

22 / 22


	Introduction
	Main results
	Defining the magic t
	Proof sketch of the upper bound
	Conclusion

