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Recap from Dan Suciu’s talk



Tuple-independent probabilistic databases

• Probabilistic databases: to represent data uncertainty
→ simplest formalism: tuple-independent database

D =

Likes p

Alice Bob 0.5
Alice John 1
Bob Bob 0.2
John Bob 0.7

Pr(D ′) = (1 − 0.5)× 1 × (1 − 0.2)× 0.7

q = “there are two people who
like the same person”
∃x , y , z : L(x , z)∧L(y , z)∧x ̸= y

+(1− 0.5)0.2(1− 0.7)+ (1− 0.5)(1− 0.2)0.7
]
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The probabilistic query evaluation problem (PQE(q))

Definition: problem PQE(q), for q a Boolean query
Input: a tuple-independent probabilistic database D

Output: Pr(D |= q)

• Dalvi and Suciu [JACM’12] have shown a dichotomy on the
(data) complexity of PQE(q) for unions of conjunctive
queries:

• either PQE(q) ∈ PTIME, and q is called “safe”
• or PQE(q) is FP#P-hard, and q is called “unsafe”

• Their algorithm for a safe query q essentially uses three rules:
→ Independence: Pr(A ∧ B) = Pr(A)× Pr(B) when A,B are

independent events
→ Negation: Pr(¬A) = 1 − Pr(A)

→ Inclusion–exclusion: Pr(A ∨ B ∨ C ∨ . . .) = Pr(A) + Pr(B) +

. . .− Pr(A ∧ B)− Pr(A ∧ C )− . . .+ Pr(A ∧ B ∧ C ) + . . .
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Provenance

Definition

The provenance Prov(q, I ) of query q on database D is the
Boolean function with facts of D as variables and such that for
every valuation τ : D → {0, 1}, Prov(q,D) evaluates to TRUE
under τ if and only if {f ∈ D|τ(f ) = 1} |= q

Possible representations:

• Boolean formulas

• Binary Decision Diagrams (OBDDs, FBDDs, etc)

• Boolean circuits
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Provenance: example

D =

Likes p

Alice Bob 0.5
Alice John 1
Bob Bob 0.2
John Bob 0.7

q = ∃x , y , z : L(x , z) ∧ L(y , z) ∧ x ̸= y

We have Pr(D |= q) = Pr(Prov(q,D) = true)
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Provenance in knowledge compilation formalisms

Pr(D |= q) = Pr(Prov(q,D) = true)

→ If we can, in PTIME, compute Prov(q,D) in a formalism from
knowledge compilation that allows PTIME probability
computation, we can solve PQE(q) in PTIME

• free or ordered decision diagrams (OBDDs, FBDDs)
• deterministic and decomposable Boolean circuits (d-Ds)

• Dan Suciu’s talk: the safe UCQs for which this is possible with
OBDDs are exactly the inversion-free UCQs

→ This talk: what about d-Ds?
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What are deterministic and decomposable circuits (d-Ds)?

Let C be a Boolean circuit

• a ∧-gate g is decomposable if any two inputs gates g1, g2 of g
depend on disjoint sets of variables

• a ∨-gate g is deterministic if any two inputs gates g1, g2 of g
are mutually exclusive

• the circuit C is a d-D if all its ∧-gates are decomposable and
all its ∨-gates are deterministic

→ To obtain the probability, replace ∧-gates by ×, ∨-gates by +,
¬-gates by 1 − x , and evaluate. In other words, use the
following rules:
→ Independence: Pr(A ∧ B) = Pr(A)× Pr(B) when A,B are

independent events
→ Negation: Pr(¬A) = 1 − Pr(A)

→ Disjoint Events: Pr(A ∨ B) = Pr(A) + Pr(B) for A,B disjoint
events
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d-Ds: example

D =

Likes p

Alice Bob 0.5
Alice John 1
Bob Bob 0.2
John Bob 0.7

q = ∃x , y , z : L(x , z) ∧ L(y , z) ∧ x ̸= y

¬L(B,B) ¬L(J,B)

∧

¬

∧

L(A,B)

∨

∧

¬L(A,B) ∧

L(B,B) L(J,B)
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The Intensional-Extensional problem

Intensional-Extensional (open) problem for d-Ds
For every safe UCQ q, can we compute in PTIME its provenance
on a database D as a deterministic and decomposable circuit?

In other words, can we replace the inclusion–exclusion rule by the
disjunction rule?

→ This approach is more modular than Dalvi and Suciu’s original
algorithm for safe UCQs, and it would allow us to do more
than probabilistic evaluation: enumerate the satisfying states
of the data, compute the satisfying state of the data that is
most probable, update the tuples’ probabilities, etc.
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Solving the problem for a specific
class of UCQs



Main result from PODS’20

• Focus on a class of UCQs, denoted H (defined next slide)

• It had been conjectured that for some safe queries q ∈ H, the
provenance of q cannot be computed in PTIME as d-Ds
→ because these are the simplest queries for which Dalvi and

Suciu’s algorithm uses inclusion–exclusion
→ because this conjecture had been proven for more restricted

formalisms of knowledge compilation (d-SDNNFs, dec-DNNFs)

Main result
For every (fixed) safe query q ∈ H, being given as input a
database D, we can compute in PTIME a d-D that represents
Prov(q,D).

10 / 22



The H queries

• Let k ≥ 1 and R,S1, . . . ,Sk ,T be pairwise distinct relational
predicates, with R and T unary and Si binary. Define the
queries hk,i for 0 ≤ i ≤ k :

• hk,0
def
= ∃x∃y R(x) ∧ S1(x , y);

• hk,i
def
= ∃x∃y Si (x , y) ∧ Si+1(x , y) for 1 ≤ i < k;

• hk,k
def
= ∃x∃y Sk(x , y) ∧ T (y).

• Hk
def
= the set of UCQs that can be formed from the queries

hk,i , i.e., positive Boolean combinations of those queries

• H def
=

⋃∞
k=1 Hk
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Proof technique (1/4): representing H queries

Write [k]
def
= {0, . . . , k}. Let us represent a query q ∈ Hk as

follows:

• the (Hasse diagram of) Boolean
lattice of 2[k]

• each node v ⊆ [k] of the graph
represents a subquery qv

def
=(∧

ℓ∈v hk,ℓ
)
∧
(∧

ℓ∈[k]\v ¬hk,ℓ
)
.

(Note that qv is not a UCQ)

• (in particular, every database D

satisfies exactly one subquery qv )

• some nodes are colored, and
q = the disjunction of the
subqueries qv that are represented
by the colored nodes v
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Proof technique (2/4): basic queries

Proposition (Fink & Olteanu [TODS’16])

For any adjacent nodes v , v ′ of the graph, being given as input a
database D, we can compute in PTIME a d-D representing
Prov(qv ∨ qv ′ ,D).

• Idea: starting from q, we will entirely uncolor the graph by
using multiple times the following operations:

• Uncolor two adjacent nodes that are colored
• Color two adjacent nodes that were not colored

→ Simultaneously, we build a deterministic and decomposable
circuit for the provenance of q

13 / 22
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Proof technique (3/4): circuit construction

Uncoloring:

q =

↓

q′ =

Prov(q,D) =

Then continue with q′
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Proof technique (4/4): how to uncolor the graph?

Proposition
A query q ∈ Hk is safe if and only if the two partitions of the
graph contain the same number of colored nodes
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The non-cancelling intersections
conjecture



Co-workers

Ongoing work with Antoine Amarilli, Louis Jachiet and Dan Suciu
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Intersection lattices, Möbius function and Inclusion-Exclusion

• Let F = {S1, . . . ,Sn} be a finite family of finite sets, pairwise
incomparable
→ Example: F = {{a, b}, {a, c}, {b, c}, {d}}

• Let LF be its intersection lattice:

⊤

{d}{a, b}

{a}

{a, c}

{b}

{b, c}

{c}

∅

1

−1−1

1

−1−1

1 1

0

• Let µF : LF → Z be the
Möbius function defined by

• µF (⊤) = 1
• µF (I ) =

−
∑

I ′∈LF
I ′>I

µF (I
′)

for I ∈ LF , I ̸= ⊤

Fact (coefficients of the Inclusion-Exclusion formula)

|
⋃n

i=1 Si | = −
∑

I∈LF
I ̸=⊤

µF (I )× |I |

• Define the non-cancelling intersections of F by
NCI(F)

def
= {I ∈ LF | I ̸= ⊤ and µF (I ) ̸= 0}
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Non-cancelling intersections conjecture

• For two sets S ,T such that S ∩ T = ∅, define the disjoint
union S

•
∪ T

def
= S ∪ T

• For two sets S ,T such that T ⊆ S , define the subset

complement S
•

\ T
def
= S \ T

• For a set family T , define •(T ) to be the smallest set family
which contains all the sets of T and is closed under disjoint
union and subset complement

Non-cancelling intersections conjecture (NCI for short)

Let F = {S1, . . . ,Sn} be a finite family of finite sets.
Then

⋃n
i=1 Si ∈ •(NCI(F)).
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Example 1

⊤

{d}{a, b}

{a}

{a, c}

{b}

{b, c}

{c}

∅

1

−1−1

1

−1−1

1 1

0

→ We have
⋃n

i=1 Si = {a, b, c , d} = (({a}
•
∪ {b})

•
∪ {c})

•
∪ {d}

That was easy...

19 / 22



Example 1

⊤

{d}{a, b}

{a}

{a, c}

{b}

{b, c}

{c}

∅

1

−1−1

1

−1−1

1 1

0

→ We have
⋃n

i=1 Si = {a, b, c , d} = (({a}
•
∪ {b})

•
∪ {c})

•
∪ {d}

That was easy...

19 / 22



Example 1

⊤

{d}{a, b}

{a}

{a, c}

{b}

{b, c}

{c}

∅

1

−1−1

1

−1−1

1 1

0

→ We have
⋃n

i=1 Si = {a, b, c , d} = (({a}
•
∪ {b})

•
∪ {c})

•
∪ {d}

That was easy...

19 / 22



Example 2

⊤

{a, h}{a, c , d , g}

{a, d}

{a, b, d , f }

{a, c}

{a, b, c , e}

{a, b}

{a}

1

−1−1

1

−1−1

1 1

0

→ We can express
⋃n

i=1 Si = {a, b, c , d , e, f , g , h} with:

•
∪

•

\

{a, c , d , g} {a, c}

•

\

{a, b, d , f } {a, d}

•

\

{a, b, c , e} {a, b}

{a, h}

{a, b, c , d , e, f , g , h}

{d , g} {b, f } {c , e}
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Example 3

⊤ 1

abb′d −1 abc ′f ′−1 ab′c ′e ′−1 ag ′ −1ab′cf −1abce −1ag −1

ab′ 2 ac ′ 1ab 2ac 1

a 0

•
∪

•

\

•
∪

•

\

•
∪

•

\

•
∪

•

\

•
∪

•

\

•
∪

•

\

abce ab

abc ′f ′

ac ′

ag

ac

ab′cf

ab′

ag ′

ab

abb′d

ab′

ab′c ′e ′

⋃
Si = abb′cc ′dee ′ff ′gg ′

ce

abcec ′f ′

bcef ′

abcef ′g

bef ′g

abb′ceff ′g

bceff ′g

abceff ′gg ′

ceff ′gg ′

abb′cdeff ′gg ′

bcdeff ′gg ′
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Conclusion

• We have sketched a proof that we can build in PTIME d-Ds
for the provenance of safe queries in the class H

• We have stated a more general conjecture about intersection
lattices: the non-cancelling intersections conjecture

→ Counterexample search by bruteforce: no counterexample so
far...

→ We have some partial positive results: a reformulation of the
conjecture that works in the Boolean lattices, and a proof for
specific subcases of this reformulation

Thanks for your attention!
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