The Intensional-Extensional Problem in

Probabilistic Databases

Mikaél Monet
October 16th, 2023
Probabilistic Circuits and Logic workshop
V4 1 |I/|_|-
o
"'

f’ v
SIMONS
INSTITUTE

for the Theory of Computin

1. Recap from Dan Suciu's talk
Tuple-independent probabilistic databases
Provenance and knowledge compilation

The Intensional-Extensional problem
2. Solving the problem for a specific class of UCQs

3. The non-cancelling intersections conjecture

1/22

Recap from Dan Suciu’s talk

Tuple-independent probabilistic databases

e Probabilistic databases: to represent data uncertainty

— simplest formalism: tuple-independent database

Likes
Alice Bob
D = Alice John
Bob Bob
John Bob

2/22

Tuple-independent probabilistic databases

e Probabilistic databases: to represent data uncertainty

— simplest formalism: tuple-independent database

Likes

D' = Alice John

John Bob

2/22

Tuple-independent probabilistic databases

e Probabilistic databases: to represent data uncertainty

— simplest formalism: tuple-independent database

Likes

D' = Alice John

John Bob

Pr(D’) =(1-05)x1x(1-0.2) x0.7

2/22

Tuple-independent probabilistic databases

e Probabilistic databases: to represent data uncertainty

— simplest formalism: tuple-independent database

Likes
. g = "there are two people who
b AI!ce Bob like the same person”
Alice John Ix,y,z : L(x,2)AL(y,z) Ax # y
Bob Bob
John Bob

2/22

Tuple-independent probabilistic databases

e Probabilistic databases: to represent data uncertainty

— simplest formalism: tuple-independent database

Likes
. g = "there are two people who
b AI!ce Bob like the same person”
Alice John Ix,y,z : L(x,2)AL(y,z) Ax # y
Bob Bob
John Bob

Pr(D = q) = pcp Pr(D)
D'l=q

2/22

Tuple-independent probabilistic databases

e Probabilistic databases: to represent data uncertainty

— simplest formalism: tuple-independent database

Likes
. g = "there are two people who
5 AI!ce Bob like the same person”
Alice John Ix,y,z : L(x,2)AL(y,z) Ax # y
Bob Bob
John Bob
Pr(D |: q) = ZD/QD Pr(D/) ()

D'l=q

2/22

Tuple-independent probabilistic databases

e Probabilistic databases: to represent data uncertainty

— simplest formalism: tuple-independent database

Likes
. g = "there are two people who
b AI!ce Bob like the same person”
Alice John Ix,y,z : L(x,2)AL(y,z) Ax # y
Bob Bob
John Bob

Pr(D = q)=1-[(1—0.5)(1—-0.2)(1—0.7)+0.5(1—0.2)(1—0.7)

+(1-0.5)0.2(1 - 0.7) + (1 — 0.5)(1 - 0.2)0.7

2/22

The probabilistic query evaluation problem (PQE(q))

Definition: problem PQE(q), for g a Boolean query

Input: a tuple-independent probabilistic database D
Output: Pr(D = q)

3/22

The probabilistic query evaluation problem (PQE(q))

Definition: problem PQE(q), for g a Boolean query

Input: a tuple-independent probabilistic database D
Output: Pr(D = q)

e Dalvi and Suciu [JACM'12] have shown a dichotomy on the
(data) complexity of PQE(q) for unions of conjunctive
queries:

e either PQE(q) € , and ¢ is called “
e or PQE(q) is FP*"-hard, and q is called "unsafe”

3/22

The probabilistic query evaluation problem (PQE(q))

Definition: problem PQE(q), for g a Boolean query
Input: a tuple-independent probabilistic database D
Output: Pr(D = q)

e Dalvi and Suciu [JACM'12] have shown a dichotomy on the
(data) complexity of PQE(q) for unions of conjunctive
queries:

e either PQE(q) € , and ¢ is called “
e or PQE(q) is FP*"-hard, and q is called "unsafe”

e Their algorithm for a safe query g essentially uses three rules:
— Independence: Pr(A A B) = Pr(A) x Pr(B) when A, B are
independent events

3/22

The probabilistic query evaluation problem (PQE(q))

Definition: problem PQE(q), for g a Boolean query
Input: a tuple-independent probabilistic database D
Output: Pr(D = q)

e Dalvi and Suciu [JACM'12] have shown a dichotomy on the
(data) complexity of PQE(q) for unions of conjunctive
queries:

e either PQE(q) € , and ¢ is called “
e or PQE(q) is FP*"-hard, and q is called "unsafe”

e Their algorithm for a safe query g essentially uses three rules:
— Independence: Pr(A A B) = Pr(A) x Pr(B) when A, B are

independent events
— Negation: Pr(=A) =1 — Pr(A)

3/22

The probabilistic query evaluation problem (PQE(q))

Definition: problem PQE(q), for g a Boolean query
Input: a tuple-independent probabilistic database D
Output: Pr(D = q)

e Dalvi and Suciu [JACM'12] have shown a dichotomy on the
(data) complexity of PQE(q) for unions of conjunctive
queries:

e either PQE(q) € , and ¢ is called “
e or PQE(q) is FP*"-hard, and q is called "unsafe”

e Their algorithm for a safe query g essentially uses three rules:
— Independence: Pr(A A B) = Pr(A) x Pr(B) when A, B are
independent events
— Negation: Pr(=A) =1 — Pr(A)
— Inclusion—exclusion: Pr(AV BV CV ...) = Pr(A) + Pr(B) +
...~ Pr(AAB)—PrH(AAC)— ...+ PAABAC)+...
3/22

Provenance

Definition

The provenance Prov(q,) of query g on database D is the
Boolean function with facts of D as variables and such that for
every valuation 7 : D — {0,1}, Prov(q, D) evaluates to TRUE
under 7 if and only if {f € D|7(f) =1} Eq

4/22

Provenance

Definition

The provenance Prov(q,) of query g on database D is the
Boolean function with facts of D as variables and such that for
every valuation 7 : D — {0,1}, Prov(q, D) evaluates to TRUE
under 7 if and only if {f € D|7(f) =1} Eq

Possible representations:

e Boolean formulas
e Binary Decision Diagrams (OBDDs, FBDDs, etc)

e Boolean circuits

4/22

Provenance: example

Likes
Alice Bob
D= Alice John
Bob Bob
John Bob

q=3xy,z : L(x,2) ANL(y,z) Ax#y

5/22

Provenance: example

Likes Prov(q, D) = [L(A, B) A L(B, B)]
Alice Bob V [L(A, B) A L(J, B)]
D="plice John Vv [L(B, B) A L(J, B)]
Bob Bob
John Bob

g=3x,y,z : L(x,z) ANL(y,z) Ax # y

5/22

Provenance: example

Likes
Alice Bob
D= Alice John
Bob Bob
John Bob
g=13xy,z

L(x,z2)ANL(y,z) Ax#y

5/22

Provenance: example

Likes Prov(q, D) = A/ R
Alice Bob
D= Alice John %/l ’}A’B) LA B) \A
Bob Bob A / \

John Bob

q=3xy,z : L(x,2) ANL(y,z) Ax#y

We have Pr(D = q) = Pr(Prov(g, D) = true)

5/22

Provenance in knowledge compilation formalisms

Pr(D |= q) = Pr(Prov(g, D) = true)

— If we can, in PTIME, compute Prov(g, D) in a formalism from
knowledge compilation that allows PTIME probability
computation, we can solve PQE(q) in PTIME

6/22

Provenance in knowledge compilation formalisms

Pr(D |= q) = Pr(Prov(g, D) = true)

— If we can, in PTIME, compute Prov(g, D) in a formalism from
knowledge compilation that allows PTIME probability
computation, we can solve PQE(q) in PTIME

e free or ordered decision diagrams (OBDDs, FBDDs)

6/22

Provenance in knowledge compilation formalisms

Pr(D |= q) = Pr(Prov(g, D) = true)

— If we can, in PTIME, compute Prov(g, D) in a formalism from
knowledge compilation that allows PTIME probability
computation, we can solve PQE(q) in PTIME

e free or ordered decision diagrams (OBDDs, FBDDs)
e deterministic and decomposable Boolean circuits (d-Ds)

6/22

Provenance in knowledge compilation formalisms

Pr(D |= q) = Pr(Prov(g, D) = true)

— If we can, in PTIME, compute Prov(g, D) in a formalism from
knowledge compilation that allows PTIME probability
computation, we can solve PQE(q) in PTIME

e free or ordered decision diagrams (OBDDs, FBDDs)
e deterministic and decomposable Boolean circuits (d-Ds)

e Dan Suciu's talk: the safe UCQs for which this is possible with
OBDDs are exactly the UCQs

— This talk: what about d-Ds?

6/22

What are deterministic and decomposable circuits (d-Ds)?

Let C be a Boolean circuit

e a A-gate g is decomposable if any two inputs gates g1, g»> of g
depend on

7/22

What are deterministic and decomposable circuits (d-Ds)?

Let C be a Boolean circuit

e a A-gate g is decomposable if any two inputs gates g1, g»> of g
depend on

e a V-gate g is deterministic if any two inputs gates g1, 4> of g
are

7/22

What are deterministic and decomposable circuits (d-Ds)?

Let C be a Boolean circuit

e a A-gate g is decomposable if any two inputs gates g1, g»> of g
depend on

e a V-gate g is deterministic if any two inputs gates g1, 4> of g
are

e the circuit C is a d-D if all its A-gates are decomposable and
all its \V-gates are deterministic

7/22

What are deterministic and decomposable circuits (d-Ds)?

Let C be a Boolean circuit

e a /\-gate g is decomposable if any two inputs gates g1, g» of g
depend on disjoint sets of variables

e a \/-gate g is deterministic if any two inputs gates g1, g» of g
are mutually exclusive

e the circuit C is a d-D if all its A-gates are decomposable and
all its \V-gates are deterministic

— To obtain the probability, replace A-gates by x, V-gates by +,
—-gates by 1 — x, and evaluate. In other words, use the
following rules:

— Independence: Pr(A A B) = Pr(A) x Pr(B) when A, B are
independent events

— Negation: Pr(—A) =1 — Pr(A)

— Disjoint Events: Pr(AV B) = Pr(A) + Pr(B) for A, B disjoint

events 7/22

d-Ds: example

Likes A A
Alice Bob / . / \
- (A,B) -L(AB) A
D= Alice John I /\
Bob Bob L(B,B) L(J.B)
John Bob -L(B,B) ~L(J,B)

g=3x,y,z : L(x,z) AL(y,z) Ax #y

8/22

The Intensional-Extensional problem

Intensional-Extensional (open) problem for d-Ds
For every safe UCQ g, can we compute in PTIME its provenance
on a database D as a deterministic and decomposable circuit?

9/22

The Intensional-Extensional problem

Intensional-Extensional (open) problem for d-Ds
For every safe UCQ g, can we compute in PTIME its provenance
on a database D as a deterministic and decomposable circuit?

In other words, can we replace the inclusion—exclusion rule by the
disjunction rule?

9/22

The Intensional-Extensional problem

Intensional-Extensional (open) problem for d-Ds
For every safe UCQ g, can we compute in PTIME its provenance
on a database D as a deterministic and decomposable circuit?

In other words, can we replace the inclusion—exclusion rule by the
disjunction rule?

— This approach is more modular than Dalvi and Suciu’s original
algorithm for safe UCQs, and it would allow us to do more
than probabilistic evaluation:

) , etc.

9/22

Solving the problem for a specific
class of UCQs

Main result from

e Focus on a class of UCQs, denoted H (defined next slide)

e |t had been conjectured that for some safe queries g € H, the
provenance of g cannot be computed in PTIME as d-Ds
— because these are the simplest queries for which Dalvi and

Suciu's algorithm uses
— because this conjecture had been proven for more restricted
formalisms of knowledge compilation (d-SDNNFs, dec-DNNFs)

Main result
For every (fixed) safe query g € #, being given as input a
database D, we can compute in PTIME a d-D that represents

Prov(q, D).

10/22

The H queries

e Let k >1and R,S1,...,5k, T be pairwise distinct relational
predicates, with R and T unary and S; binary. Define the
queries hy ; for 0 < i < k:

11/22

The H queries

e Let k >1and R,S1,...,5k, T be pairwise distinct relational
predicates, with R and T unary and S; binary. Define the
queries hy ; for 0 < i < k:

e hio def IxTy R(x) A Si(x,y);

o hy; 353y Si(x,¥) A Sizi(x,y) for 1 < i < k;
o hy o Ix3y Sk(x,y) A T(y).

11/22

The H queries

e Let k >1and R,S1,...,5k, T be pairwise distinct relational
predicates, with R and T unary and S; binary. Define the
queries hy ; for 0 < i < k:

o heo ™ 3xTy R(x) A Si(x,y);
o hy e IxTy Si(x,¥) A Siz1(x,y) for 1 < i< k;
o hik E IxJy Sk(x,y) A T(y).
o Hy def the set of UCQs that can be formed from the queries
hi.i, i.e., positive Boolean combinations of those queries

o H = Uiozl Hi

11/22

Proof technique (1/4): representing H queries

Write [k](¥¥ {0,...,k}. Let us represent a query g € Hy as

follows:

12/22

[72]
g
-
Q
=
(o
a0
c
pras}
=
Q
(7]
(4]
et
Q
[¢)]
bt
—~
4
>~
L
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
o
=
(a

., k}. Let us represent a query g € Hy as

Write [k] % {0,..

follows:

Boolean

)

e the (Hasse diagram of

lattice of 2[K]

12/22

Proof technique (1/4): representing H queries

Write [Kk] & {0,...,k}. Let us represent a query g € Hy as

follows:
e the (Hasse diagram of) Boolean
lattice of 2[A]

e cach node v C [k] of the graph
represents a subquery g, !

(Acey bie) A (Neepiqye ~hee)-
(Note that g, is not a UCQ)

12/22

Proof technique (1/4): representing H queries

Write [Kk] & {0,...,k}. Let us represent a query g € Hy as

follows:

e the (Hasse diagram of) Boolean
lattice of 21K

e cach node v C [k] of the graph
represents a subquery g, =
(Acey bie) A (Neepiqye ~hee)-
(Note that g, is not a UCQ)

e (in particular, every database D

satisfies exactly one subquery g,)

12/22

Proof technique (1/4): representing H queries

Write [Kk] & {0,...,k}. Let us represent a query g € Hy as

follows:

e the (Hasse diagram of) Boolean
lattice of 2[A]

e cach node v C [k] of the graph
represents a subquery g, !

(Acey bie) A (Neepiqye ~hee)-
(Note that g, is not a UCQ)

(in particular, every database D

satisfies exactly one subquery g,)

e some nodes are , and
g = the disjunction of the
subqueries ¢, that are represented

by the colored nodes 1222

Proof technique (2/4): basic queries

Proposition (Fink & Olteanu [TODS’16])

For any adjacent nodes v, v/ of the graph, being given as input a
database D, we can compute in PTIME a d-D representing
Prov(q, V q,/, D).

13/22

Proof technique (2/4): basic queries

Proposition (Fink & Olteanu [TODS’16])

For any adjacent nodes v, v/ of the graph, being given as input a
database D, we can compute in PTIME a d-D representing
Prov(q, V q,/, D).

e Idea: starting from g, we will entirely uncolor the graph by
using multiple times the following operations:
e Uncolor two adjacent nodes that are colored
e Color two adjacent nodes that were not colored

13/22

Proof technique (2/4): basic queries

Proposition (Fink & Olteanu [TODS’16])

For any adjacent nodes v, v/ of the graph, being given as input a
database D, we can compute in PTIME a d-D representing
Prov(q, V q,/, D).

e Idea: starting from g, we will entirely uncolor the graph by
using multiple times the following operations:
e Uncolor two adjacent nodes that are colored
e Color two adjacent nodes that were not colored
— Simultaneously, we build a deterministic and decomposable

circuit for the provenance of g
13/22

Uncoloring:

c
S
pras}
(6]
=
e
fras}
w0
=
o
(@)
=
=
(8]
=
(@)
—~
4
>~
o
~
(4]
=
g
=
=S
Q
Q
-
-
o
(o]
=
(a

14 /22

Uncoloring:

c
S
pras}
(6]
=
e
fras}
w0
=
o
(@)
=
=
(8]
=
(@)
—~
4
>~
o
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Prov(q, D) =

Prov(q', D)

S

\a

>
o
>
>
o
—
>
<
=1
=}

14 /22

c
S
pras}
(6]
=
e
fras}
w0
=
o
(@)
=
=
(8]
=
(@)
—~
4
>~
o
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Uncoloring:

Prov(q, D) =

Prov(q', D)

S

\s

>
o
>
>
o
—
>
i<
=1
=}

Ry
=
=)
2
()
=}
=
-
c
o
O
C
()
=
T

14 /22

c
S
pras}
(6]
=
e
fras}
w0
=
o
(@)
=
=
(8]
=
(@)
—~
4
>~
o
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Coloring: (Guy Van den Broeck's trick)

Prov(q, D) =

14 /22

c
S
pras}
(6]
=
e
fras}
w0
=
o
(@)
=
=
(8]
=
(@)
—~
4
>~
o
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Coloring: (Guy Van den Broeck's trick)

Prov(q, D) =

14 /22

c
S
pras}
(6]
=
e
fras}
w0
=
o
(@)
=
=
(8]
=
(@)
—~
4
>~
o
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Coloring: (Guy Van den Broeck's trick)

Prov(q, D) =

re—

(¢'.D)

Prov

Ry
=
=)
2
()
=}
=
-
c
o
O
C
()
=
T

14 /22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Proposition

A query g € Hy is safe if and only if the two partitions of the

graph contain the same number of colored nodes

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Proposition

A query g € Hy is safe if and only if the two partitions of the

graph contain the same number of colored nodes

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Proposition

A query g € Hy is safe if and only if the two partitions of the

graph contain the same number of colored nodes

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Proposition

A query g € Hy is safe if and only if the two partitions of the

graph contain the same number of colored nodes

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Proposition

A query g € Hy is safe if and only if the two partitions of the

graph contain the same number of colored nodes

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Proposition

A query g € Hy is safe if and only if the two partitions of the

graph contain the same number of colored nodes

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Proposition

A query g € Hy is safe if and only if the two partitions of the

graph contain the same number of colored nodes

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Proposition

A query g € Hy is safe if and only if the two partitions of the

graph contain the same number of colored nodes

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Proposition

A query g € Hy is safe if and only if the two partitions of the

graph contain the same number of colored nodes

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Proposition

A query g € Hy is safe if and only if the two partitions of the

graph contain the same number of colored nodes

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Proposition

A query g € Hy is safe if and only if the two partitions of the

graph contain the same number of colored nodes

15/ 22

o
=
o
[
~
a0
Q
=
pras}
~
e
o
(]
c
=
o
-
2
o
=
—~
4
>~
4
~
(4]
=
8=)
=
=S
Q
Q
-
-
o
(o]
=
(a

Proposition

A query g € Hy is safe if and only if the two partitions of the

graph contain the same number of colored nodes

15/ 22

The non-cancelling intersections
conjecture

Co-workers

Ongoing work with Antoine Amarilli, Louis Jachiet and Dan Suciu

16 /22

Intersection lattices, Mobius function and Inclusion-Exclusion

o Let F ={S1,...,S,} be a finite family of finite sets, pairwise
incomparable
— Example: F = {{a, b}, {a,c},{b, c},{d}}

17 /22

Intersection lattices, Mobius function and Inclusion-Exclusion

o Let F ={S1,...,S,} be a finite family of finite sets, pairwise
incomparable
— Example: F = {{a, b}, {a,c},{b, c},{d}}
e Let Lz be its intersection lattice

17 /22

Intersection lattices, Mobius function and Inclusion-Exclusion

o Let F ={S1,...,S,} be a finite family of finite sets, pairwise
incomparable
— Example: F = {{a, b}, {a,c},{b, c},{d}}
e Let ILx be its intersection lattice:

e Let :Lr — Z be the
Méobius function defined by

17 /22

Intersection lattices, Mobius function and Inclusion-Exclusion

o Let F ={S1,...,S,} be a finite family of finite sets, pairwise
incomparable
— Example: F = {{a, b}, {a,c},{b, c},{d}}
e Let ILx be its intersection lattice:

e Let :Lr — Z be the
Méobius function defined by
° (M=1

17 /22

Intersection lattices, Mobius function and Inclusion-Exclusion

o Let F ={S1,...,S,} be a finite family of finite sets, pairwise
incomparable
— Example: F = {{a, b}, {a,c},{b, c},{d}}
e Let ILx be its intersection lattice:

e Let :Lr — Z be the
Méobius function defined by
° (M=1
o ur(l) =
—2reny nr(l’)

I">1
forl elLg | AT

17 /22

Intersection lattices, Mobius function and Inclusion-Exclusion

o Let F ={S1,...,S,} be a finite family of finite sets, pairwise
incomparable
— Example: F = {{a, b}, {a,c},{b, c},{d}}
e Let ILx be its intersection lattice:

e Let :Lr — Z be the
Méobius function defined by
° (M=1
o ur(l) =
—2reny nr(l’)

I'>1
for | €Lr, | £ T
Fact (coefficients of the Inclusion-Exclusion formula)

| Uy Sil = = Yieny wr(l) x |1]
I£T

17 /22

Intersection lattices, Mobius function and Inclusion-Exclusion

o Let F ={S1,...,S,} be a finite family of finite sets, pairwise
incomparable
— Example: F = {{a, b}, {a,c},{b, c},{d}}
e Let ILx be its intersection lattice:

e Let :Lr — Z be the
Méobius function defined by
° (M=1
o ur(l) =
—2reny nr(l’)

I'>1
for | €Lr, | £ T
Fact (coefficients of the Inclusion-Exclusion formula)
| Uiz Sil = = 2Zienz nr(l) x 1]
1T

e Define the non-cancelling intersections of F by

NCI(F) ¥ {1 e Ly |1 # T and pr(l) # 0} 1722

Non-cancelling intersections conjecture

e For two sets S, T such that SN T = (), define the disjoint

unionSL.JTdeSUT

e For two sets S, T such that T C S, define the subset

def

complement 5{ T=S\T

18/22

Non-cancelling intersections conjecture

e For two sets S, T such that SN T = (), define the disjoint

union S U TdéfSUT

e For two sets S, T such that T C S, define the subset

def

complement 5{ T=S\T

e For a set family 7, define o(7) to be the smallest set family
which contains all the sets of 7 and is closed under disjoint

union and subset complement

18/22

Non-cancelling intersections conjecture

e For two sets S, T such that SN T = (), define the disjoint

unionSL.JTdeSUT

e For two sets S, T such that T C S, define the subset

def

complement 5{ T=S\T

e For a set family 7, define o(7) to be the smallest set family
which contains all the sets of 7 and is closed under disjoint

union and subset complement

Non-cancelling intersections conjecture (NCI for short)
Let F = {S1,...,5n} be a finite family of finite sets.
Then UL, Si € o(NCI(F)).

18/22

Example 1

19/22

Example 1

— We have U, S; = {a, b, ¢, d} = (({a} U {b}) U {c}) U {d}

19/22

Example 1

— We have U, S; = {a, b, ¢, d} = (({a} U {b}) U {c}) U {d}

That was easy...

19/22

Example 2

‘{a,c.d,g}(

[{a.b,d,F}]-1 [{a,b,c.e}] {a,h}]

20/22

Example 2

[{a,b.d, f}\

‘{acdg} ‘{abce}‘ {a,h}‘

SN SN N

{a,c,d, g} {a,c} {a b,d,f} {ad} {ab,c,e} {a b}

20/22

Example 3

0
AN
\ ab'c’e’
/ N\
v} ab’
N
U abbd
/ N\
0 ab
/ N\
S
\7 O
vl ab’
/
\ >b’cf

i abc'f!

abce ab 21 / 22

Conclusion

e We have sketched a proof that we can build in PTIME d-Ds
for the provenance of safe queries in the class H

e We have stated a more general conjecture about intersection
lattices: the non-cancelling intersections conjecture

22/22

Conclusion

e We have sketched a proof that we can build in PTIME d-Ds
for the provenance of safe queries in the class H

e We have stated a more general conjecture about intersection
lattices: the non-cancelling intersections conjecture

— Counterexample search by bruteforce: no counterexample so
far...

22/22

Conclusion

e We have sketched a proof that we can build in PTIME d-Ds

for the provenance of safe queries in the class H

e We have stated a more general conjecture about intersection
lattices: the non-cancelling intersections conjecture
— Counterexample search by bruteforce: no counterexample so
far...
— We have some partial positive results: a reformulation of the
conjecture that works in the Boolean lattices, and a proof for

specific subcases of this reformulation

Thanks for your attention!

22/22

Bibliography i

[3 Nilesh N. Dalvi and Dan Suciu.
The dichotomy of probabilistic inference for unions of
conjunctive queries.
Journal of the ACM, 59(6):30, 2012.

[4 Robert Fink and Dan Olteanu.
Dichotomies for queries with negation in probabilistic
databases.
ACM Transactions on Database Systems (TODS), 41(1):4,
2016.

https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/fo-tods16.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/fo-tods16.pdf

Bibliography ii

[1 Mikaé&l Monet.
Solving a special case of the intensional vs extensional
conjecture in probabilistic databases.
In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 149-163,
2020.

https://arxiv.org/abs/1912.11864
https://arxiv.org/abs/1912.11864

	Recap from Dan Suciu's talk
	Tuple-independent probabilistic databases
	Provenance and knowledge compilation
	The Intensional-Extensional problem

	Solving the problem for a specific class of UCQs
	The non-cancelling intersections conjecture
	Appendix

