Probabilistic Query Evaluation on Bounded-Treewidth Instances

SIGMOD/PODS PH.D. SYMPOSIUM JUNE 26, 2016, SAN FRANCISCO

> Mikaël Monet Supervised by Pierre Senellart

Context

Boolean queries (yes/no) on relational instances

Context

- Boolean queries (yes/no) on relational instances
- We want the answer to contain more information than just « yes/no »:
 - Add uncertainty
 - ▶ Obtain provenance information

Context

- Boolean queries (yes/no) on relational instances
- We want the answer to contain more information than just « yes/no »:
 - Add uncertainty
 - Obtain provenance information
- We need restrictions for all of this to be tractable

A probabilistic database

R		
а	d	
f	е	
d	а	
b	е	

S		
d	е	
f	С	
а	е	
С	е	
0		

A probabilistic database

	H .	
R		
а	d	
f	е	
d	а	
b	е	

S	
е	
С	
е	
е	

S		
d	е	0.005
f	С	0.9
а	е	0.7
С	е	0.23

Q		
С	е	f

Q			
С	е	f	0.66

A probabilistic database

TID model

Probability of a possible world

R		
а	d	0.2
f	е	0.7
d	а	0.13
b	е	0.81

	S		
d	е	0.005	
f	С	0.9	
а	е	0.7	
С	е	0.23	

Q			
С	е	f	0.66

4

R		
а	d	0.2
f	е	0.7
d	а	0.13
b	е	0.81

S		
d	e 0.005	
f	С	0.9
а	e 0.7	
С	е	0.23

Q			
С	е	f	0.66

R

Probability Pr(I) of this possible world = 0.7*0.13*0.23*0.66

Probability of a possible world

R			
а	d	0.2	
f	е	0.7	
d	а	0.13	
b	е	0.81	

	S		
d	е	0.005	
f	С	0.9	
а	е	0.7	
С	е	0.23	

Q			
С	е	f	0.66

R

d

Probability Pr(I) of this possible world = 0.7*0.13*0.23*0.66*(1-0.2)*(1-0.81)*(1-0.005)*(1-0.9)*(1-0.7)

Probabilistic query evaluation (PQE)

Focus on Boolean queries (yes/no)

Probabilistic query evaluation (PQE)

- Focus on Boolean queries (yes/no)
- Probability of a query Q on probabilistic instance T:

$$P(Q) = \sum_{I \subseteq \mathfrak{T}, I \models \mathbf{Q}} Pr(I)$$

Probabilistic query evaluation (PQE)

- Focus on Boolean queries (yes/no)
- ightharpoonup Probability of a query ${f Q}$ on probabilistic instance ${f \mathfrak{T}}$:

$$P(Q) = \sum_{I \subseteq \mathfrak{T}, I \models \mathbf{Q}} Pr(I)$$

Problem: in general #P-hard

3 possible directions

- Approximate
- Restrict queries
- Restrict instances

Monte-Carlo sampling

- Monte-Carlo sampling
- Inconvenient: running time quadratic in desired precision

- Monte-Carlo sampling
- Inconvenient: running time quadratic in desired precision
 - ⇒ Not adequate for low probabilities.

► [Dalvi and Suciu 2012] shows the following dichotomy for any UCQ Q:

- ► [Dalvi and Suciu 2012] shows the following dichotomy for any UCQ Q:
- Either PQE is PTIME on all intances

- ► [Dalvi and Suciu 2012] shows the following dichotomy for any UCQ Q:
- Either PQE is PTIME on all intances
- Or PQE is #P-hard on all instances

- [Dalvi and Suciu 2012] shows the following dichotomy for any UCQ Q:
- Either PQE is PTIME on all intances
- Or PQE is #P-hard on all instances
- Simple conjunctive query ∃x,y R(x),S(x,y),T(y) is already #P-hard!

- ► [Dalvi and Suciu 2012] shows the following dichotomy for any UCQ Q:
- Either PQE is PTIME on all intances
- Or PQE is #P-hard on all instances
- Simple conjunctive query ∃x,y R(x),S(x,y),T(y) is already #P-hard!
- Criterion is too crisp

3) Restricting the shape of the instances

- Bound the *treewidth* of instances by a constant
- Treewidth: measure used to tell how far a graph is from being a tree

R			5	3
а	d		d	е
f	е		f	С
			а	е
d	а		С	е
b	е			

	Q	
С	е	f

	16		
F	?	3,	3
a	d	d	е
f	е	f	C
_	C	а	е
d	а	С	е
b	е		

	Q	
С	е	f

R		J.	5	3
а	d		d	е
f	е		f	C
		H	а	е
d	а		С	е
b	е			

S		
d	е	
f	С	
а	е	
С	е	
С	е	

е

C

Divide and conquer!

Monet Mikaël

Monet Mikaël

Boolean circuit (AND, OR, NOT gates)

- Boolean circuit (AND, OR, NOT gates)
- Inputs = the facts of I

- Boolean circuit (AND, OR, NOT gates)
- Inputs = the facts of I

For every $\nu : I \rightarrow \{\text{true, false}\}\$ $\nu(I) \models Q \text{ iff } \nu(C) = 1$

Tree automata

- A bottom-up deterministic tree automaton on $\{a, b\}$ -trees is a tuple $A = (Q, F, \iota, \delta)$ where :
- Q : finite set of states
- F ⊆ Q : accepting states
- ightharpoonup 1: {a, b} ightharpoonup Q, determining state for the leaves
- ▶ δ : {a, b} X Q² \rightarrow Q , determining the state for internal nodes

- ► F = {○}

- ► F = { }
- ▶ $\iota = \{ (a, \bigcirc), (b, \bigcirc) \}$

- ► F = { }
- ▶ $\iota = \{ (a, \bigcirc), (b, \bigcirc) \}$

lab	q1	q2	out
а	0	0	0
а		?	0
а	?	0	0
а	0	?	0
а	?	0	0
b	0	0	
b	0	0	0
b		0	
b	0	0	0
b	0	?	0
b	?	0	0

- ► F = {○}
- ▶ $\iota = \{ (a, \bigcirc), (b, \bigcirc) \}$

lab	q1	q2	out
а	0	0	0
а		?	0
а	?	0	0
а	0	?	0
а	?	0	0
b	0	0	0
b	0	0	0
b		0	0
b		0	0
b	0	?	0
b	?	0	0

Monet Mikaël

Initialization of the leaves

- ► F = {○}
- ▶ $\iota = \{ (a, \bigcirc), (b, \bigcirc) \}$

lab	q1	q2	out
а	0	0	0
а		?	0
а	?	0	0
а	0	?	0
а	?	0	0
b	0	0	0
b	0	0	0
b		0	0
b		0	0
b	0	?	0
b	?	0	0

Initialization of the leaves

- ► F = {○}
- ▶ $\iota = \{ (a, \bigcirc), (b, \bigcirc) \}$

lab	q1	q2	out
а	0	0	0
а		?	0
а	?	0	0
а	0	?	0
а	?	0	0
b	0	0	
b	0	0	0
b		0	
b		0	0
b	0	?	0
b	?	0	0

Internal nodes

- ► F = {○}
- ▶ $\iota = \{ (a, \bigcirc), (b, \bigcirc) \}$

lab	q1	q2	out
а	0	0	0
а		?	0
а	?	0	0
а	0	?	0
а	?	0	0
b	0	0	0
b	0	0	0
b		0	0
b		0	0
b	0	?	0
b	?	0	0

Internal nodes

- ► F = {○}
- ▶ $\iota = \{ (a, \bigcirc), (b, \bigcirc) \}$

IUD	qı	qz	OUI
a	0	0	0
а		?	0
а	?		0
а	0	?	0
а	?	0	0
b	0	0	
b	0	0	0
b		0	
b	0	0	0
b	0	?	0
b	?	0	0

And so on...

- ► F = {○}
- $\iota = \{ (a, \bigcirc), (b, \bigcirc) \}$

lab	q1	q2	out
а	0	0	0
а		?	0
а	?	0	0
а	0	?	0
а	?	0	0
b	0	0	0
b	0	0	0
b		0	0
b		0	0
b	0	?	0
b	?	0	0

- ► F = {○}
- ▶ $\iota = \{ (a, \bigcirc), (b, \bigcirc) \}$

lab	q1	q2	out
а	0	0	0
а		?	0
а	?	0	0
а	0	?	0
а	?	0	0
b	0	0	0
b	0	0	0
b		0	0
b		0	0
b	0	?	0
b	?	0	0

Monet Mikaël

Major drawbacks

In general, computing the automaton has nonelementary complexity in the query

Major drawbacks

- In general, computing the automaton has nonelementary complexity in the query
- Exponential dependence in the instance treewidth

Major drawbacks

- In general, computing the automaton has nonelementary complexity in the query
- Exponential dependence in the instance treewidth

Natural question: restrict queries to obtain tractable combined complexity of PQE on bounded treewidth instances?

Bad news...

We proved that:

Path queries on tree instances (treewidth = 1) is already #P-hard. (reduction from #MONOTONE-2-SAT)

Bad news...

▶ We proved that:

Path queries on tree instances (treewidth = 1) is already #P-hard. (reduction from #MONOTONE-2-SAT)

What to do now?

Lower ambitions

Restrict queries to obtain tractable combined complexity of probabilistic query evaluation on bounded treewidth instances?

Lower ambitions

- Restrict queries to obtain tractable combined complexity of probabilistic query evaluation on bounded treewidth instances?
- We now aim at a tractable combined complexity for deterministic query evaluation: which queries, which automata, which provenance representation?

$$\delta(a,q) = (q,l) \vee [$$

$$\delta(a,q) = (q,l) \vee [(q,p) \wedge$$

$$\delta(a,q) = (q,l) \vee [(q,p) \wedge (q',r)]$$

Can navigate the tree in every direction, can launch simultaneous runs

$$\delta(a,q) = (q,l) \vee [(q,p) \wedge (q',r)]$$

Intuition: less things to remember, more parallelizable

Boolean circuits with cycles

- Boolean circuits with cycles
- Least fixed-point semantics

- Boolean circuits with cycles
- Least fixed-point semantics
- Beware of negations!

- Boolean circuits with cycles
- Least fixed-point semantics
- Beware of negations!
- Linear time evaluation

- Boolean circuits with cycles
- Least fixed-point semantics
- ▶ Beware of negations!
- Linear time evaluation
- Can be acyclified in quadratic time

- Boolean circuits with cycles
- Least fixed-point semantics
- Beware of negations!
- Linear time evaluation
- Can be acyclified in quadratic time
- Are they more concise?

Thanks for your attention!