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We write G ~+ H if there exists a homomorphism from G to H
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Complexity of Probabilistic Graph Homomorphism

Question: what is the complexity of PHom

depending on the class G of query graphs and class #H of instance
graphs?
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Question: what is the complexity of PHom

depending on the class G of query graphs and class #H of instance
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Like CSP but with probabilities!
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e Fixthe instance graphH= * ® NP-hard

» Fix the query graph G = > > #P-hard

To make PHom tractable, we must restrict both sides
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G = one-way paths (1WP), H = polytrees (PT)
T, S, S, .S, T, /\ \
G: > > > >
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S

+ prob. for each edge

PHom of 1WP on PT is #P-hard!
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G = two-way paths, H = polytrees, without labels

* G = two-way paths (2WP), # = polytrees (PT)
#P-hard

Global orientation of the query has an impa\ct/ ’\
VANVAN
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G = one-way paths, H = downwards trees
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G = one-way paths, H = downwards trees
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G = downwards trees, = downwards trees, with labels

* G = downwards trees (DWT), # = downwards trees
e #P-hard
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16 H-

1WP 2WP DWT PT Connected

1WP
2WP
DWT
PT
Connected

1G H—

> 2 labels
PTIME

#P-hard

1WP 2WP DWT PT Connected

1WP
2WP
DWT
PT
Connected

No labels

PTIME \
#P-hard
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» We identified the complexity of PHom for a variety of graph
classes

e Showed the importance of various features on the problem:
labels, global orientation, branching, connectedness

Future work:

e What is the hidden logic behind these tables?
e Can we get a dichotomy?

Thank you for your attention!
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