Probabilistic Graph Homomorphism

Antoine Amarilli¹, **Mikaël Monet**^{1,2}, Pierre Senellart^{2,3} September 15th, 2017

¹LTCI, Télécom ParisTech, Université Paris-Saclay; Paris, France

²Inria Paris; Paris, France

³École normale supérieure, PSL Research University; Paris, France

A directed graph H = (V, E)

A directed graph H = (V, E)With labels $\lambda : E \rightarrow \Sigma$

$$\xrightarrow{R} \xrightarrow{S}$$

A directed graph H = (V, E)With labels $\lambda : E \rightarrow \Sigma$

With independent probability annotations $\pi: E \rightarrow [0, 1]$ on edges

$$\xrightarrow{R} \xrightarrow{S} \xrightarrow{S}$$

A directed graph H = (V, E)With labels $\lambda : E \to \Sigma$ With independent probability annotations $\pi : E \to [0, 1]$ on edges

$$\xrightarrow{R} \xrightarrow{S} \xrightarrow{S}$$

A directed graph H = (V, E)With labels $\lambda : E \to \Sigma$ With independent probability annotations $\pi : E \to [0, 1]$ on edges

$$\xrightarrow{R}$$
 \xrightarrow{S} $\xrightarrow{.2}$

$$\xrightarrow{.5 \times .2} R \xrightarrow{S} \rightarrow$$

A directed graph H = (V, E)With labels $\lambda : E \to \Sigma$ With independent probability annotations $\pi : E \to [0, 1]$ on edges

$$\xrightarrow{R}$$
 \xrightarrow{S} $\xrightarrow{.2}$

$$\begin{array}{c|c} .5 \times .2 \\ \hline R \\ \hline \end{array} \xrightarrow{S} \end{array} \begin{array}{c|c} .5 \times (1 - .2) \\ \hline R \\ \hline \end{array}$$

A directed graph H = (V, E)With labels $\lambda : E \to \Sigma$ With independent probability annotations $\pi : E \to [0, 1]$ on edges

$$\xrightarrow{R}$$
 \xrightarrow{S} $\xrightarrow{.2}$

A directed graph H = (V, E)With labels $\lambda : E \to \Sigma$ With independent probability annotations $\pi : E \to [0, 1]$ on edges

$$\xrightarrow{R} \xrightarrow{S} \xrightarrow{S}$$

$$G = (V_G, E_G, \lambda_G)$$
 $H = (V_H, E_H, \lambda_H).$

 $G = (V_G, E_G, \lambda_G) \qquad H = (V_H, E_H, \lambda_H).$ $h : V_G \to V_H \text{ is a homomorphism iff:}$

• $(x,y) \in E_G \implies (h(x),h(y)) \in E_H$

•
$$(x,y) \in E_G \implies \lambda_G((x,y)) = \lambda_H((h(x),h(y)))$$

•
$$(x,y) \in E_G \implies (h(x),h(y)) \in E_H$$

•
$$(x,y) \in E_G \implies \lambda_G((x,y)) = \lambda_H((h(x),h(y)))$$

$$G = x \xrightarrow{R} y \xrightarrow{S} z \xleftarrow{S} t$$
$$H = \bullet \xrightarrow{R} \bullet \xrightarrow{S} \bullet \xleftarrow{R} \bullet$$

•
$$(x,y) \in E_G \implies (h(x),h(y)) \in E_H$$

•
$$(x,y) \in E_G \implies \lambda_G((x,y)) = \lambda_H((h(x),h(y)))$$

$$G = X \xrightarrow{R} Y \xrightarrow{S} z \xleftarrow{S} t$$
$$H = \bullet \xrightarrow{R} \bullet \xrightarrow{S} \bullet \xleftarrow{R} \bullet$$

•
$$(x,y) \in E_G \implies (h(x),h(y)) \in E_H$$

•
$$(x,y) \in E_G \implies \lambda_G((x,y)) = \lambda_H((h(x),h(y)))$$

$$G = x \xrightarrow{R} y \xrightarrow{S} z \xleftarrow{S} t$$
$$H = \bullet \xrightarrow{R} \bullet \xrightarrow{S} \bullet \xleftarrow{R} \bullet$$

•
$$(x,y) \in E_G \implies (h(x),h(y)) \in E_H$$

•
$$(x,y) \in E_G \implies \lambda_G((x,y)) = \lambda_H((h(x),h(y)))$$

$$G = x \xrightarrow{R} y \xrightarrow{S} z \xleftarrow{S} t$$
$$H = \bullet \xrightarrow{R} \bullet \xrightarrow{S} \bullet \xleftarrow{R} \bullet$$

•
$$(x,y) \in E_G \implies (h(x),h(y)) \in E_H$$

•
$$(x,y) \in E_G \implies \lambda_G((x,y)) = \lambda_H((h(x),h(y)))$$

$$G = x \xrightarrow{R} y \xrightarrow{S} z \xleftarrow{S} t$$
$$H = \bullet \xrightarrow{R} \bullet \xrightarrow{S} \bullet \xleftarrow{R} \bullet$$

•
$$(x,y) \in E_G \implies (h(x),h(y)) \in E_H$$

•
$$(x,y) \in E_G \implies \lambda_G((x,y)) = \lambda_H((h(x),h(y)))$$

$$G = x \xrightarrow{R} y \xrightarrow{S} z \xleftarrow{S} t$$
$$H = \bullet \xrightarrow{R} \bullet \xrightarrow{S} \bullet \xleftarrow{R} \bullet$$

We write $G \rightsquigarrow H$ if there exists a homomorphism from G to H

Probabilistic Graph Homomorphism (PHom)

Let us fix:

- Finite set of labels $\boldsymbol{\Sigma}$
- Class ${\mathcal G}$ of $query\ graphs$ on Σ (e.g., paths, trees)
- Class ${\mathcal H}$ of $instance\ graphs$ on Σ

Probabilistic Graph Homomorphism (PHom)

Let us fix:

- Finite set of labels $\boldsymbol{\Sigma}$
- Class ${\mathcal G}$ of $query\ graphs$ on Σ (e.g., paths, trees)
- Class ${\mathcal H}$ of $instance\ graphs$ on Σ

Probabilistic Graph Homomorphism (PHom) problem for $\mathcal G$ and $\mathcal H$:

- Given a query graph $G\in \mathcal{G}$
- Given an instance graph $H \in \mathcal{H}$ and a probability valuation π
- Compute the **probability** that **G** has a homomorphism to **H**

Probabilistic Graph Homomorphism (PHom)

Let us fix:

- Finite set of labels $\boldsymbol{\Sigma}$
- Class ${\mathcal G}$ of $query\ graphs$ on Σ (e.g., paths, trees)
- Class ${\mathcal H}$ of $instance\ graphs$ on Σ

Probabilistic Graph Homomorphism (PHom) problem for $\mathcal G$ and $\mathcal H$:

- Given a query graph $G\in \mathcal{G}$
- Given an instance graph $H \in \mathcal{H}$ and a probability valuation π
- Compute the **probability** that **G** has a homomorphism to **H**

$$\rightarrow \operatorname{Pr}(G \rightsquigarrow H) = \sum_{J \subseteq H, G \rightsquigarrow J} \operatorname{Pr}(J)$$

$$G = X \xrightarrow{R} Y \xrightarrow{S} Z \xleftarrow{S} t$$

$$H = \bullet \xrightarrow{R} 2 \bullet \xrightarrow{S} \bullet \xleftarrow{R} 0$$

 $Pr(G \rightsquigarrow H) = .2 \times .5$

Question: what is the complexity of PHom depending on the class \mathcal{G} of query graphs and class \mathcal{H} of instance graphs?

Question: what is the complexity of PHom depending on the class \mathcal{G} of query graphs and class \mathcal{H} of instance graphs?

Like CSP but with probabilities!

To make PHom tractable, we must restrict both sides

G =one-way paths (1WP), H =polytrees (PT)

G =one-way paths (1WP), H =polytrees (PT)

$$G: \xrightarrow{T} \xrightarrow{S} \xrightarrow{S} \xrightarrow{S} \xrightarrow{T}$$

G = one-way paths (1WP), H = polytrees (PT)

G =one-way paths (1WP), H =polytrees (PT)

+ prob. for each edge

PHom of 1WP on PT is **#P-hard**!

• What if we do not have labels?

• What if we do not have labels?

- What if we do not have labels?
- Probability that the instance graph has a path of length |G|

- What if we do not have labels?
- Probability that the instance graph has a path of length |G|
- PTIME: Bottom-up, e.g., tree automaton

- What if we do not have labels?
- Probability that the instance graph has a path of length |G|
- PTIME: Bottom-up, e.g., tree automaton
- Labels have an impact!

G:

• G =one-way paths (1WP), H =polytrees (PT)

• $\mathcal{G} =$ two-way paths (2WP), $\mathcal{H} =$ polytrees (PT)

- $\mathcal{G} =$ two-way paths (2WP), $\mathcal{H} =$ polytrees (PT)
- #P-hard

- $\mathcal{G} =$ two-way paths (2WP), $\mathcal{H} =$ polytrees (PT)
- #P-hard
- Global orientation of the query has an impact 🖌

• G =one-way paths (1WP), H =polytrees (PT)

• G = one-way paths (1WP), H = downwards trees (DWT)

- $\mathcal{G} = \text{one-way paths (1WP)}, \mathcal{H} = \text{downwards trees (DWT)}$
- **PTIME** also: β -acyclicity of the lineage

- $\mathcal{G} = \text{one-way paths (1WP)}, \mathcal{H} = \text{downwards trees (DWT)}$
- **PTIME** also: β -acyclicity of the lineage
- Global orientation of the instance also has an impact!

$\mathcal{G} =$ downwards trees, $\mathcal{H} =$ downwards trees, with labels

• $\mathcal{G} =$ one-way paths (1WP), $\mathcal{H} =$ downwards trees

$\mathcal{G} =$ downwards trees, $\mathcal{H} =$ downwards trees, with labels

• G = **downwards trees** (DWT), H = downwards trees

G:

$\mathcal{G} =$ downwards trees, $\mathcal{H} =$ downwards trees, with labels

- $\mathcal{G} =$ **downwards trees** (DWT), $\mathcal{H} =$ downwards trees
- #P-hard

G:

$\mathcal{G}=$ downwards trees, $\mathcal{H}=$ downwards trees, with labels

- $\mathcal{G} =$ **downwards trees** (DWT), $\mathcal{H} =$ downwards trees
- #P-hard

G:

• Branching has an impact!

Results

↓G	$H \rightarrow$	1WP	2WP	DWT	PT	Connected		
1WP								
2WP			PTIME				> 2 lahels	
DWT								
PT						#P-hard		
Connected								
↓G	$H \rightarrow$	1WP	2WP	DWT	PT	Connected		
↓G 1	$H \rightarrow$	1WP	2WP	DWT	PT	Connected		
↓G 1 ¹ 2 ¹	$H \rightarrow$ WP WP	1WP	2WP	DWT	PT	Connected	No Jahols	
↓G 1' 2' D	$ \begin{array}{c} H \rightarrow \\ WP \\ WP \\ WT \end{array} $	1WP	2WP PTIME	DWT	PT	Connected	No labels	
↓G 1' 2' D	$H \rightarrow$ WP WP WT PT	1WP	2WP PTIME	DWT	PT	Connected #P-hard	No labels	

• We identified the complexity of **PHom** for a variety of graph classes

- We identified the complexity of **PHom** for a variety of graph classes
- Showed the importance of various features on the problem: labels, global orientation, branching, connectedness

- We identified the complexity of **PHom** for a variety of graph classes
- Showed the importance of various features on the problem: labels, global orientation, branching, connectedness

Future work:

- What is the hidden logic behind these tables?
- Can we get a dichotomy?

- We identified the complexity of **PHom** for a variety of graph classes
- Showed the importance of various features on the problem: labels, global orientation, branching, connectedness

Future work:

- What is the hidden logic behind these tables?
- Can we get a dichotomy?

Thank you for your attention!