Combined Complexity of Probabilistic Query Evaluation

Mikaël Monet

October 12th, 2018

Has_Specialty		Appointment			
doctor	specialty	patient	date	time	doctor
Dr. Sneeze	allergologist	Nelly	17/04	11h	Dr. Sneeze
Dr. Bone	radiology	Jb	30/05	14h	Dr. Bone
		Jb	05/11	15h	Dr. Sneeze
	:	Jb	12/10	15h	Dr. Sneeze
		÷	÷	÷	:

Has_Specialty			Арроі	intmen	t
doctor	specialty	patient	date	time	doctor
Dr. Sneeze	allergologist	Nelly	17/04	11h	Dr. Sneeze
Dr. Bone	radiology	Jb	30/05	14h	Dr. Bone
Dr. Nail	hand surgeon	Jb	05/11	15h	Dr. Sneeze
:	÷	Jb	12/10	15h	Dr. Sneeze
		•	÷	÷	:

Has_Specialty			Appoi	intment	t
doctor	specialty	patient	date	time	doctor
Dr. Sneeze	allergologist	Nelly	17/04	11h	Dr. Sneeze
Dr. Bone	radiology	Jb	30/05	14h	Dr. Bone
Dr. Nail	hand surgeon	Jb	05/11	15h	Dr. Sneeze
:	÷				
			÷	÷	•

Has_Specialty			Appoi	intment	t
doctor	specialty	patient	date	time	doctor
Dr. Sneeze	allergologist	Nelly	17/04	11h	Dr. Sneeze
Dr. Bone	radiology	Jb	30/05	14h	Dr. Bone
Dr. Nail	hand surgeon	Jb	05/11	15h	Dr. Sneeze
:	:				
		:	:	÷	•

• Query: Retrieve patients having an appointment with a radiologist

Has_Specialty			Appoi	intmen	t
doctor	specialty	patient	date	time	doctor
Dr. Sneeze	allergologist	Nelly	17/04	11h	Dr. Sneeze
Dr. Bone	radiology	Jb	30/05	14h	Dr. Bone
Dr. Nail	hand surgeon	Jb	05/11	15h	Dr. Sneeze
÷	÷				
		•	÷	÷	•

Query: Retrieve patients having an appointment with a radiologist
 → SELECT patient FROM Appointment, Has_Specialty
 WHERE Appointment.doctor = Has_Specialty.doctor
 AND Has_Specialty.specialty = 'radiology'

Has_Specialty			Appoi	intmen	t
doctor	specialty	patient	date	time	doctor
Dr. Sneeze	allergologist	Nelly	17/04	11h	Dr. Sneeze
Dr. Bone	radiology	Jb	30/05	14h	Dr. Bone
Dr. Nail	hand surgeon	Jb	05/11	15h	Dr. Sneeze
:	÷				
		:	÷	÷	•

• **Query:** Retrieve patients having an appointment with a radiologist $\rightarrow p := \exists d' t d : \text{Appointment}(p, d', t, d) \land \text{Has_Specialty}(d, \text{'radiology'})$

Has_Specialty			Appoi	intmen	t
doctor	specialty	patient	date	time	doctor
Dr. Sneeze	allergologist	Nelly	17/04	11h	Dr. Sneeze
Dr. Bone	radiology	Jb	30/05	14h	Dr. Bone
Dr. Nail	hand surgeon	Jb	05/11	15h	Dr. Sneeze
:	:				
-		:	÷	÷	•

• Query: Retrieve doctors having at least one appointment

Has_Specialty			Арроі	intmen	t
doctor	specialty	patient	date	time	doctor
Dr. Sneeze	allergologist	Nelly	17/04	11h	Dr. Sneeze
Dr. Bone	radiology	Jb	30/05	14h	Dr. Bone
Dr. Nail	hand surgeon	Jb	05/11	15h	Dr. Sneeze
:	÷				
				÷	

- Query: Retrieve doctors having at least one appointment $\rightarrow\,$ SELECT doctor FROM Appointment

Has_Specialty			Appoi	intmen	t
doctor	specialty	patient	date	time	doctor
Dr. Sneeze	allergologist	Nelly	17/04	11h	Dr. Sneeze
Dr. Bone	radiology	Jb	30/05	14h	Dr. Bone
Dr. Nail	hand surgeon	Jb	05/11	15h	Dr. Sneeze
:	:				
				÷	

• **Query:** Retrieve doctors having at least one appointment $d := \exists n d' t : Appointment(n, d', t, d)$

 \rightarrow d := $\exists p d' t$: **Appointment**(p, d', t, d)

Has_Specialty			Appoi	intmen	t
doctor	specialty	patient	date	time	doctor
Dr. Sneeze	allergologist	Nelly	17/04	11h	Dr. Sneeze
Dr. Bone	radiology	Jb	30/05	14h	Dr. Bone
Dr. Nail	hand surgeon	Jb	05/11	15h	Dr. Sneeze
:	:				
		:	:	:	

- Query: Retrieve doctors having at least one appointment
- \rightarrow d := $\exists p d' t$: **Appointment**(p, d', t, d)
 - Applications: banks, institutions, libraries, movies, recipes, etc.

• One usually assumes that the data is correct...

- One usually assumes that the data is correct...
- ... but in many cases it is not

- One usually assumes that the data is correct...
- ... but in many cases it is not
- $\rightarrow\,$ Untrustworthy sources, automated information extraction, imprecise sensors in experimental sciences, etc.

Dr B. Who
rarmstreet 12
Kirkville
tel. 3876
R/ date / //// 1494
Parcetannel 500 mg
tel, da no. 20
S. 2 past at least 20 min.
after the metoclopramide
Rp metoclopramide 10 mg
man, de no. 5
J. one propp. as room as an
attach is felt.
100
MS/Mr Pahent 31 BWN
address
100 C
аде.

• You are invited to a PhD defense

- You are invited to a PhD defense
- You have some allergies

- You are invited to a PhD defense
- You have some allergies

Allergies

-

person	ingredient
Billis	milk
Billis	shrimps
Bernard	eggs
:	•

- You are invited to a PhD defense
- You have some allergies

Allergies

-

person	ingredient
Billis	milk
Billis	shrimps
Bernard	eggs
÷	:

• You know what will be served

- You are invited to a PhD defense
- You have some allergies

Allergies

person	ingredient
Billis	milk
Billis	shrimps
Bernard	eggs
÷	:

• You know what will be served **dishes**

tiramisu flapjacks couscous kougelhopf

:

- You are invited to a PhD defense
- You have some allergies

Allergies	

person	ingredient
Billis	milk
Billis	shrimps
Bernard	eggs

- You know what will be served
 dishes
 tiramisu
 flapjacks
- couscous kougelhopf

• But you can't ask the candidate what the ingredients are (he might be too busy giving the presentation)

- You are invited to a PhD defense
- You have some allergies

Allergies	
person	ingredient
Billis	milk

Billis shrimps Bernard eggs You know what will be served
 dishes
 tiramisu
 flapjacks

- But you can't ask the candidate what the ingredients are (he might be too busy giving the presentation)
- What are the chances that you'll be allergic to his tiramisu?

COUSCOUS

kougelhopf

• Gather tiramisu recipes from books or from the web and make a list of **possible ingredients**

- Gather tiramisu recipes from books or from the web and make a list of **possible ingredients**
- \rightarrow mascarpone

- Gather tiramisu recipes from books or from the web and make a list of **possible ingredients**
- \rightarrow mascarpone
- \rightarrow sugar

- Gather tiramisu recipes from books or from the web and make a list of **possible ingredients**
- \rightarrow mascarpone
- \rightarrow sugar
- \rightarrow strawberries

- Gather tiramisu recipes from books or from the web and make a list of **possible ingredients**
- \rightarrow mascarpone
- \rightarrow sugar
- \rightarrow strawberries
- \rightarrow shrimps

- Gather tiramisu recipes from books or from the web and make a list of **possible ingredients**
- \rightarrow mascarpone
- \rightarrow sugar
- \rightarrow strawberries
- \rightarrow shrimps
- \rightarrow coffee
- $\rightarrow \cdots$

- Gather tiramisu recipes from books or from the web and make a list of **possible ingredients**
- \rightarrow mascarpone
- So maybe the tiramisu's ingredients will be:

 \rightarrow sugar

• mascarpone, sugar, eggs, and strawberries

- \rightarrow strawberries
- \rightarrow shrimps
- \rightarrow coffee
- $\rightarrow \cdots$

- Gather tiramisu recipes from books or from the web and make a list of **possible ingredients**
- \rightarrow mascarpone
- \rightarrow sugar
- \rightarrow strawberries
- \rightarrow shrimps
- \rightarrow coffee
- $\rightarrow \cdots$

So **maybe** the tiramisu's ingredients will be:

- mascarpone, sugar, eggs, and strawberries
- or: sugar, shrimps, coffee, and potatoes

- Gather tiramisu recipes from books or from the web and make a list of **possible ingredients**
- \rightarrow mascarpone
- \rightarrow sugar
- \rightarrow strawberries
- \rightarrow shrimps
- \rightarrow coffee
- $\rightarrow \cdots$

So **maybe** the tiramisu's ingredients will be:

- mascarpone, sugar, eggs, and strawberries
- or: sugar, shrimps, coffee, and potatoes
- or: shrimps and mascarpone
- ...
- Gather tiramisu recipes from books or from the web and make a list of possible ingredients
- \rightarrow mascarpone
- \rightarrow sugar
- \rightarrow strawberries
- \rightarrow shrimps
- \rightarrow coffee

So **maybe** the tiramisu's ingredients will be:

- mascarpone, sugar, eggs, and strawberries
- or: sugar, shrimps, coffee, and potatoes
- or: shrimps and mascarpone

- $\rightarrow \cdots$
 - 20 different ingredients $\rightarrow 2^{20} \approx 1$ million possible recipes

. . .

- Gather tiramisu recipes from books or from the web and make a list of possible ingredients
- \rightarrow mascarpone
- \rightarrow sugar
- \rightarrow strawberries
- \rightarrow shrimps
- \rightarrow coffee

So **maybe** the tiramisu's ingredients will be:

- mascarpone, sugar, eggs, and strawberries
- or: sugar, shrimps, coffee, and potatoes
- or: shrimps and mascarpone

 $\rightarrow \cdots$

- 20 different ingredients $\rightarrow 2^{20} \approx 1$ million possible recipes
- Real-world databases: more like $2^{1000} \rightarrow$ way too big

• . . .

• Need a framework to efficiently model this uncertainty and reason about it

- Need a framework to efficiently model this uncertainty and reason about it
- ightarrow Probabilistic Databases
 - In this thesis: tuple independent databases (TID)
- \rightarrow Idea: assume **independence** across tuples

- Succinctly represent probabilistic data:
 - A relational database D
 - A probability valuation π mapping each fact of D to [0, 1]

- Succinctly represent probabilistic data:
 - A relational database D
 - A probability valuation π mapping each fact of D to [0, 1]
- Semantics of a TID (D, π) : a probability distribution on $D' \subseteq D$:
 - Each fact $F \in D$ is either **present** or **absent** with probability $\pi(F)$
 - Assume independence across facts

- Succinctly represent probabilistic data:
 - A relational database D
 - · A probability valuation π mapping each fact of D to [0,1]
- Semantics of a TID (D, π) : a probability distribution on $D' \subseteq D$:
 - Each fact $F \in D$ is either **present** or **absent** with probability $\pi(F)$
 - Assume independence across facts
 - \rightarrow For $D' \subseteq D$, $\mathsf{Pr}(D') = (\prod_{F \in D'} \pi(F)) \times (\prod_{F \in D \setminus D'} (1 \pi(F)))$

D		Con	tains	
	=	tiramisu	sugar	
		tiramisu	eggs	

$$D = \frac{c}{\begin{array}{c}t & s\\t & e\end{array}}$$

$$(D,\pi) = \begin{array}{c} \hline \mathbf{C} \\ \hline t \quad s \quad .5 \\ t \quad e \quad .2 \end{array}$$

$$(D,\pi) = \begin{array}{c} \mathbf{C} \\ t \quad s \quad .5 \\ t \quad e \quad .2 \end{array}$$

.5	× .2
	С
t	S
t	е

				С			
		$(D,\pi) =$	t	S	.5		
			t	е	.2		
.5	× .2	.5 × (1 – .2)				
	С	С					
t	S	t s					
t	е						

		<i>(</i> –			C			
		(D,	$(D,\pi) = t$		S	.5	_	
				t	е	.2	_	
.5	× .2	.5 ×	< (1−.2	2)	([1 —	.5) × .2	
	С		С				С	
t	S	t	S					
t	е				t		е	

				C		_	
		(D,	$\pi) = -$	t s	.5		
				t e	.2	-	
.5 >	× .2	.5 ×	(1 – .2)		(1 —	.5) × .2	(1 – .5) × (1 – .2)
C		С				С	С
t	S	t	S				

	(-)	С				
	$(D,\pi) = -t$: s .5	$q = \exists x$	(x,y)		
	t	е.2				
.5 imes .2 $.5 imes (12)$		(1 – .5	5) × .2	(1 – .5) × (1 – .2)		
С	C C		2	С		
t s	t s					
t e		t	е			

 $\Pr(D \models q) =$

	$(D,\pi) = $ $\begin{array}{c} t \\ t \end{array}$	$\begin{array}{c} \mathbf{c} \\ s .5 \\ e .2 \end{array} q = \exists \lambda$	x y C(x, y)
.5 × .2	.5 × (1 – .2) C	(15) × .2 C	(1−.5) × (1−.2) C
t s	t s		
t e		t e	
V			

 $\Pr(D \models q) =$

	(-)	С			
	$(D,\pi) = t$	s .5 q = :	$\exists x \ y \ C(x, y)$		
	t	е.2			
E × 2	$\Gamma \times (1 2)$	(1 F) × 2	$(1 \Gamma) \times (1 2)$		
.5 × .2	.5 × (1 – .2)	$(15) \times .2$	$(15) \times (12)$		
С	C C		С		
t s	t s				
t e		t e			
~					

 $\Pr(D \models q) = .5 \times .2$

	(-)	С			
	$(D,\pi)=$ t	s .5 $q = \exists x$	y C(x,y)		
	t	е.2			
.5 × .2	.5 × (1−.2)	$(15) \times .2$	$(15) \times (12)$		
C	<u>с</u>	<u>с</u>	<u>с</u>		
t s	t s				
t e		t e			
~	✓				

 $\Pr(D \models q) = .5 \times .2$

	(-)	С	$q = \exists x y C(x, y)$		
	$(D,\pi)=$ t	s .5 $q = \exists x$			
	t	е.2			
.5 × .2	.5 imes (12)	(15) imes.2	(15) imes(12)		
C	С	C	C		
t s	t s				
t e		t e			
~	~				

 $Pr(D \models q) = .5 \times .2 + .5 \times (1 - .2)$

				С			- ()			
			(D,	$\pi) =$	t	s .5		$q = \exists x$	y C(x, y)	
					t	е	.2	-		
	.5	× .2	.5 ×	: (1 — .2	2)	((1 —	.5) × .2	(15) × (12)	
		С		С		(С	С	
	t	S	t	S						
	t	е				_1	-	е		
	•	~		<				~		
Pr	$\Pr(D \models q) = .5 \times .2 + .5 \times (12)$									

					С			
		(D,	$(\pi) =$	t	S	.5	$q = \exists x y$	C(x,y)
				t	е	.2		
.[5 × .2	.5 ×	< (1 — .2	2)	((1 —	.5) × .2	(15) imes (12)
	<u>с</u> с			С		С	C	
t	S	t	S					
t	е				t	-	е	
	~		V				✓	
Pr(D	$p \models q) =$	= .5 × .:	2 + .5 ×	(1 -	2) + (1 – .5) × .2	

	(С	$q = \exists x \ y \ C(x, y)$	
	$(D,\pi) = t$	s .5		
	t	е.2		
.5 × .2	.5 imes(12)	(1 – .	5) × .2	(15) imes (12)
С	C		C	С
t s	t s			
t e		t	е	
×	×	•		*
$Pr(D \models q) =$	$.5 \times .2 + .5 \times (1)$	∣ – .2) + (1 – .5) × .:	2

$$(D, \pi) = \frac{\boxed{C}}{\underbrace{t \ s \ .5}} q = \exists x \ y \ C(x, y)$$

$$\frac{\underbrace{.5 \times .2}{C}}{\underbrace{c}} \underbrace{\frac{.5 \times (1 - .2)}{C}} \underbrace{\frac{(1 - .5) \times .2}{C}} \underbrace{\frac{(1 - .5) \times (1 - .2)}{C}} \underbrace{C}$$

$$\frac{(1 - .5) \times (1 - .2)}{C}$$

$$\frac{f \ e}{\checkmark} \underbrace{f \ e} \underbrace{f \ e$$

Let us fix:

- Class \mathcal{D} of relational databases (e.g., acyclic, trees)
- Class $\mathcal Q$ of Boolean queries (e.g., paths, trees)

Let us fix:

- Class \mathcal{D} of **relational databases** (e.g., acyclic, trees)
- Class \mathcal{Q} of **Boolean queries** (e.g., paths, trees)

Probabilistic query evaluation (PQE) problem for \mathcal{Q} and \mathcal{D} :

- Given a query $q \in Q$
- Given a database $\textit{D} \in \mathcal{D}$ and a probability valuation π
- Compute the **probability** that (D, π) satisfies q

Let us fix:

- Class \mathcal{D} of **relational databases** (e.g., acyclic, trees)
- Class $\mathcal Q$ of Boolean queries (e.g., paths, trees)

Probabilistic query evaluation (PQE) problem for \mathcal{Q} and \mathcal{D} :

- Given a query $q \in Q$
- Given a database $\textit{D} \in \mathcal{D}$ and a probability valuation π
- Compute the **probability** that (D, π) satisfies q

$$\rightarrow \operatorname{Pr}((D,\pi)\models q) = \sum_{D'\subseteq D, \ D'\models q} \operatorname{Pr}(D')$$

Complexity of probabilistic query evaluation (PQE)

Question: what is the (data, combined) **complexity** of PQE depending on the class \mathcal{D} of **databases** and class \mathcal{Q} of **queries**?

Question: what is the (data, combined) **complexity** of PQE depending on the class \mathcal{D} of **databases** and class \mathcal{Q} of **queries**?

Wish list:

- PQE tractable in combined complexity
- or PQE tractable in the data, reasonable in the query

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - + $\mathcal{D}_{all} = all \text{ possible databases}$
 - $Q = \{q\}$, for q a UCQ (\approx SQL with **select**, where, union)

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - $\cdot \ \mathcal{D}_{all} = all \ \text{possible databases}$
 - $Q = \{q\}$, for q a UCQ (\approx SQL with **select**, where, union)
 - ightarrow **q** is 'safe' \implies PQE is **PTIME**

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - $\cdot \ \mathcal{D}_{all} = all \ \text{possible databases}$
 - $Q = \{q\}$, for q a UCQ (\approx SQL with **select**, where, union)
 - ightarrow **q** is 'safe' \implies PQE is **PTIME**
 - \rightarrow *q* is not 'safe' \implies PQE is **#P-hard**

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - $\cdot \ \mathcal{D}_{all} = all \ \text{possible databases}$
 - $Q = \{q\}$, for q a UCQ (\approx SQL with **select**, where, union)
 - ightarrow **q** is 'safe' \implies PQE is **PTIME**
 - \rightarrow *q* is not 'safe' \implies PQE is **#P-hard**
- Existing data dichotomy result on data

- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and (k 1)-grids have treewidth k 1

Treewidth by example:

- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and (k 1)-grids have treewidth k 1

\rightarrow **Treelike**: the treewidth is **bounded by a constant**

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - + $\mathcal{D}_{all} = all \text{ possible databases}$
 - $Q = \{q\}$, for q a UCQ (\approx SQL with **select**, where, union)
 - ightarrow q is 'safe' \implies PQE is PTIME
 - \rightarrow *q* is not 'safe' \implies PQE is **#P-hard**
- Existing data dichotomy result on data

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - + $\mathcal{D}_{all} = all \text{ possible databases}$
 - $Q = \{q\}$, for q a UCQ (\approx SQL with **select**, where, union)
 - ightarrow **q** is 'safe' \implies PQE is **PTIME**
 - $\rightarrow q$ is not 'safe' \implies PQE is **#P-hard**
- Existing data dichotomy result on data
 - $\cdot \ \mathcal{D}_{\textit{k}} = \mathsf{all} \ \mathsf{databases} \ \mathsf{whose} \ \mathsf{treewidth} \ \mathsf{is} \ \mathsf{bounded} \ \mathsf{by} \ \textit{k} \in \mathbb{N}$

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - + $\mathcal{D}_{all} = all \text{ possible databases}$
 - $Q = \{q\}$, for q a UCQ (\approx SQL with **select**, where, union)
 - ightarrow **q** is 'safe' \implies PQE is **PTIME**
 - $\rightarrow q$ is not 'safe' \implies PQE is **#P-hard**
- Existing data dichotomy result on data
 - $\cdot \ \mathcal{D}_k = \mathsf{all} \ \mathsf{databases} \ \mathsf{whose} \ \mathsf{treewidth} \ \mathsf{is} \ \mathsf{bounded} \ \mathsf{by} \ \mathsf{k} \in \mathbb{N}$
 - $\cdot \ \mathcal{Q} = \{ q \}$, for q a MSO query

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - $\cdot \ \mathcal{D}_{all} = all \ \text{possible databases}$
 - $Q = \{q\}$, for q a UCQ (\approx SQL with **select**, where, union)
 - ightarrow **q** is 'safe' \implies PQE is **PTIME**
 - $\rightarrow q$ is not 'safe' \implies PQE is **#P-hard**
- Existing data dichotomy result on data
 - $\cdot \ \mathcal{D}_{k} = \mathsf{all} \ \mathsf{databases} \ \mathsf{whose} \ \mathsf{treewidth} \ \mathsf{is} \ \mathsf{bounded} \ \mathsf{by} \ k \in \mathbb{N}$
 - $\cdot \ \mathcal{Q} = \{q\}$, for q a MSO query
 - → PQE has linear data complexity [Amarilli, Bourhis, & Senellart, 2015]

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - $\cdot \ \mathcal{D}_{all} = all \ \text{possible databases}$
 - $Q = \{q\}$, for q a UCQ (\approx SQL with **select**, where, union)
 - ightarrow **q** is 'safe' \implies PQE is **PTIME**
 - $\rightarrow q$ is not 'safe' \implies PQE is **#P-hard**
- Existing data dichotomy result on data
 - $\cdot \ \mathcal{D}_{k} = \mathsf{all} \ \mathsf{databases} \ \mathsf{whose} \ \mathsf{treewidth} \ \mathsf{is} \ \mathsf{bounded} \ \mathsf{by} \ k \in \mathbb{N}$
 - $\cdot \ \mathcal{Q} = \{q\}$, for q a MSO query
 - → PQE has linear data complexity [Amarilli, Bourhis, & Senellart, 2015]
 - → There is an FO query for which PQE is **#P-hard** on **any** unbounded-treewidth database class \mathcal{D} (under some assumptions) [Amarilli, Bourhis, & Senellart, 2016]

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - $\cdot \ \mathcal{D}_{all} = all \ \text{possible databases}$
 - $Q = \{q\}$, for q a UCQ (\approx SQL with **select**, where, union)
 - ightarrow **q** is 'safe' \implies PQE is **PTIME**
 - $\rightarrow q$ is not 'safe' \implies PQE is **#P-hard**
- Existing data dichotomy result on data
 - $\cdot \ \mathcal{D}_{k} = \mathsf{all} \ \mathsf{databases} \ \mathsf{whose} \ \mathsf{treewidth} \ \mathsf{is} \ \mathsf{bounded} \ \mathsf{by} \ k \in \mathbb{N}$
 - $\cdot \ \mathcal{Q} = \{q\}$, for q a MSO query
 - → PQE has linear data complexity [Amarilli, Bourhis, & Senellart, 2015]
 - → There is an FO query for which PQE is **#P-hard** on any unbounded-treewidth database class \mathcal{D} (under some assumptions) [Amarilli, Bourhis, & Senellart, 2016]

What about combined complexity?

- 1. Combined complexity of PQE for **conjunctive queries** on **binary signatures** (graph databases)
 - \rightarrow **PODS'2017** (with A. Amarilli and P. Senellart)

- 1. Combined complexity of PQE for **conjunctive queries** on **binary signatures** (graph databases)
 - \rightarrow **PODS'2017** (with A. Amarilli and P. Senellart)
- 2. Combined complexity of **non-probabilistic** query evaluation on **treelike databases**
 - → ICDT'2017 (with A. Amarilli, P. Bourhis, and P. Senellart)

- 1. Combined complexity of PQE for **conjunctive queries** on **binary signatures** (graph databases)
 - \rightarrow **PODS'2017** (with A. Amarilli and P. Senellart)
- 2. Combined complexity of **non-probabilistic** query evaluation on **treelike databases**
 - → ICDT'2017 (with A. Amarilli, P. Bourhis, and P. Senellart)
- 3. Connecting **width** and **semantics** in knowledge compilation, and applications to PQE
 - \rightarrow **ICDT'2018** (with A. Amarilli and P. Senellart)

- 1. Combined complexity of PQE for **conjunctive queries** on **binary signatures** (graph databases)
 - \rightarrow **PODS'2017** (with A. Amarilli and P. Senellart)
- 2. Combined complexity of **non-probabilistic** query evaluation on **treelike databases**
 - → ICDT'2017 (with A. Amarilli, P. Bourhis, and P. Senellart)
- 3. Connecting **width** and **semantics** in knowledge compilation, and applications to PQE
 - → **ICDT'2018** (with A. Amarilli and P. Senellart)
- Connections between safe queries and circuit classes from knowledge compilation
 - \rightarrow **AMW'2018** (with D. Olteanu)

PQE of conjunctive queries on binary signatures

$\exists x y z t R(x, y) \land S(y, z) \land S(t, z)$

	R	1
b	С	.8
С	а	.1
С	d	.1
	S	
а	b	1.
d	b	.05

$$\exists x \, y \, z \, t \, R(x, y) \land S(y, z) \land S(t, z) \quad \rightarrow \quad x \xrightarrow{R} y \xrightarrow{S} z \xleftarrow{S} t$$

	R	2
b	С	.8
С	а	.1
С	d	.1
	S	5
а	b	1.
d	b	.05

$$\exists x \, y \, z \, t \, R(x, y) \land S(y, z) \land S(t, z) \quad \rightarrow \quad x \xrightarrow{R} y \xrightarrow{S} z \xleftarrow{S} t$$

R
b c .8
са.1
c d .1
S
a b 1.
d = b = 05

$$\exists x \, y \, z \, t \, R(x, y) \land S(y, z) \land S(t, z) \quad \rightarrow \quad x \xrightarrow{R} y \xrightarrow{S} z \xleftarrow{S} t$$

R
b c .8
са.1
c d .1
S
a b 1.
d b .05

$$\exists x \, y \, z \, t \, R(x, y) \land S(y, z) \land S(t, z) \quad \rightarrow \quad x \xrightarrow{R} y \xrightarrow{S} z \xleftarrow{S} t$$

R
b с .8
са.1
c d .1
S
a b 1.
d b .05

$$\exists x \, y \, z \, t \, R(x, y) \land S(y, z) \land S(t, z) \quad \rightarrow \quad x \xrightarrow{R} y \xrightarrow{S} z \xleftarrow{S} t$$

R
b с .8
са.1
c d .1
S
a b 1.

$$\exists x \, y \, z \, t \, R(x, y) \land S(y, z) \land S(t, z) \quad \rightarrow \quad x \xrightarrow{R} y \xrightarrow{S} z \xleftarrow{S} t$$

	R	
b	С	.8
С	а	.1
С	d	.1
	S	
а	b	1.
d	b	.05

Q = one-way paths (1WP), D = polytrees (PT)

Q = one-way paths (1WP), D = polytrees (PT)

$$Q: \xrightarrow{T} \xrightarrow{S} \xrightarrow{S} \xrightarrow{S} \xrightarrow{T}$$

Restrict instances to trees

Q = one-way paths (1WP), D = polytrees (PT)

+ prob. for each edge

Restrict instances to trees

Q = one-way paths (1WP), D = polytrees (PT)

Proposition

PQE of **1WP** on **PT** is **#P-hard**

+ prob. for each edge

s/\s

\S

Т

s 7

Ŀ

Q = one-way paths, D = polytrees, without labels

• What if we do not have labels?

Q = one-way paths, D = polytrees, without labels

• What if we do not have labels?

- What if we do not have labels?
- Probability that the data graph has a path of length |Q|

- What if we do not have labels?
- Probability that the data graph has a path of length |Q|
- Computed bottom-up, e.g., tree automaton

- What if we do not have labels?
- Probability that the data graph has a path of length |Q|
- Computed bottom-up, e.g., tree automaton

Proposition

PQE of unlabeled 1WP on PT is PTIME

- What if we do not have labels?
- Probability that the data graph has a path of length |Q|
- Computed bottom-up, e.g., tree automaton
- Labels have an impact!

$$Q: \longrightarrow \longrightarrow \longrightarrow \longrightarrow$$

Proposition

PQE of unlabeled 1WP on PT is PTIME

Our graph classes

$\downarrow Q$	D ightarrow	1WP	2WP	DWT	PT	Connected	
1WP							
2WP		PTIME					> 2 Jahels
DWT							
PT						#P-hard	
Connected							

$\downarrow Q$	$D { ightarrow}$	1WP	2WP	DWT	PT	Connected			
1WP									
2WP							> 2 Jahols		
DWT			PTIME						
PT						#P-hard			
Connected									
$\downarrow Q$	$D { ightarrow}$	1WP	2WP	DWT	PT	Connected			
↓Q 1\	$D \rightarrow $	1WP	2WP	DWT	PT	Connected			
↓Q 1\ 2\	$D \rightarrow NP$	1WP	2WP	DWT	PT	Connected	No labels		
↓Q 1\ 2\ D'	$D \rightarrow NP$ NP NP WT	1WP	2WP PTIME	DWT	PT	Connected	No labels		
↓Q 1\ 2\ D' F	D→ WP WP WT PT	1WP	2WP PTIME	DWT	PT	Connected #P-hard	No labels		

- Detailed study of the **combined** complexity of PQE
- Showed the importance of various features on the problem: labels, global orientation, branching, connectedness
- Established the complexity for all combinations of the graph classes we considered
- Essentially, all tractable cases involve **paths**

- Detailed study of the **combined** complexity of PQE
- Showed the importance of various features on the problem: labels, global orientation, branching, connectedness
- Established the complexity for all combinations of the graph classes we considered
- Essentially, all tractable cases involve **paths**

Drawbacks:

- Our graph classes may seem "arbitrary"
- Not yet a dichotomy, just starting to understand the problem
- Tractable cases very restricted

What if we want the complexity to be:

- Tractable in the data
- Not too horrible in the query

Can we then support a **more expressive query language**? (e.g., disjunctions, negations, recursion)

Non-probabilistic query evaluation on treelike databases

• Existing data dichotomy result on data

- Existing data dichotomy result on data
 - → PQE for **MSO** on **bounded-treewidth** databases has **linear** data complexity [Amarilli, Bourhis, & Senellart, 2015]

- Existing data dichotomy result on data
 - → PQE for **MSO** on **bounded-treewidth** databases has **linear** data complexity [Amarilli, Bourhis, & Senellart, 2015]

• Problem: nonelementary in the query
$$2^{2^{2}} \left\{ |Q| \right\}$$

- Existing data dichotomy result on data
 - → PQE for **MSO** on **bounded-treewidth** databases has **linear** data complexity [Amarilli, Bourhis, & Senellart, 2015]
 - Problem: nonelementary in the query $2^{2^{-1}} \left\{ |Q| \right\}$

The database class is parameterized

- Existing data dichotomy result on data
 - → PQE for **MSO** on **bounded-treewidth** databases has **linear** data complexity [Amarilli, Bourhis, & Senellart, 2015]

• Problem: nonelementary in the query $2^{2^{2^{-1}}} \left\{ |Q| \right\}$

The database class is **parameterized Idea:**

• one parameter for the databases

- Existing data dichotomy result on data
 - → PQE for **MSO** on **bounded-treewidth** databases has **linear** data complexity [Amarilli, Bourhis, & Senellart, 2015]

• Problem: nonelementary in the query $2^{2^{-1}} \left\{ |Q| \right\}$

The database class is **parameterized Idea:**

- one parameter for the databases
- and one parameter for the queries

Idea: one parameter k_D for the database (treewidth) AND one parameter k_Q for the query Idea: one parameter k_D for the database (treewidth) AND one parameter k_Q for the query

• **Database** classes $\mathcal{D}_1, \mathcal{D}_2, \cdots$

Idea: one parameter k_D for the database (treewidth) AND one parameter k_Q for the query

- **Database** classes $\mathcal{D}_1, \mathcal{D}_2, \cdots$
- Query classes $\mathcal{Q}_1, \mathcal{Q}_2, \cdots$

Idea: one parameter k_D for the database (treewidth) AND one parameter k_Q for the query

- **Database** classes $\mathcal{D}_1, \mathcal{D}_2, \cdots$
- Query classes Q_1, Q_2, \cdots

Definition

The problem is *fixed-parameter tractable (FPT) linear* if there exists a computable function f such that it can be solved in time $f(k_D, k_Q) \times |Q| \times |D|$

1) A new language...

 We introduce the language of *clique-frontier-guarded Datalog* (CFG-Datalog), parameterized by *body-size* k_P

1) A new language...

- We introduce the language of *clique-frontier-guarded Datalog* (CFG-Datalog), parameterized by *body-size* k_P
- 2) ... with **FPT-linear** (combined) evaluation...
 - Given a CFG-Datalog program P with body-size k_P and a relational database D of treewidth k_D, checking if D ⊨ P can be done in time f(k_P, k_D) × |P| × |D|

1) A new language...

- We introduce the language of *clique-frontier-guarded Datalog* (CFG-Datalog), parameterized by *body-size* k_P
- 2) ... with **FPT-linear** (combined) evaluation...
 - Given a CFG-Datalog program P with body-size k_P and a relational database D of treewidth k_D, checking if D ⊨ P can be done in time f(k_P, k_D) × |P| × |D|

3) ... and also **FPT-linear** (combined) computation of provenance

• We design a new concise provenance representation based on cyclic Boolean circuits: **cycluits**

Proof Sketch

Theorem

Given a CFG-Datalog program P with body-size k_P and a relational database D of treewidth k_D , we can compute a cycluit representing the **provenance** of P on D in time $f(k_P, k_D) \times |P| \times |D|$

Theorem

Given a CFG-Datalog program P with body-size k_P and a relational database D of treewidth k_D , we can compute a cycluit representing the **provenance** of P on D in time $f(k_P, k_D) \times |P| \times |D|$

• Capture interesting query languages such as 2RPQs (graph query language), conjunctive queries (of bounded simplicial treewidth), guarded negation logic fragments, etc.

Theorem

Given a CFG-Datalog program P with body-size k_P and a relational database D of treewidth k_D , we can compute a cycluit representing the **provenance** of P on D in time $f(k_P, k_D) \times |P| \times |D|$

• Capture interesting query languages such as 2RPQs (graph query language), conjunctive queries (of bounded simplicial treewidth), guarded negation logic fragments, etc.

Can we lift this result to **probabilistic** evaluation?

Boolean cycluits to d-SDNNFs and lower bounds

Example: Provenance

$$\exists x \, y \, z \; (R(x,y) \land S(y,z)) \lor (S(x,y) \land R(y,z))$$

Example: Provenance

$$\exists x \, y \, z \, (R(x,y) \land S(y,z)) \lor (S(x,y) \land R(y,z))$$

 $Prov(q, D) = [S(a, b) \land (R(b, c) \lor R(c, a))]$ $\lor [S(d, b) \land (R(b, c) \lor R(c, d))]$

 $\exists x \, y \, z \; (R(x,y) \land S(y,z)) \lor (S(x,y) \land R(y,z))$

→ Computing the probability of a Boolean formula φ (or circuit *C*) is **#P-hard**! (since **#SAT** is **#P-hard**)

- → Computing the probability of a Boolean formula φ (or circuit *C*) is **#P-hard**! (since **#SAT** is **#P-hard**)
- \rightarrow Which restrictions on φ or **C** make this possible?

- → Computing the probability of a Boolean formula φ (or circuit *C*) is **#P-hard**! (since **#SAT** is **#P-hard**)
- \rightarrow Which restrictions on φ or **C** make this possible?
 - Knowledge compilation studies which classes of circuits ensure tractability of...
 - · SAT

- → Computing the probability of a Boolean formula φ (or circuit *C*) is **#P-hard**! (since **#SAT** is **#P-hard**)
- $\rightarrow\,$ Which restrictions on φ or ${\bf C}$ make this possible?
 - Knowledge compilation studies which classes of circuits ensure tractability of...
 - · SAT
 - · #SAT
- → Computing the probability of a Boolean formula φ (or circuit *C*) is **#P-hard**! (since **#SAT** is **#P-hard**)
- $\rightarrow\,$ Which restrictions on φ or ${\bf C}$ make this possible?
 - Knowledge compilation studies which classes of circuits ensure tractability of...
 - · SAT
 - · #SAT
 - probability computation

- → Computing the probability of a Boolean formula φ (or circuit *C*) is **#P-hard**! (since **#SAT** is **#P-hard**)
- ightarrow Which restrictions on φ or **C** make this possible?
 - Knowledge compilation studies which classes of circuits ensure tractability of...
 - · SAT
 - · #SAT
 - probability computation
 - • •

For #SAT and probabilistic evaluation, two main restrictions on circuits:

For #SAT and probabilistic evaluation, two main restrictions on circuits:

Width-based:

• Bounded **pathwidth/treewidth** Boolean circuits, CNFs, DNFs, etc.

For #SAT and probabilistic evaluation, two main restrictions on circuits:

Width-based:

- Bounded **pathwidth/treewidth** Boolean circuits, CNFs, DNFs, etc.
 - ightarrow message passing algorithm for #SAT and probabilistic evaluation

For #SAT and probabilistic evaluation, two main restrictions on circuits:

Width-based:

- Bounded **pathwidth/treewidth** Boolean circuits, CNFs, DNFs, etc.
 - ightarrow message passing algorithm for #SAT and probabilistic evaluation
 - Links with **Bayesian networks**

For #SAT and probabilistic evaluation, two main restrictions on circuits:

Width-based:

- Bounded **pathwidth/treewidth** Boolean circuits, CNFs, DNFs, etc.
 - ightarrow message passing algorithm for #SAT and probabilistic evaluation
 - Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic Structured Decomposable Negation Normal Forms (d-SDNNFs)

For #SAT and probabilistic evaluation, two main restrictions on circuits:

Width-based:

- Bounded **pathwidth/treewidth** Boolean circuits, CNFs, DNFs, etc.
 - ightarrow message passing algorithm for #SAT and probabilistic evaluation
 - Links with Bayesian networks

Semantics-based:

- Ordered Binary Decision Diagrams (OBDDs)/ Deterministic Structured Decomposable Negation Normal Forms (d-SDNNFs)
 - $\rightarrow\,$ #SAT and probabilistic evaluation are easy because these classes have strong semantic constraints

For #SAT and probabilistic evaluation, two main restrictions on circuits:

Width-based:

- Bounded **pathwidth/treewidth** Boolean circuits, CNFs, DNFs, etc.
 - ightarrow message passing algorithm for #SAT and probabilistic evaluation
 - Links with Bayesian networks

Semantics-based:

- Ordered Binary Decision Diagrams (OBDDs)/ Deterministic Structured Decomposable Negation Normal Forms (d-SDNNFs)
 - $\rightarrow\,$ #SAT and probabilistic evaluation are easy because these classes have strong semantic constraints
 - $\cdot\,$ Used to understand **#SAT solvers**

For #SAT and probabilistic evaluation, two main restrictions on circuits:

Width-based:

- Bounded **pathwidth/treewidth** Boolean circuits, CNFs, DNFs, etc.
 - ightarrow message passing algorithm for #SAT and probabilistic evaluation
 - Links with Bayesian networks

Semantics-based:

- Ordered Binary Decision Diagrams (OBDDs)/ Deterministic Structured Decomposable Negation Normal Forms (d-SDNNFs)
 - $\rightarrow\,$ #SAT and probabilistic evaluation are easy because these classes have strong semantic constraints
 - Used to understand **#SAT solvers**

Question: what are the links between the two?

Treewidth and d-SDNNFs

Bounded treewidth Boolean circuits

Bounded treewidth Boolean circuits

Treewidth of *C* = that of the underlying graph

Bounded treewidth Boolean circuits

Treewidth of *C* = that of the underlying graph

We can do message passing:

Theorem (Lauritzen & Spielgelhalter, 1988)

Fix $k \in \mathbb{N}$. Given a Boolean circuit C of treewidth $\leq k$, we can compute its probability in time $O(f(k) \times |C|)$, where f is singly exponential

- Negation Normal Form: negations only applied to the leaves
- Decomposable: inputs of ∧-gates are independent (no variable has a path to two different inputs of the same ∧-gate)

- Negation Normal Form: negations only applied to the leaves
- Decomposable: inputs of ∧-gates are independent (no variable has a path to two different inputs of the same ∧-gate)
 - $\rightarrow~\text{SAT}$ can be solved efficiently

- Negation Normal Form: negations only applied to the leaves
- Decomposable: inputs of ∧-gates are independent (no variable has a path to two different inputs of the same ∧-gate)
 - $\rightarrow~\text{SAT}$ can be solved efficiently
- Deterministic: inputs of ∨-gates are **mutually exclusive**

- Negation Normal Form: negations only applied to the leaves
- Decomposable: inputs of ∧-gates are independent (no variable has a path to two different inputs of the same ∧-gate)
 - \rightarrow **SAT** can be solved efficiently
- Deterministic: inputs of ∨-gates are **mutually exclusive**
 - $\rightarrow~\text{\#SAT}$ and probability evaluation

- Negation Normal Form: negations only applied to the leaves
- Decomposable: inputs of ∧-gates are independent (no variable has a path to two different inputs of the same ∧-gate)
 - $\rightarrow~\text{SAT}$ can be solved efficiently
- Deterministic: inputs of ∨-gates are **mutually exclusive**
 - \rightarrow **#SAT** and **probability evaluation**
- Structured: there is a v-tree that structures the ∧-gates

Theorem

Let C be a Boolean circuit of **treewidth** $\leq k$. **We can compute** a **d-SDNNF** equivalent to C in time $O(|C| \times f(k))$, where f is **singly** exponential

Theorem

Let C be a Boolean circuit of **treewidth** $\leq k$. **We can compute** a **d-SDNNF** equivalent to C in time $O(|C| \times f(k))$, where f is **singly** exponential

 $\rightarrow\,$ Recaptures message passing through the use of knowledge compilation

 Already applies to very restricted Boolean circuits: monotone DNFs and CNFs

- Already applies to very restricted Boolean circuits: monotone DNFs and CNFs
- Treewidth of a DNF/CNF: that of its Gaifman graph

- Already applies to very restricted Boolean circuits: monotone DNFs and CNFs
- Treewidth of a DNF/CNF: that of its Gaifman graph
- Arity: size of the largest clause

- Already applies to very restricted Boolean circuits: monotone DNFs and CNFs
- Treewidth of a DNF/CNF: that of its Gaifman graph
- Arity: size of the largest clause
- Degree: maximal number of clauses to which a variable belongs

- Already applies to very restricted Boolean circuits: monotone DNFs and CNFs
- Treewidth of a DNF/CNF: that of its Gaifman graph
- Arity: size of the largest clause
- Degree: maximal number of clauses to which a variable belongs

Theorem

Let φ be a **monotone DNF** of **treewidth** k, let $\mathbf{a} := \operatorname{arity}(\varphi)$ and $\mathbf{d} := \operatorname{degree}(\varphi)$. Then any \mathbf{d} -SDNNF for φ has size $\ge 2^{\left\lfloor \frac{k}{3 \times a^3 \times d^2} \right\rfloor} - 1$

- Already applies to very restricted Boolean circuits: monotone DNFs and CNFs
- Treewidth of a DNF/CNF: that of its Gaifman graph
- Arity: size of the largest clause
- Degree: maximal number of clauses to which a variable belongs

Theorem

Let φ be a **monotone DNF** of **treewidth** k, let $a := \operatorname{arity}(\varphi)$ and $d := \operatorname{degree}(\varphi)$. Then any **d-SDNNF** for φ has size $\ge 2^{\left\lfloor \frac{k}{3 \times a^3 \times d^2} \right\rfloor} - 1$

• For **CNFs**, the bound even works for (non-deterministic) **SDNNF**

- Already applies to very restricted Boolean circuits: monotone DNFs and CNFs
- Treewidth of a DNF/CNF: that of its Gaifman graph
- Arity: size of the largest clause
- Degree: maximal number of clauses to which a variable belongs

Theorem

Let φ be a **monotone DNF** of **treewidth** k, let $a := \operatorname{arity}(\varphi)$ and $d := \operatorname{degree}(\varphi)$. Then any **d-SDNNF** for φ has size $\ge 2^{\left\lfloor \frac{k}{3 \times a^3 \times d^2} \right\rfloor} - 1$

- For CNFs, the bound even works for (non-deterministic) SDNNF
- The bound is generic: it applies to any monotone DNF/CNF

Use the connection made in [Bova, Capelli & Mengel, 2016] between the notion of **combinatorial rectangle** in **communication complexity** and **SDNNFs**.

Definition

A (X, Y)-rectangle is a Boolean function $R : 2^{X \cup Y} \to \{0, 1\}$ that can be written as $R_X \land R_Y$, for some Boolean functions $R_X : 2^X \to \{0, 1\}$ and $R_Y : 2^Y \to \{0, 1\}$. A (X, Y)-rectangle cover of a function $f : 2^{X \cup Y} \to \{0, 1\}$ is a set $\{R_1, \dots, R_n\}$ of (X, Y)-rectangles such that $f \equiv \bigvee_{i=1}^n R_i$.

Use the connection made in [Bova, Capelli & Mengel, 2016] between the notion of **combinatorial rectangle** in **communication complexity** and **SDNNFs**.

Definition

A (X, Y)-rectangle is a Boolean function $R : 2^{X \cup Y} \to \{0, 1\}$ that can be written as $R_X \land R_Y$, for some Boolean functions $R_X : 2^X \to \{0, 1\}$ and $R_Y : 2^Y \to \{0, 1\}$. A (X, Y)-rectangle cover of a function $f : 2^{X \cup Y} \to \{0, 1\}$ is a set $\{R_1, \dots, R_n\}$ of (X, Y)-rectangles such that $f \equiv \bigvee_{i=1}^n R_i$.

Theorem (Bova, Capelli & Mengel, 2016)

Let **C** be an **SDNNF** computing a function φ on variables **V**, structured by a v-tree **T**. Let $n \in T$, and let (X, Y) be the partition of **V** that *n* induces. Then φ has a (X, Y)-rectangle cover of size at most |C|. A CNF having no small rectangle cover:

Theorem (Sherstov, 2014)

Let $X = \{x_1, ..., x_n\}$ and $Y = \{y_1, ..., y_n\}$ be two disjoint sets of variables. Then any (X, Y)-rectangle cover of the Boolean function $\operatorname{SCOV}_n(X, Y) := \bigwedge_{i=1}^n x_i \lor y_i$ has size $\ge 2^n$.

A CNF having no small rectangle cover:

Theorem (Sherstov, 2014)

Let $X = \{x_1, ..., x_n\}$ and $Y = \{y_1, ..., y_n\}$ be two disjoint sets of variables. Then any (X, Y)-rectangle cover of the Boolean function $\operatorname{SCOV}_n(X, Y) := \bigwedge_{i=1}^n x_i \lor y_i$ has size $\ge 2^n$.

We show that we can find $\text{SCOV}_{\frac{k}{3 \times a^3 \times d^2}}(X, Y)$ within any CNF of treewidth $\ge k$.

A CNF having no small rectangle cover:

Theorem (Sherstov, 2014)

Let $X = \{x_1, ..., x_n\}$ and $Y = \{y_1, ..., y_n\}$ be two disjoint sets of variables. Then any (X, Y)-rectangle cover of the Boolean function $\operatorname{SCOV}_n(X, Y) := \bigwedge_{i=1}^n x_i \lor y_i$ has size $\ge 2^n$.

We show that we can find $\text{SCOV}_{\frac{k}{3 \times a^3 \times d^2}}(X, Y)$ within any CNF of treewidth $\ge k$.

→ Rephrase treewidth as **treesplitwidth**, a new measure capturing the 'performance' of a v-tree

Application to PQE

Cycluit size $O(|P| \times |D|)$ treewidth O(|P|)

Cycluit

treewidth O(|P|)

Circuit size $O(|P| \times |D|)$ size $O(2^{|P|^{\alpha}} \times |D|)$ treewidth $O(2^{|P|^{\alpha}})$

Cycluit

treewidth O(|P|)

Circuit size $O(|P| \times |D|)$ size $O(2^{|P|^{\alpha}} \times |D|)$ treewidth $O(2^{|P|^{\alpha}})$

d-SDNNF size $O(2^{2^{|P|^{\alpha}}} \times |D|)$

Cycluit treewidth O(|P|)

Theorem

Fix $\mathbf{k}_{\mathbf{P}}$ and $\mathbf{k}_{\mathbf{I}}$. We can solve PQE of a **CFG-Datalog program P** on a treelike database D in time $O(2^{2^{|P|^{\alpha}}} |D|)$.

Cycluit treewidth O(|P|)

Theorem

Fix $\mathbf{k}_{\mathbf{P}}$ and $\mathbf{k}_{\mathbf{I}}$. We can solve PQE of a CFG-Datalog program P on a treelike database D in time $O(2^{2^{|P|^{\alpha}}} |D|)$.

2EXP, but still better than previous nonelementary bounds

1. Detailed study of the **combined complexity of PQE** of conjunctive queries on binary signatures

- 1. Detailed study of the **combined complexity of PQE** of conjunctive queries on binary signatures
- 2. Efficient provenance computation for a new expressive query language (**CFG-Datalog**) on treelike data, introduction of a new provenance representation (**cycluits**)

- 1. Detailed study of the **combined complexity of PQE** of conjunctive queries on binary signatures
- Efficient provenance computation for a new expressive query language (CFG-Datalog) on treelike data, introduction of a new provenance representation (cycluits)
- Connections between two classes of Boolean circuits in knowledge compilation: width-based and semantics-based. Application to PQE of CFG-Datalog

• Correlations?

- Correlations?
- More general provenance semirings?

- Correlations?
- More general provenance semirings?
- Approximations?

- Correlations?
- More general provenance semirings?
- Approximations?
- Notion of width for d-SDNNFs?

- Correlations?
- More general provenance semirings?
- Approximations?
- Notion of width for d-SDNNFs?
- Obtain 1EXP for PQE of CFG-Datalog on treelike data?

- Correlations?
- More general provenance semirings?
- Approximations?
- Notion of width for d-SDNNFs?
- Obtain 1EXP for PQE of CFG-Datalog on treelike data?
- Practical implementations?

Thanks for your attention!

• Fragment of Datalog with stratified negation

- Fragment of Datalog with stratified negation
- $\sigma = \sigma^{\text{ext}} \sqcup \sigma^{\text{int}} = \{R_1, R_2, \ldots\} \sqcup \{S_1, S_2, \ldots\}$

- Fragment of Datalog with stratified negation
- $\sigma = \sigma^{\text{ext}} \sqcup \sigma^{\text{int}} = \{R_1, R_2, \ldots\} \sqcup \{S_1, S_2, \ldots\}$
- Boolean programs: special o-ary intensional predicate Goal()

• Fragment of Datalog with stratified negation

•
$$\sigma = \sigma^{\text{ext}} \sqcup \sigma^{\text{int}} = \{R_1, R_2, \ldots\} \sqcup \{S_1, S_2, \ldots\}$$

• Boolean programs: special o-ary intensional predicate Goal()

$$\begin{cases} \vdots \\ S_3(x, y, t) \leftarrow R_1(x, y) \land S_3(y, t, y) \land S_2(x, t) \land \neg S_1(x, z) \\ \vdots \\ \text{Goal}() \leftarrow \cdots \end{cases}$$

• Fragment of Datalog with stratified negation

•
$$\sigma = \sigma^{\text{ext}} \sqcup \sigma^{\text{int}} = \{R_1, R_2, \ldots\} \sqcup \{S_1, S_2, \ldots\}$$

• Boolean programs: special o-ary intensional predicate Goal()

$$\begin{cases} \vdots \\ S_3(x, y, t) \leftarrow R_1(x, y) \land S_3(y, t, y) \land S_2(x, t) \land \neg S_1(x, z) \\ \vdots \\ \text{Goal}() \leftarrow \cdots \end{cases}$$

body-size = MaxArity(σ) × max_{rule r} NbAtoms(r) "size to write a rule"

Construction sketch for slide 36

Construction sketch for slide 36

Construction sketch for slide 36

 $\varphi = X_1 Y_2 \vee X_1 Y_1 \vee X_2 Y_2$

1:

$$\varphi = X_1 Y_2 \vee X_1 Y_1 \vee X_2 Y_2$$

1:

Q:

Q:

 $\varphi = X_1 Y_2 \vee X_1 Y_1 \vee X_2 Y_2$

Q:

 $\varphi = X_1 Y_2 \vee X_1 Y_1 \vee X_2 Y_2$

Q:

 $\varphi = X_1 Y_2 \vee X_1 Y_1 \vee X_2 Y_2$

Q:

 $\varphi = X_1 Y_2 \vee X_1 Y_1 \vee X_2 Y_2$ $#\varphi = \Pr((I, \pi) \models Q) \times 2^{|\operatorname{vars}(\varphi)|}$ 1: S S S S S Q: T S S S