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Relational Databases

» Databases: store information and query it later

Has_Specialty Appointment
doctor specialty patient date time doctor
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Relational Databases

» Databases: store information and query it later

Has_Specialty Appointment
doctor specialty patient date time doctor
Dr. Sneeze allergologist Nelly 17/04  11h Dr. Sneeze
Dr. Bone radiology Jb 30/05 14h Dr. Bone

Dr. Nail hand surgeon Jb 05/11  15h  Dr. Sneeze

* Query: Retrieve doctors having at least one appointment
— d:=3Jpd't: Appointment(p,d’ t, d)

e Applications: banks, institutions, libraries, movies, recipes, etc.
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Uncertainty

e One usually assumes that the data is correct...
e .. butin many cases it is not

— Untrustworthy sources, automated information extraction,
imprecise sensors in experimental sciences, etc.
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e You are invited to a PhD

defense  You know what will be served

* You have some allergies

dishes
Allergies tiramisu
person ingredient flapjacks
Billis milk couscous
Billis shrimps kougelhopf

Bernard eggs

e Butyou can't ask the candidate what the ingredients are
(he might be too busy giving the presentation)
e What are the chances that you'll be allergic to his tiramisu?
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Why is it difficult?

e Gather tiramisu recipes from books or from the web and make a
list of possible ingredients

— mascarpone So maybe the tiramisu’s ingredients will be:

— sugar e mascarpone, sugar, eggs, and strawberries
— strawberries e or: sugar, shrimps, coffee, and potatoes
— shrimps  or: shrimps and mascarpone

— coffee o« ...

.

» 20 different ingredients — 22° ~ 1 million possible recipes

» Real-world databases: more like 2'°°° — way too big
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Probabilistic Databases

* Need a framework to efficiently model this uncertainty and
reason about it

— Probabilistic Databases
« In this thesis: tuple independent databases (TID)

— Idea: assume independence across tuples
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e Succinctly represent probabilistic data:

- Arelational database D
- A probability valuation = mapping each fact of D to [0, 1]

» Semantics of a TID (D, 7): a probability distribution on D' C D:

- Each fact F € D is either present or absent with probability =(F)
- Assume independence across facts

— For D" C D, Pr(D’) = (Ireor 7(F)) * (Ilrepyor (1= 7(F)))
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Probabilistic query evaluation (PQE) problem for Q and D:

e Givenaqueryge Q
e Given a database D € D and a probability valuation =

» Compute the probability that (D, 7) satisfies g
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Complexity of probabilistic query evaluation (PQE)

Question: what is the (data, combined) complexity of PQE
depending on the class D of databases and class Q of queries?

Wish list:

e PQE tractable in combined complexity

e or PQE tractable in the data, reasonable in the query
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Treewidth

Treewidth by example:

e Trees have treewidth 1
» Cycles have treewidth 2

» k-cliques and (kR — 1)-grids have treewidth k —1

— Treelike: the treewidth is bounded by a constant
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— ICDT’2017 (with A. Amarilli, P. Bourhis, and P. Senellart)

3. Connecting width and semantics in knowledge compilation, and
applications to PQE

— 1CDT’2018 (with A. Amarilli and P. Senellart)

e Connections between safe queries and circuit classes from
knowledge compilation

— AMW’2018 (with D. Olteanu)
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Restrict instances to trees

Q = one-way paths (1WP), D = polytrees (PT)

S
T\/\T \/\

' S S S

T S S S T

Q@ — = = = — /\ \
VAVAN

S

Proposition + prob. for each edge
PQE of 1WP on PT is #P-hard
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Q = one-way paths, D = polytrees, without labels

What if we do not have labels?

Probability that the data graph has a path of length |Q|
Computed bottom-up, e.g., tree automaton

Labels have an impact! / r\
/>\ <\
Proposition

PQE of unlabeled 1WP on PT is PTIME

Q: > > >

~
~
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Our graph classes

1WP D PT
5551 AN
N /N SN N

» /NN NN
LN L N

WT

C Q
1WP }/ PT € Connected < All
< ~
DWT
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1Q D— | AWP 2WP DWT PT Connected
1WP
2WP
DWT PTIME
PT #P-hard
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Q Db

WP 2WP DWT PT Connected

1WP
2WP
DWT
PT
Connected

Q Db

> 2 labels
PTIME

#P-hard

WP 2WP DWT PT Connected

1WP
2WP
DWT
PT
Connected

No labels

PTIME \
#P-hard
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 Detailed study of the combined complexity of PQE

» Showed the importance of various features on the problem:
labels, global orientation, branching, connectedness

e Established the complexity for all combinations of the graph
classes we considered

 Essentially, all tractable cases involve paths
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 Detailed study of the combined complexity of PQE

» Showed the importance of various features on the problem:
labels, global orientation, branching, connectedness

e Established the complexity for all combinations of the graph
classes we considered

 Essentially, all tractable cases involve paths

Drawbacks:

e Qur graph classes may seem “arbitrary”
» Not yet a dichotomy, just starting to understand the problem

e Tractable cases very restricted
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Lowering our expectations

What if we want the complexity to be:

e Tractable in the data

* Not too horrible in the query

Can we then support a more expressive query language?
(e.g., disjunctions, negations, recursion)
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Non-probabilistic query evaluation
on treelike databases
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Starting point

* Existing data dichotomy result on data

— PQE for MSO on bounded-treewidth databases has linear data
complexity [Amarilli, Bourhis, & Senellart, 2015]

|l
- Problem: nonelementary in the query 22.-' } Q|

The database class is parameterized
Idea:

e one parameter for the databases

e and one parameter for the queries

24/42
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Parameterized Complexity

Idea: one parameter Rp for the database (treewidth) AND one
parameter Rq for the query

» Database classes D;,D,, - - -
* Query classes Qq, Q,, -+

Definition
The problem is fixed-parameter tractable (FPT) linear if there exists a
computable function f such that it can be solved in time

f(kp, ko) x |Q| x |D|
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1) A new language...
* We introduce the language of clique-frontier-guarded Datalog
(CFG-Datalog), parameterized by body-size kp
2) ... with FPT-linear (combined) evaluation...

e Given a CFG-Datalog program P with body-size kp and a relational
database D of treewidth Rp, checking if D = P can be done in
time f(kp, Rp) x |P| x |D|

3) ... and also FPT-linear (combined) computation of provenance

e We design a new concise provenance representation based on
cyclic Boolean circuits: cycluits

26/42



Proof Sketch

CFGEDba.::i&IOg pr;glr(am P Two-way Alternating P Cyeclui
of body-size P Tree Automaton A rovenance Cycluit

C(x): Subway(‘Corvisart’, x) O( g"(kpkp) P ) O( IATIEl)

C(x): C(y) AND Subway(y, x) ﬁ
Goal(): NOT C(”Chatelet”)

Database D Tree encoding E

of treewidth = k

“Under which conditions is it

impossible to go from station

(Paris Metro map) Corvisart to station Chéatelet with the
subway?”
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Theorem

Given a CFG-Datalog program P with body-size Rp and a relational
database D of treewidth kp, we can compute a cycluit representing the
provenance of P on D in time f(kp, Rp) x |P| x |D|
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Theorem

Given a CFG-Datalog program P with body-size Rp and a relational
database D of treewidth kp, we can compute a cycluit representing the
provenance of P on D in time f(kp, Rp) x |P| x |D|

 Capture interesting query languages such as 2RPQs (graph query
language), conjunctive queries (of bounded simplicial treewidth),
guarded negation logic fragments, etc.

Can we lift this result to probabilistic evaluation?
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Boolean cycluits to d-SDNNFs and lower bounds
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Example: Provenance

Ixyz (R(x,y) AS(y,2)) vV (S(x,y) AR(y,2))

\Y

Prov(g, D) = [S(a, b) A (R(b, c) V R(c, a))]
VIS(d, b) A (R(b, ) Vv R(c, d))]

\ ,b)
AN

R(b,c) R(c,d)
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Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
circuits:

Width-based:

e Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.

— message passing algorithm for #SAT and probabilistic evaluation
- Links with Bayesian networks

Semantics-based:

 Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
— #SAT and probabilistic evaluation are easy because these classes
have strong semantic constraints
- Used to understand #SAT solvers

Question: what are the links between the two?

32/42



Treewidth and d-SDNNFs



Bounded treewidth Boolean circuits
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Bounded treewidth Boolean circuits

)
() )
Treewidth of C = that of the underlying
° °>0 graph
()
© @
00

We can do message passing:

Theorem (Lauritzen & Spielgelhalter, 1988)
Fix k € N. Given a Boolean circuit C of treewidth < k, we can compute
its probability in time O(f(R) x |C|), where f is singly exponential
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* Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— SAT can be solved efficiently

e Deterministic: inputs of v-gates are
mutually exclusive
— HSAT and probability evaluation

e Structured: there is a v-tree that
structures the A-gates

35/42



Treewidth and d-SDNNFs: Upper bound

Theorem
Let C be a Boolean circuit of treewidth < k.

We can compute a d-SDNNF equivalent to C in time O(|C| x f(R)),
where f is singly exponential
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Treewidth and d-SDNNFs: Upper bound

Theorem
Let C be a Boolean circuit of treewidth < k.

We can compute a d-SDNNF equivalent to C in time O(|C| x f(R)),
where f is singly exponential

— Recaptures message passing through the use of knowledge
compilation

36/42
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Treewidth and d-SDNNFs: Lower bound

Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

Treewidth of a DNF/CNF: that of its Gaifman graph

Arity: size of the largest clause

e Degree: maximal number of clauses to which a variable belongs

Theorem
Let o be a monotone DNF of treewidth k, let a := arity(¢) and

R
d := degree(y). Then any d-SDNNF for ¢ has size > 2L3xa3xd2J —1

e For CNFs, the bound even works for (non-deterministic) SDNNF

e The bound is generic: it applies to any monotone DNF/CNF

37/42



Proof Sketch for CNFs (1/2)

Use the connection made in [Bova, Capelli & Mengel, 2016] between
the notion of combinatorial rectangle in communication complexity
and SDNNFs.

Definition

A (X,Y)-rectangle is a Boolean function R : 2X“Y — {0, 1} that can be
written as Ry A Ry, for some Boolean functions Ry : 2X — {0,1} and
Ry : 2V — {0,1}. A (X, Y)-rectangle cover of a function f : 2*“¥ — {0, 1}
is aset {Rq,---,Rn} of (X,Y)-rectangles such that f = \/I_, R;.
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Use the connection made in [Bova, Capelli & Mengel, 2016] between
the notion of combinatorial rectangle in communication complexity
and SDNNFs.

Definition

A (X,Y)-rectangle is a Boolean function R : 2X“Y — {0, 1} that can be
written as Ry A Ry, for some Boolean functions Ry : 2X — {0,1} and
Ry : 2V — {0,1}. A (X, Y)-rectangle cover of a function f : 2*“¥ — {0, 1}
is aset {Rq,---,Rn} of (X,Y)-rectangles such that f = \/I_, R;.

Theorem (Bova, Capelli & Mengel, 2016)

Let C be an SDNNF computing a function ¢ on variables V, structured
by av-tree T. Let n € T, and let (X, Y) be the partition of V that n
induces. Then ¢ has a (X, Y)-rectangle cover of size at most |C|.
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Proof Sketch for CNFs (2/2)

A CNF having no small rectangle cover:

Theorem (Sherstov, 2014)

Let X = {X1,...,xn} and Y = {ya,...,¥n} be two disjoint sets of
variables. Then any (X, Y)-rectangle cover of the Boolean function
SCOV(X,Y) :== AiL, X; V y; has size > 2".
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Proof Sketch for CNFs (2/2)

A CNF having no small rectangle cover:

Theorem (Sherstov, 2014)

Let X = {X1,...,xn} and Y = {ya,...,¥n} be two disjoint sets of
variables. Then any (X, Y)-rectangle cover of the Boolean function
SCOV(X,Y) :== AiL, X; V y; has size > 2".

We show that we can find SCOV : (X, Y) within any CNF of
x a3 xd?
treewidth > k. ’

— Rephrase treewidth as treesplitwidth, a new measure capturing
the ‘performance’ of a v-tree

39/42



Application to PQE

CFGEDba.::i&IOg pr;glr(am P Two-way Alternating P Cyeclui
of body-size P Tree Automaton A rovenance Cycluit
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Database D Tree encoding E

of treewidth = k

“Under which conditions is it

impossible to go from station

(Paris Metro map) Corvisart to station Chéatelet with the
subway?”

40/42



Application to PQE

Cycluit
size O(|P| x |D))
treewidth O(|P|)

40/142



Application to PQE

Cycluit Circuit
size O(|P| x |D|)  »  size O(2/PI" x |D|)
treewidth O(|P|) treewidth 0(2/PI")

40/142



Application to PQE

Cycluit Circuit
size O(|P| x |D|)  »  size O(2/PI" x |D|)
treewidth O(|P|) treewidth 0(2/PI")

d-SDNNF
size 0(22"" x |D|)

40/142



Application to PQE

. Cycluit . Clr(lialilt d-SDNNF
size O(|P| x |D|)  »  size O(2/PI" x |D|) , JIPle
: 4 \pje size O(2 x |D|)
treewidth O(|P|) treewidth O(2'"1")
Theorem

Fix kp and R;. We can solve PQE of a CFG-Datalog program P on a
treelike database D in time 0(22"" |D)).
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Application to PQE

. Cycluit . Clr(lialilt d-SDNNE
sizeO(|P| x |D]) »  size 0(2/PI" x |D|) size 02" x |D)
. 4 o X
treewidth O(|P|) treewidth 0(2/PI")
Theorem

Fix kp and R;. We can solve PQE of a CFG-Datalog program P on a
treelike database D in time 0(22"" |D)).

e 2EXP but still better than previous nonelementary bounds

40/42
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Conclusion (1/2)

Main contributions:

1. Detailed study of the combined complexity of PQE of conjunctive
queries on binary signatures

2. Efficient provenance computation for a new expressive query
language (CFG-Datalog) on treelike data, introduction of a new
provenance representation (cycluits)

3. Connections between two classes of Boolean circuits in
knowledge compilation: width-based and semantics-based.
Application to PQE of CFG-Datalog

6nu2
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Conclusion (2/2)

Ideas for Future work:

e Correlations?

* More general provenance semirings?

» Approximations?

* Notion of width for d-SDNNFs?

» Obtain 1EXP for PQE of CFG-Datalog on treelike data?

» Practical implementations?

Thanks for your attention!

4242
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CFG-Datalog: Definition by example

e Fragment of Datalog with stratified negation
e 0 =0 o™ ={R,Ry,...} U{5;,S,,...}
« Boolean programs: special o-ary intensional predicate Goal()

53(X7y7 t) «— R1(X7y) A 53(y7 t7y) A 52(X7 t) A _|S1(X,Z)

Goal() « ---

body-size = MaxArity(o) x maxye r NbAtoms(r)
"size to write a rule"
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Reduction for Q = one-way paths, T = polytrees
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Reduction for Q = one-way paths, T = polytrees

» = X1Y2 \/X1Y1 \/X2Y2
i = Pr((1,m) | Q) x 214(0)
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