
Combined Complexity
of Probabilistic Query Evaluation

Mikaël Monet

October 12th, 2018

Relational Databases

• Databases: store information and query it later
Has_Specialty

doctor specialty

Dr. Sneeze allergologist
Dr. Bone radiology

Dr. Nail hand surgeon

...
...

Appointment

patient date time doctor

Nelly 17/04 11h Dr. Sneeze
Jb 30/05 14h Dr. Bone
Jb 05/11 15h Dr. Sneeze
Jb 12/10 15h Dr. Sneeze

...
...

...
...

• Query:

• Applications: banks, institutions, libraries, movies, recipes, etc.

1/42

Relational Databases

• Databases: store information and query it later
Has_Specialty

doctor specialty

Dr. Sneeze allergologist
Dr. Bone radiology
Dr. Nail hand surgeon

...
...

Appointment

patient date time doctor

Nelly 17/04 11h Dr. Sneeze
Jb 30/05 14h Dr. Bone
Jb 05/11 15h Dr. Sneeze
Jb 12/10 15h Dr. Sneeze

...
...

...
...

• Query:

• Applications: banks, institutions, libraries, movies, recipes, etc.

1/42

Relational Databases

• Databases: store information and query it later
Has_Specialty

doctor specialty

Dr. Sneeze allergologist
Dr. Bone radiology
Dr. Nail hand surgeon

...
...

Appointment

patient date time doctor

Nelly 17/04 11h Dr. Sneeze
Jb 30/05 14h Dr. Bone
Jb 05/11 15h Dr. Sneeze

Jb 12/10 15h Dr. Sneeze

...
...

...
...

• Query:

• Applications: banks, institutions, libraries, movies, recipes, etc.

1/42

Relational Databases

• Databases: store information and query it later
Has_Specialty

doctor specialty

Dr. Sneeze allergologist
Dr. Bone radiology
Dr. Nail hand surgeon

...
...

Appointment

patient date time doctor

Nelly 17/04 11h Dr. Sneeze
Jb 30/05 14h Dr. Bone
Jb 05/11 15h Dr. Sneeze

Jb 12/10 15h Dr. Sneeze

...
...

...
...

• Query: Retrieve patients having an appointment with a radiologist

• Applications: banks, institutions, libraries, movies, recipes, etc.

1/42

Relational Databases

• Databases: store information and query it later
Has_Specialty

doctor specialty

Dr. Sneeze allergologist
Dr. Bone radiology
Dr. Nail hand surgeon

...
...

Appointment

patient date time doctor

Nelly 17/04 11h Dr. Sneeze
Jb 30/05 14h Dr. Bone
Jb 05/11 15h Dr. Sneeze

Jb 12/10 15h Dr. Sneeze

...
...

...
...

• Query: Retrieve patients having an appointment with a radiologist
→ SELECT patient FROM Appointment, Has_Specialty

WHERE Appointment.doctor = Has_Specialty.doctor
AND Has_Specialty.specialty = ’radiology’

• Applications: banks, institutions, libraries, movies, recipes, etc.

1/42

Relational Databases

• Databases: store information and query it later
Has_Specialty

doctor specialty

Dr. Sneeze allergologist
Dr. Bone radiology
Dr. Nail hand surgeon

...
...

Appointment

patient date time doctor

Nelly 17/04 11h Dr. Sneeze
Jb 30/05 14h Dr. Bone
Jb 05/11 15h Dr. Sneeze

Jb 12/10 15h Dr. Sneeze

...
...

...
...

• Query: Retrieve patients having an appointment with a radiologist
→ p := ∃d′ t d : Appointment(p,d′, t,d) ∧ Has_Specialty(d, ’radiology’)

• Applications: banks, institutions, libraries, movies, recipes, etc.

1/42

Relational Databases

• Databases: store information and query it later
Has_Specialty

doctor specialty

Dr. Sneeze allergologist
Dr. Bone radiology
Dr. Nail hand surgeon

...
...

Appointment

patient date time doctor

Nelly 17/04 11h Dr. Sneeze
Jb 30/05 14h Dr. Bone
Jb 05/11 15h Dr. Sneeze

Jb 12/10 15h Dr. Sneeze

...
...

...
...

• Query: Retrieve doctors having at least one appointment

• Applications: banks, institutions, libraries, movies, recipes, etc.

1/42

Relational Databases

• Databases: store information and query it later
Has_Specialty

doctor specialty

Dr. Sneeze allergologist
Dr. Bone radiology
Dr. Nail hand surgeon

...
...

Appointment

patient date time doctor

Nelly 17/04 11h Dr. Sneeze
Jb 30/05 14h Dr. Bone
Jb 05/11 15h Dr. Sneeze

Jb 12/10 15h Dr. Sneeze

...
...

...
...

• Query: Retrieve doctors having at least one appointment
→ SELECT doctor FROM Appointment

• Applications: banks, institutions, libraries, movies, recipes, etc.

1/42

Relational Databases

• Databases: store information and query it later
Has_Specialty

doctor specialty

Dr. Sneeze allergologist
Dr. Bone radiology
Dr. Nail hand surgeon

...
...

Appointment

patient date time doctor

Nelly 17/04 11h Dr. Sneeze
Jb 30/05 14h Dr. Bone
Jb 05/11 15h Dr. Sneeze

Jb 12/10 15h Dr. Sneeze

...
...

...
...

• Query: Retrieve doctors having at least one appointment
→ d := ∃pd′ t : Appointment(p,d′, t,d)

• Applications: banks, institutions, libraries, movies, recipes, etc.

1/42

Relational Databases

• Databases: store information and query it later
Has_Specialty

doctor specialty

Dr. Sneeze allergologist
Dr. Bone radiology
Dr. Nail hand surgeon

...
...

Appointment

patient date time doctor

Nelly 17/04 11h Dr. Sneeze
Jb 30/05 14h Dr. Bone
Jb 05/11 15h Dr. Sneeze

Jb 12/10 15h Dr. Sneeze

...
...

...
...

• Query: Retrieve doctors having at least one appointment
→ d := ∃pd′ t : Appointment(p,d′, t,d)

• Applications: banks, institutions, libraries, movies, recipes, etc.
1/42

Uncertainty

• One usually assumes that the data is correct...

• ... but in many cases it is not
→ Untrustworthy sources, automated information extraction,

imprecise sensors in experimental sciences, etc.

2/42

Uncertainty

• One usually assumes that the data is correct...
• ... but in many cases it is not

→ Untrustworthy sources, automated information extraction,
imprecise sensors in experimental sciences, etc.

2/42

Uncertainty

• One usually assumes that the data is correct...
• ... but in many cases it is not
→ Untrustworthy sources, automated information extraction,

imprecise sensors in experimental sciences, etc.

2/42

Example: Optical Character Recognition

• Hospital wants to digitize and store all doctors’ prescriptions

OCR + NLP−−−−−−→

Prescription

what when quantity

paracetamol anytime 500 mg
during attack 10 mg

3/42

Example: Optical Character Recognition

• Hospital wants to digitize and store all doctors’ prescriptions

OCR + NLP−−−−−−→

Prescription

what when quantity

paracetamol anytime 500 mg
during attack 10 mg

3/42

Example: Optical Character Recognition

• Hospital wants to digitize and store all doctors’ prescriptions

OCR + NLP−−−−−−→

Prescription

what when quantity

paracetamol anytime 500 mg
during attack 10 mg

3/42

Example: Optical Character Recognition

• Hospital wants to digitize and store all doctors’ prescriptions

OCR + NLP−−−−−−→

Prescription

what when quantity

paracetamol anytime 500 mg
metoclopramide during attack 10 mg

3/42

Example: Optical Character Recognition

• Hospital wants to digitize and store all doctors’ prescriptions

OCR + NLP−−−−−−→

Prescription

what when quantity

paracetamol anytime 500 mg
mebocloprauicle?? during attack 10 mg

3/42

Example: Optical Character Recognition

• Hospital wants to digitize and store all doctors’ prescriptions

OCR + NLP−−−−−−→

Prescription

what when quantity

paracetamol anytime 500 mg
mebocloprauicle?? during attack 10 mg
supp?? ?? 5

3/42

Why is it di�cult?

• You are invited to a PhD
defense

• You have some allergies
Allergies

person ingredient

Billis milk
Billis shrimps
Bernard eggs

...
...

• You know what will be served
dishes

tiramisu
�apjacks
couscous
kougelhopf

...

• But you can’t ask the candidate what the ingredients are
(he might be too busy giving the presentation)

• What are the chances that you’ll be allergic to his tiramisu?

4/42

Why is it di�cult?

• You are invited to a PhD
defense

• You have some allergies

Allergies

person ingredient

Billis milk
Billis shrimps
Bernard eggs

...
...

• You know what will be served
dishes

tiramisu
�apjacks
couscous
kougelhopf

...

• But you can’t ask the candidate what the ingredients are
(he might be too busy giving the presentation)

• What are the chances that you’ll be allergic to his tiramisu?

4/42

Why is it di�cult?

• You are invited to a PhD
defense

• You have some allergies
Allergies

person ingredient

Billis milk
Billis shrimps
Bernard eggs

...
...

• You know what will be served
dishes

tiramisu
�apjacks
couscous
kougelhopf

...

• But you can’t ask the candidate what the ingredients are
(he might be too busy giving the presentation)

• What are the chances that you’ll be allergic to his tiramisu?

4/42

Why is it di�cult?

• You are invited to a PhD
defense

• You have some allergies
Allergies

person ingredient

Billis milk
Billis shrimps
Bernard eggs

...
...

• You know what will be served

dishes

tiramisu
�apjacks
couscous
kougelhopf

...

• But you can’t ask the candidate what the ingredients are
(he might be too busy giving the presentation)

• What are the chances that you’ll be allergic to his tiramisu?

4/42

Why is it di�cult?

• You are invited to a PhD
defense

• You have some allergies
Allergies

person ingredient

Billis milk
Billis shrimps
Bernard eggs

...
...

• You know what will be served
dishes

tiramisu
�apjacks
couscous
kougelhopf

...

• But you can’t ask the candidate what the ingredients are
(he might be too busy giving the presentation)

• What are the chances that you’ll be allergic to his tiramisu?

4/42

Why is it di�cult?

• You are invited to a PhD
defense

• You have some allergies
Allergies

person ingredient

Billis milk
Billis shrimps
Bernard eggs

...
...

• You know what will be served
dishes

tiramisu
�apjacks
couscous
kougelhopf

...

• But you can’t ask the candidate what the ingredients are
(he might be too busy giving the presentation)

• What are the chances that you’ll be allergic to his tiramisu?

4/42

Why is it di�cult?

• You are invited to a PhD
defense

• You have some allergies
Allergies

person ingredient

Billis milk
Billis shrimps
Bernard eggs

...
...

• You know what will be served
dishes

tiramisu
�apjacks
couscous
kougelhopf

...

• But you can’t ask the candidate what the ingredients are
(he might be too busy giving the presentation)

• What are the chances that you’ll be allergic to his tiramisu?
4/42

Why is it di�cult?

• Gather tiramisu recipes from books or from the web and make a
list of possible ingredients

→ mascarpone
→ sugar
→ strawberries
→ shrimps
→ co�ee
→ · · ·

So maybe the tiramisu’s ingredients will be:

• mascarpone, sugar, eggs, and strawberries
• or: sugar, shrimps, co�ee, and potatoes
• or: shrimps and mascarpone
• · · ·

• 20 di�erent ingredients→ 220 ≈ 1 million possible recipes

• Real-world databases: more like 21000 → way too big

5/42

Why is it di�cult?

• Gather tiramisu recipes from books or from the web and make a
list of possible ingredients

→ mascarpone

→ sugar
→ strawberries
→ shrimps
→ co�ee
→ · · ·

So maybe the tiramisu’s ingredients will be:

• mascarpone, sugar, eggs, and strawberries
• or: sugar, shrimps, co�ee, and potatoes
• or: shrimps and mascarpone
• · · ·

• 20 di�erent ingredients→ 220 ≈ 1 million possible recipes

• Real-world databases: more like 21000 → way too big

5/42

Why is it di�cult?

• Gather tiramisu recipes from books or from the web and make a
list of possible ingredients

→ mascarpone
→ sugar

→ strawberries
→ shrimps
→ co�ee
→ · · ·

So maybe the tiramisu’s ingredients will be:

• mascarpone, sugar, eggs, and strawberries
• or: sugar, shrimps, co�ee, and potatoes
• or: shrimps and mascarpone
• · · ·

• 20 di�erent ingredients→ 220 ≈ 1 million possible recipes

• Real-world databases: more like 21000 → way too big

5/42

Why is it di�cult?

• Gather tiramisu recipes from books or from the web and make a
list of possible ingredients

→ mascarpone
→ sugar
→ strawberries

→ shrimps
→ co�ee
→ · · ·

So maybe the tiramisu’s ingredients will be:

• mascarpone, sugar, eggs, and strawberries
• or: sugar, shrimps, co�ee, and potatoes
• or: shrimps and mascarpone
• · · ·

• 20 di�erent ingredients→ 220 ≈ 1 million possible recipes

• Real-world databases: more like 21000 → way too big

5/42

Why is it di�cult?

• Gather tiramisu recipes from books or from the web and make a
list of possible ingredients

→ mascarpone
→ sugar
→ strawberries
→ shrimps

→ co�ee
→ · · ·

So maybe the tiramisu’s ingredients will be:

• mascarpone, sugar, eggs, and strawberries
• or: sugar, shrimps, co�ee, and potatoes
• or: shrimps and mascarpone
• · · ·

• 20 di�erent ingredients→ 220 ≈ 1 million possible recipes

• Real-world databases: more like 21000 → way too big

5/42

Why is it di�cult?

• Gather tiramisu recipes from books or from the web and make a
list of possible ingredients

→ mascarpone
→ sugar
→ strawberries
→ shrimps
→ co�ee
→ · · ·

So maybe the tiramisu’s ingredients will be:

• mascarpone, sugar, eggs, and strawberries
• or: sugar, shrimps, co�ee, and potatoes
• or: shrimps and mascarpone
• · · ·

• 20 di�erent ingredients→ 220 ≈ 1 million possible recipes

• Real-world databases: more like 21000 → way too big

5/42

Why is it di�cult?

• Gather tiramisu recipes from books or from the web and make a
list of possible ingredients

→ mascarpone
→ sugar
→ strawberries
→ shrimps
→ co�ee
→ · · ·

So maybe the tiramisu’s ingredients will be:

• mascarpone, sugar, eggs, and strawberries

• or: sugar, shrimps, co�ee, and potatoes
• or: shrimps and mascarpone
• · · ·

• 20 di�erent ingredients→ 220 ≈ 1 million possible recipes

• Real-world databases: more like 21000 → way too big

5/42

Why is it di�cult?

• Gather tiramisu recipes from books or from the web and make a
list of possible ingredients

→ mascarpone
→ sugar
→ strawberries
→ shrimps
→ co�ee
→ · · ·

So maybe the tiramisu’s ingredients will be:

• mascarpone, sugar, eggs, and strawberries
• or: sugar, shrimps, co�ee, and potatoes

• or: shrimps and mascarpone
• · · ·

• 20 di�erent ingredients→ 220 ≈ 1 million possible recipes

• Real-world databases: more like 21000 → way too big

5/42

Why is it di�cult?

• Gather tiramisu recipes from books or from the web and make a
list of possible ingredients

→ mascarpone
→ sugar
→ strawberries
→ shrimps
→ co�ee
→ · · ·

So maybe the tiramisu’s ingredients will be:

• mascarpone, sugar, eggs, and strawberries
• or: sugar, shrimps, co�ee, and potatoes
• or: shrimps and mascarpone
• · · ·

• 20 di�erent ingredients→ 220 ≈ 1 million possible recipes

• Real-world databases: more like 21000 → way too big

5/42

Why is it di�cult?

• Gather tiramisu recipes from books or from the web and make a
list of possible ingredients

→ mascarpone
→ sugar
→ strawberries
→ shrimps
→ co�ee
→ · · ·

So maybe the tiramisu’s ingredients will be:

• mascarpone, sugar, eggs, and strawberries
• or: sugar, shrimps, co�ee, and potatoes
• or: shrimps and mascarpone
• · · ·

• 20 di�erent ingredients→ 220 ≈ 1 million possible recipes

• Real-world databases: more like 21000 → way too big

5/42

Why is it di�cult?

• Gather tiramisu recipes from books or from the web and make a
list of possible ingredients

→ mascarpone
→ sugar
→ strawberries
→ shrimps
→ co�ee
→ · · ·

So maybe the tiramisu’s ingredients will be:

• mascarpone, sugar, eggs, and strawberries
• or: sugar, shrimps, co�ee, and potatoes
• or: shrimps and mascarpone
• · · ·

• 20 di�erent ingredients→ 220 ≈ 1 million possible recipes

• Real-world databases: more like 21000 → way too big

5/42

Probabilistic Databases

• Need a framework to e�ciently model this uncertainty and
reason about it

→ Probabilistic Databases

• In this thesis: tuple independent databases (TID)
→ Idea: assume independence across tuples

6/42

Probabilistic Databases

• Need a framework to e�ciently model this uncertainty and
reason about it

→ Probabilistic Databases

• In this thesis: tuple independent databases (TID)
→ Idea: assume independence across tuples

6/42

Tuple-independent databases (TID)

• Succinctly represent probabilistic data:
• A relational database D
• A probability valuation π mapping each fact of D to [0, 1]

• Semantics of a TID (D, π): a probability distribution on D′ ⊆ D:
• Each fact F ∈ D is either present or absent with probability π(F)
• Assume independence across facts
→ For D′ ⊆ D, Pr(D′) = (

∏
F∈D′ π(F))× (

∏
F∈D\D′(1− π(F)))

7/42

Tuple-independent databases (TID)

• Succinctly represent probabilistic data:
• A relational database D
• A probability valuation π mapping each fact of D to [0, 1]

• Semantics of a TID (D, π): a probability distribution on D′ ⊆ D:
• Each fact F ∈ D is either present or absent with probability π(F)
• Assume independence across facts

→ For D′ ⊆ D, Pr(D′) = (
∏

F∈D′ π(F))× (
∏

F∈D\D′(1− π(F)))

7/42

Tuple-independent databases (TID)

• Succinctly represent probabilistic data:
• A relational database D
• A probability valuation π mapping each fact of D to [0, 1]

• Semantics of a TID (D, π): a probability distribution on D′ ⊆ D:
• Each fact F ∈ D is either present or absent with probability π(F)
• Assume independence across facts
→ For D′ ⊆ D, Pr(D′) = (

∏
F∈D′ π(F))× (

∏
F∈D\D′(1− π(F)))

7/42

Example: TID

(

D

, π)

=
Contains

tiramisu sugar

.5

tiramisu eggs

.2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

8/42

Example: TID

(

D

, π)

=
C

t s

.5

t e

.2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

Pr(D |= q) =

= 1− [(1− .5)× (1− .2)]

8/42

Example: TID

(D, π) =
C

t s .5
t e .2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

Pr(D |= q) =

= 1− [(1− .5)× (1− .2)]

8/42

Example: TID

(D, π) =
C

t s .5
t e .2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

Pr(D |= q) =

= 1− [(1− .5)× (1− .2)]

8/42

Example: TID

(D, π) =
C

t s .5
t e .2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

Pr(D |= q) =

= 1− [(1− .5)× (1− .2)]

8/42

Example: TID

(D, π) =
C

t s .5
t e .2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

Pr(D |= q) =

= 1− [(1− .5)× (1− .2)]

8/42

Example: TID

(D, π) =
C

t s .5
t e .2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

Pr(D |= q) =

= 1− [(1− .5)× (1− .2)]

8/42

Example: TID

(D, π) =
C

t s .5
t e .2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

Pr(D |= q) =

= 1− [(1− .5)× (1− .2)]

8/42

Example: TID

(D, π) =
C

t s .5
t e .2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

Pr(D |= q) =

= 1− [(1− .5)× (1− .2)]

8/42

Example: TID

(D, π) =
C

t s .5
t e .2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

Pr(D |= q) = .5× .2

= 1− [(1− .5)× (1− .2)]

8/42

Example: TID

(D, π) =
C

t s .5
t e .2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

Pr(D |= q) = .5× .2

= 1− [(1− .5)× (1− .2)]

8/42

Example: TID

(D, π) =
C

t s .5
t e .2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

Pr(D |= q) = .5× .2+ .5× (1− .2)

= 1− [(1− .5)× (1− .2)]

8/42

Example: TID

(D, π) =
C

t s .5
t e .2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

Pr(D |= q) = .5× .2+ .5× (1− .2)

= 1− [(1− .5)× (1− .2)]

8/42

Example: TID

(D, π) =
C

t s .5
t e .2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

Pr(D |= q) = .5× .2+ .5× (1− .2) + (1− .5)× .2

= 1− [(1− .5)× (1− .2)]

8/42

Example: TID

(D, π) =
C

t s .5
t e .2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

Pr(D |= q) = .5× .2+ .5× (1− .2) + (1− .5)× .2

= 1− [(1− .5)× (1− .2)]

8/42

Example: TID

(D, π) =
C

t s .5
t e .2

q = ∃x y C(x, y)

.5× .2

C

t s
t e

.5× (1− .2)

C

t s

(1− .5)× .2

C

t e

(1− .5)× (1− .2)

C

Pr(D |= q) = .5× .2+ .5× (1− .2) + (1− .5)× .2

= 1− [(1− .5)× (1− .2)]
8/42

Probabilistic query evaluation (PQE)

Let us �x:

• Class D of relational databases (e.g., acyclic, trees)
• Class Q of Boolean queries (e.g., paths, trees)

Probabilistic query evaluation (PQE) problem for Q and D:

• Given a query q ∈ Q
• Given a database D ∈ D and a probability valuation π
• Compute the probability that (D, π) satis�es q
→ Pr((D, π) |= q) =

∑
D′⊆D, D′|=q Pr(D′)

9/42

Probabilistic query evaluation (PQE)

Let us �x:

• Class D of relational databases (e.g., acyclic, trees)
• Class Q of Boolean queries (e.g., paths, trees)

Probabilistic query evaluation (PQE) problem for Q and D:

• Given a query q ∈ Q
• Given a database D ∈ D and a probability valuation π
• Compute the probability that (D, π) satis�es q

→ Pr((D, π) |= q) =
∑

D′⊆D, D′|=q Pr(D′)

9/42

Probabilistic query evaluation (PQE)

Let us �x:

• Class D of relational databases (e.g., acyclic, trees)
• Class Q of Boolean queries (e.g., paths, trees)

Probabilistic query evaluation (PQE) problem for Q and D:

• Given a query q ∈ Q
• Given a database D ∈ D and a probability valuation π
• Compute the probability that (D, π) satis�es q
→ Pr((D, π) |= q) =

∑
D′⊆D, D′|=q Pr(D′)

9/42

Complexity of probabilistic query evaluation (PQE)

Question: what is the (data, combined) complexity of PQE
depending on the class D of databases and class Q of queries?

Wish list:

• PQE tractable in combined complexity
• or PQE tractable in the data, reasonable in the query

10/42

Complexity of probabilistic query evaluation (PQE)

Question: what is the (data, combined) complexity of PQE
depending on the class D of databases and class Q of queries?

Wish list:

• PQE tractable in combined complexity
• or PQE tractable in the data, reasonable in the query

10/42

Data complexity results: related work (1/2)

• Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
• Dall = all possible databases
• Q = {q}, for q a UCQ (≈ SQL with select, where, union)

→ q is ‘safe’ =⇒ PQE is PTIME
→ q is not ‘safe’ =⇒ PQE is #P-hard

• Existing data dichotomy result on data

11/42

Data complexity results: related work (1/2)

• Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
• Dall = all possible databases
• Q = {q}, for q a UCQ (≈ SQL with select, where, union)
→ q is ‘safe’ =⇒ PQE is PTIME

→ q is not ‘safe’ =⇒ PQE is #P-hard

• Existing data dichotomy result on data

11/42

Data complexity results: related work (1/2)

• Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
• Dall = all possible databases
• Q = {q}, for q a UCQ (≈ SQL with select, where, union)
→ q is ‘safe’ =⇒ PQE is PTIME
→ q is not ‘safe’ =⇒ PQE is #P-hard

• Existing data dichotomy result on data

11/42

Data complexity results: related work (1/2)

• Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
• Dall = all possible databases
• Q = {q}, for q a UCQ (≈ SQL with select, where, union)
→ q is ‘safe’ =⇒ PQE is PTIME
→ q is not ‘safe’ =⇒ PQE is #P-hard

• Existing data dichotomy result on data

11/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/42

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant
12/42

Data complexity results: related work (2/2)

• Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
• Dall = all possible databases
• Q = {q}, for q a UCQ (≈ SQL with select, where, union)
→ q is ‘safe’ =⇒ PQE is PTIME
→ q is not ‘safe’ =⇒ PQE is #P-hard

• Existing data dichotomy result on data

• Dk = all databases whose treewidth is bounded by k ∈ N
• Q = {q}, for q a MSO query
→ PQE has linear data complexity [Amarilli, Bourhis, & Senellart,

2015]
→ There is an FO query for which PQE is #P-hard on any

unbounded-treewidth database class D (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

What about combined complexity?

13/42

Data complexity results: related work (2/2)

• Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
• Dall = all possible databases
• Q = {q}, for q a UCQ (≈ SQL with select, where, union)
→ q is ‘safe’ =⇒ PQE is PTIME
→ q is not ‘safe’ =⇒ PQE is #P-hard

• Existing data dichotomy result on data
• Dk = all databases whose treewidth is bounded by k ∈ N

• Q = {q}, for q a MSO query
→ PQE has linear data complexity [Amarilli, Bourhis, & Senellart,

2015]
→ There is an FO query for which PQE is #P-hard on any

unbounded-treewidth database class D (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

What about combined complexity?

13/42

Data complexity results: related work (2/2)

• Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
• Dall = all possible databases
• Q = {q}, for q a UCQ (≈ SQL with select, where, union)
→ q is ‘safe’ =⇒ PQE is PTIME
→ q is not ‘safe’ =⇒ PQE is #P-hard

• Existing data dichotomy result on data
• Dk = all databases whose treewidth is bounded by k ∈ N
• Q = {q}, for q a MSO query

→ PQE has linear data complexity [Amarilli, Bourhis, & Senellart,
2015]

→ There is an FO query for which PQE is #P-hard on any
unbounded-treewidth database class D (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

What about combined complexity?

13/42

Data complexity results: related work (2/2)

• Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
• Dall = all possible databases
• Q = {q}, for q a UCQ (≈ SQL with select, where, union)
→ q is ‘safe’ =⇒ PQE is PTIME
→ q is not ‘safe’ =⇒ PQE is #P-hard

• Existing data dichotomy result on data
• Dk = all databases whose treewidth is bounded by k ∈ N
• Q = {q}, for q a MSO query
→ PQE has linear data complexity [Amarilli, Bourhis, & Senellart,

2015]

→ There is an FO query for which PQE is #P-hard on any
unbounded-treewidth database class D (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

What about combined complexity?

13/42

Data complexity results: related work (2/2)

• Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
• Dall = all possible databases
• Q = {q}, for q a UCQ (≈ SQL with select, where, union)
→ q is ‘safe’ =⇒ PQE is PTIME
→ q is not ‘safe’ =⇒ PQE is #P-hard

• Existing data dichotomy result on data
• Dk = all databases whose treewidth is bounded by k ∈ N
• Q = {q}, for q a MSO query
→ PQE has linear data complexity [Amarilli, Bourhis, & Senellart,

2015]
→ There is an FO query for which PQE is #P-hard on any

unbounded-treewidth database class D (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

What about combined complexity?

13/42

Data complexity results: related work (2/2)

• Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
• Dall = all possible databases
• Q = {q}, for q a UCQ (≈ SQL with select, where, union)
→ q is ‘safe’ =⇒ PQE is PTIME
→ q is not ‘safe’ =⇒ PQE is #P-hard

• Existing data dichotomy result on data
• Dk = all databases whose treewidth is bounded by k ∈ N
• Q = {q}, for q a MSO query
→ PQE has linear data complexity [Amarilli, Bourhis, & Senellart,

2015]
→ There is an FO query for which PQE is #P-hard on any

unbounded-treewidth database class D (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

What about combined complexity?
13/42

Plan

During my thesis I have investigated:

1. Combined complexity of PQE for conjunctive queries on binary
signatures (graph databases)
→ PODS’2017 (with A. Amarilli and P. Senellart)

2. Combined complexity of non-probabilistic query evaluation on
treelike databases
→ ICDT’2017 (with A. Amarilli, P. Bourhis, and P. Senellart)

3. Connecting width and semantics in knowledge compilation, and
applications to PQE
→ ICDT’2018 (with A. Amarilli and P. Senellart)

• Connections between safe queries and circuit classes from
knowledge compilation
→ AMW’2018 (with D. Olteanu)

14/42

Plan

During my thesis I have investigated:

1. Combined complexity of PQE for conjunctive queries on binary
signatures (graph databases)
→ PODS’2017 (with A. Amarilli and P. Senellart)

2. Combined complexity of non-probabilistic query evaluation on
treelike databases
→ ICDT’2017 (with A. Amarilli, P. Bourhis, and P. Senellart)

3. Connecting width and semantics in knowledge compilation, and
applications to PQE
→ ICDT’2018 (with A. Amarilli and P. Senellart)

• Connections between safe queries and circuit classes from
knowledge compilation
→ AMW’2018 (with D. Olteanu)

14/42

Plan

During my thesis I have investigated:

1. Combined complexity of PQE for conjunctive queries on binary
signatures (graph databases)
→ PODS’2017 (with A. Amarilli and P. Senellart)

2. Combined complexity of non-probabilistic query evaluation on
treelike databases
→ ICDT’2017 (with A. Amarilli, P. Bourhis, and P. Senellart)

3. Connecting width and semantics in knowledge compilation, and
applications to PQE
→ ICDT’2018 (with A. Amarilli and P. Senellart)

• Connections between safe queries and circuit classes from
knowledge compilation
→ AMW’2018 (with D. Olteanu)

14/42

Plan

During my thesis I have investigated:

1. Combined complexity of PQE for conjunctive queries on binary
signatures (graph databases)
→ PODS’2017 (with A. Amarilli and P. Senellart)

2. Combined complexity of non-probabilistic query evaluation on
treelike databases
→ ICDT’2017 (with A. Amarilli, P. Bourhis, and P. Senellart)

3. Connecting width and semantics in knowledge compilation, and
applications to PQE
→ ICDT’2018 (with A. Amarilli and P. Senellart)

• Connections between safe queries and circuit classes from
knowledge compilation
→ AMW’2018 (with D. Olteanu)

14/42

PQE of conjunctive queries on binary signatures

15/42

Restrict to CQs on binary signatures

∃x y z t R(x, y) ∧ S(y, z) ∧ S(t, z)

→ x y z t
R S S

R

b c .8
c a .1
c d .1

S

a b 1.
d b .05

→

b

d

c

a

1.
S

.1
R

R
.1

S
.05

R
a
.8

16/42

Restrict to CQs on binary signatures

∃x y z t R(x, y) ∧ S(y, z) ∧ S(t, z) → x y z t
R S S

R

b c .8
c a .1
c d .1

S

a b 1.
d b .05

→

b

d

c

a

1.
S

.1
R

R
.1

S
.05

R
a
.8

16/42

Restrict to CQs on binary signatures

∃x y z t R(x, y) ∧ S(y, z) ∧ S(t, z) → x y z t
R S S

R

b c .8
c a .1
c d .1

S

a b 1.
d b .05

→

b

d

c

a

1.
S

.1
R

R
.1

S
.05

R
a
.8

16/42

Restrict to CQs on binary signatures

∃x y z t R(x, y) ∧ S(y, z) ∧ S(t, z) → x y z t
R S S

R

b c .8
c a .1
c d .1

S

a b 1.
d b .05

→

b

d

c

a

1.
S

.1
R

R
.1

S
.05

R
a
.8

16/42

Restrict to CQs on binary signatures

∃x y z t R(x, y) ∧ S(y, z) ∧ S(t, z) → x y z t
R S S

R

b c .8
c a .1
c d .1

S

a b 1.
d b .05

→

b

d

c

a

1.
S

.1
R

R
.1

S
.05

R
a
.8

16/42

Restrict to CQs on binary signatures

∃x y z t R(x, y) ∧ S(y, z) ∧ S(t, z) → x y z t
R S S

R

b c .8
c a .1
c d .1

S

a b 1.
d b .05

→

b

d

c

a

1.
S

.1
R

R
.1

S
.05

R
a
.8

16/42

Restrict to CQs on binary signatures

∃x y z t R(x, y) ∧ S(y, z) ∧ S(t, z) → x y z t
R S S

R

b c .8
c a .1
c d .1

S

a b 1.
d b .05

→

b

d

c

a

1.
S

.1
R

R
.1

S
.05

R
a
.8

16/42

Restrict instances to trees

Q = one-way paths (1WP), D = polytrees (PT)

Q: T S S S T
I:

+ prob. for each edge

T T

T T

S S

S S

S

S

T
S

T

Proposition
PQE of 1WP on PT is #P-hard

17/42

Restrict instances to trees

Q = one-way paths (1WP), D = polytrees (PT)

Q: T S S S T

I:

+ prob. for each edge

T T

T T

S S

S S

S

S

T
S

T

Proposition
PQE of 1WP on PT is #P-hard

17/42

Restrict instances to trees

Q = one-way paths (1WP), D = polytrees (PT)

Q: T S S S T
I:

+ prob. for each edge

T T

T T

S S

S S

S

S

T
S

T

Proposition
PQE of 1WP on PT is #P-hard

17/42

Restrict instances to trees

Q = one-way paths (1WP), D = polytrees (PT)

Q: T S S S T
I:

+ prob. for each edge

T T

T T

S S

S S

S

S

T
S

T

Proposition
PQE of 1WP on PT is #P-hard

17/42

Q = one-way paths, D = polytrees, without labels

• What if we do not have labels?

• Probability that the data graph has a path of length |Q|
• Computed bottom-up, e.g., tree automaton
• Labels have an impact!

Q: T S S S T
I:

+ prob. for each edge

T T

T T

S S

S S

S

S

T
S

T

Proposition
PQE of unlabeled 1WP on PT is PTIME

18/42

Q = one-way paths, D = polytrees, without labels

• What if we do not have labels?

• Probability that the data graph has a path of length |Q|
• Computed bottom-up, e.g., tree automaton
• Labels have an impact!

Q:

I:

+ prob. for each edge

Proposition
PQE of unlabeled 1WP on PT is PTIME

18/42

Q = one-way paths, D = polytrees, without labels

• What if we do not have labels?
• Probability that the data graph has a path of length |Q|

• Computed bottom-up, e.g., tree automaton
• Labels have an impact!

Q:

I:

+ prob. for each edge

Proposition
PQE of unlabeled 1WP on PT is PTIME

18/42

Q = one-way paths, D = polytrees, without labels

• What if we do not have labels?
• Probability that the data graph has a path of length |Q|
• Computed bottom-up, e.g., tree automaton

• Labels have an impact!

Q:

I:

+ prob. for each edge

Proposition
PQE of unlabeled 1WP on PT is PTIME

18/42

Q = one-way paths, D = polytrees, without labels

• What if we do not have labels?
• Probability that the data graph has a path of length |Q|
• Computed bottom-up, e.g., tree automaton

• Labels have an impact!

Q:

I:

+ prob. for each edge

Proposition
PQE of unlabeled 1WP on PT is PTIME

18/42

Q = one-way paths, D = polytrees, without labels

• What if we do not have labels?
• Probability that the data graph has a path of length |Q|
• Computed bottom-up, e.g., tree automaton
• Labels have an impact!

Q:

I:

+ prob. for each edge

Proposition
PQE of unlabeled 1WP on PT is PTIME

18/42

Our graph classes

1WP

2WP

R S S T

R S S T R

DWT PT

1WP
2WP

DWT
PT Connected All⊆ ⊆
⊆ ⊆⊆ ⊆

19/42

Results

↓Q D→ 1WP 2WP DWT PT Connected
1WP
2WP
DWT PTIME
PT #P-hard

Connected

> 2 labels

↓Q D→ 1WP 2WP DWT PT Connected
1WP
2WP
DWT PTIME
PT #P-hard

Connected

No labels

20/42

Results

↓Q D→ 1WP 2WP DWT PT Connected
1WP
2WP
DWT PTIME
PT #P-hard

Connected

> 2 labels

↓Q D→ 1WP 2WP DWT PT Connected
1WP
2WP
DWT PTIME
PT #P-hard

Connected

No labels

20/42

Summary

• Detailed study of the combined complexity of PQE
• Showed the importance of various features on the problem:
labels, global orientation, branching, connectedness

• Established the complexity for all combinations of the graph
classes we considered

• Essentially, all tractable cases involve paths

Drawbacks:

• Our graph classes may seem “arbitrary”

• Not yet a dichotomy, just starting to understand the problem
• Tractable cases very restricted

21/42

Summary

• Detailed study of the combined complexity of PQE
• Showed the importance of various features on the problem:
labels, global orientation, branching, connectedness

• Established the complexity for all combinations of the graph
classes we considered

• Essentially, all tractable cases involve paths
Drawbacks:

• Our graph classes may seem “arbitrary”

• Not yet a dichotomy, just starting to understand the problem
• Tractable cases very restricted

21/42

Lowering our expectations

What if we want the complexity to be:

• Tractable in the data
• Not too horrible in the query

Can we then support a more expressive query language?
(e.g., disjunctions, negations, recursion)

22/42

Non-probabilistic query evaluation
on treelike databases

23/42

Starting point

• Existing data dichotomy result on data

→ PQE for MSO on bounded-treewidth databases has linear data
complexity [Amarilli, Bourhis, & Senellart, 2015]

• Problem: nonelementary in the query 22
...

|Q|
}
|Q|

The database class is parameterized
Idea:

• one parameter for the databases
• and one parameter for the queries

24/42

Starting point

• Existing data dichotomy result on data
→ PQE for MSO on bounded-treewidth databases has linear data

complexity [Amarilli, Bourhis, & Senellart, 2015]

• Problem: nonelementary in the query 22
...

|Q|
}
|Q|

The database class is parameterized
Idea:

• one parameter for the databases
• and one parameter for the queries

24/42

Starting point

• Existing data dichotomy result on data
→ PQE for MSO on bounded-treewidth databases has linear data

complexity [Amarilli, Bourhis, & Senellart, 2015]

• Problem: nonelementary in the query 22
...

|Q|
}
|Q|

The database class is parameterized
Idea:

• one parameter for the databases
• and one parameter for the queries

24/42

Starting point

• Existing data dichotomy result on data
→ PQE for MSO on bounded-treewidth databases has linear data

complexity [Amarilli, Bourhis, & Senellart, 2015]

• Problem: nonelementary in the query 22
...

|Q|
}
|Q|

The database class is parameterized

Idea:

• one parameter for the databases
• and one parameter for the queries

24/42

Starting point

• Existing data dichotomy result on data
→ PQE for MSO on bounded-treewidth databases has linear data

complexity [Amarilli, Bourhis, & Senellart, 2015]

• Problem: nonelementary in the query 22
...

|Q|
}
|Q|

The database class is parameterized
Idea:

• one parameter for the databases

• and one parameter for the queries

24/42

Starting point

• Existing data dichotomy result on data
→ PQE for MSO on bounded-treewidth databases has linear data

complexity [Amarilli, Bourhis, & Senellart, 2015]

• Problem: nonelementary in the query 22
...

|Q|
}
|Q|

The database class is parameterized
Idea:

• one parameter for the databases
• and one parameter for the queries

24/42

Parameterized Complexity

Idea: one parameter kD for the database (treewidth) AND one
parameter kQ for the query

• Database classes D1,D2, · · ·
• Query classes Q1,Q2, · · ·

De�nition
The problem is �xed-parameter tractable (FPT) linear if there exists a
computable function f such that it can be solved in time
f (kD, kQ)× |Q| × |D|

25/42

Parameterized Complexity

Idea: one parameter kD for the database (treewidth) AND one
parameter kQ for the query

• Database classes D1,D2, · · ·

• Query classes Q1,Q2, · · ·

De�nition
The problem is �xed-parameter tractable (FPT) linear if there exists a
computable function f such that it can be solved in time
f (kD, kQ)× |Q| × |D|

25/42

Parameterized Complexity

Idea: one parameter kD for the database (treewidth) AND one
parameter kQ for the query

• Database classes D1,D2, · · ·
• Query classes Q1,Q2, · · ·

De�nition
The problem is �xed-parameter tractable (FPT) linear if there exists a
computable function f such that it can be solved in time
f (kD, kQ)× |Q| × |D|

25/42

Parameterized Complexity

Idea: one parameter kD for the database (treewidth) AND one
parameter kQ for the query

• Database classes D1,D2, · · ·
• Query classes Q1,Q2, · · ·

De�nition
The problem is �xed-parameter tractable (FPT) linear if there exists a
computable function f such that it can be solved in time
f (kD, kQ)× |Q| × |D|

25/42

Results

1) A new language...

• We introduce the language of clique-frontier-guarded Datalog
(CFG-Datalog), parameterized by body-size kP

2) ... with FPT-linear (combined) evaluation...

• Given a CFG-Datalog program P with body-size kP and a relational
database D of treewidth kD, checking if D |= P can be done in
time f (kP, kD)× |P| × |D|

3) ... and also FPT-linear (combined) computation of provenance

• We design a new concise provenance representation based on
cyclic Boolean circuits: cycluits

26/42

Results

1) A new language...

• We introduce the language of clique-frontier-guarded Datalog
(CFG-Datalog), parameterized by body-size kP

2) ... with FPT-linear (combined) evaluation...

• Given a CFG-Datalog program P with body-size kP and a relational
database D of treewidth kD, checking if D |= P can be done in
time f (kP, kD)× |P| × |D|

3) ... and also FPT-linear (combined) computation of provenance

• We design a new concise provenance representation based on
cyclic Boolean circuits: cycluits

26/42

Results

1) A new language...

• We introduce the language of clique-frontier-guarded Datalog
(CFG-Datalog), parameterized by body-size kP

2) ... with FPT-linear (combined) evaluation...

• Given a CFG-Datalog program P with body-size kP and a relational
database D of treewidth kD, checking if D |= P can be done in
time f (kP, kD)× |P| × |D|

3) ... and also FPT-linear (combined) computation of provenance

• We design a new concise provenance representation based on
cyclic Boolean circuits: cycluits

26/42

Proof Sketch

Tree encoding E

Two-way Alternating

 Tree Automaton A

Database D

of treewidth ≤ k
D

 C(x): Subway(`Corvisart , x)’

 Goal(): NOT C("Ch telet")â

“Under which conditions is it

impossible to go from station

Corvisart to station Châtelet with the

subway?"

Provenance Cycluit

1

2

(Paris Metro map)

C(x): C(y) AND Subway(y, x)

CFG-Datalog program P
of body-size ≤ k

P

O(g (’ k
P
,k

D
)

P)

O(A E)

O(g(k
D
)

D)

| |

| |

| | | |

27/42

Summary

Theorem
Given a CFG-Datalog program P with body-size kP and a relational
database D of treewidth kD, we can compute a cycluit representing the
provenance of P on D in time f (kP, kD)× |P| × |D|

• Capture interesting query languages such as 2RPQs (graph query
language), conjunctive queries (of bounded simplicial treewidth),
guarded negation logic fragments, etc.

Can we lift this result to probabilistic evaluation?

28/42

Summary

Theorem
Given a CFG-Datalog program P with body-size kP and a relational
database D of treewidth kD, we can compute a cycluit representing the
provenance of P on D in time f (kP, kD)× |P| × |D|

• Capture interesting query languages such as 2RPQs (graph query
language), conjunctive queries (of bounded simplicial treewidth),
guarded negation logic fragments, etc.

Can we lift this result to probabilistic evaluation?

28/42

Summary

Theorem
Given a CFG-Datalog program P with body-size kP and a relational
database D of treewidth kD, we can compute a cycluit representing the
provenance of P on D in time f (kP, kD)× |P| × |D|

• Capture interesting query languages such as 2RPQs (graph query
language), conjunctive queries (of bounded simplicial treewidth),
guarded negation logic fragments, etc.

Can we lift this result to probabilistic evaluation?

28/42

Boolean cycluits to d-SDNNFs and lower bounds

29/42

Example: Provenance

∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

b

d

c

a

S

R
R

S

R

R(b, c)R(c,a) R(c,d)

∨ ∨S(a,b) S(d,b)

∧ ∧

∨

Prov(q,D) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]
∨[S(d,b) ∧ (R(b, c) ∨ R(c,d))]

30/42

Example: Provenance

∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

b

d

c

a

S

R
R

S

R

R(b, c)R(c,a) R(c,d)

∨ ∨S(a,b) S(d,b)

∧ ∧

∨

Prov(q,D) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]
∨[S(d,b) ∧ (R(b, c) ∨ R(c,d))]

30/42

Example: Provenance

∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

b

d

c

a

S

R
R

S

R

R(b, c)R(c,a) R(c,d)

∨ ∨S(a,b) S(d,b)

∧ ∧

∨

Prov(q,D) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]
∨[S(d,b) ∧ (R(b, c) ∨ R(c,d))]

30/42

Hardness of probability computation

→ Computing the probability of a Boolean formula ϕ (or circuit C) is
#P-hard! (since #SAT is #P-hard)

→ Which restrictions on ϕ or C make this possible?

• Knowledge compilation studies which classes of circuits ensure
tractability of...

• SAT
• #SAT
• probability computation
• · · ·

31/42

Hardness of probability computation

→ Computing the probability of a Boolean formula ϕ (or circuit C) is
#P-hard! (since #SAT is #P-hard)

→ Which restrictions on ϕ or C make this possible?

• Knowledge compilation studies which classes of circuits ensure
tractability of...

• SAT
• #SAT
• probability computation
• · · ·

31/42

Hardness of probability computation

→ Computing the probability of a Boolean formula ϕ (or circuit C) is
#P-hard! (since #SAT is #P-hard)

→ Which restrictions on ϕ or C make this possible?

• Knowledge compilation studies which classes of circuits ensure
tractability of...

• SAT

• #SAT
• probability computation
• · · ·

31/42

Hardness of probability computation

→ Computing the probability of a Boolean formula ϕ (or circuit C) is
#P-hard! (since #SAT is #P-hard)

→ Which restrictions on ϕ or C make this possible?

• Knowledge compilation studies which classes of circuits ensure
tractability of...

• SAT
• #SAT

• probability computation
• · · ·

31/42

Hardness of probability computation

→ Computing the probability of a Boolean formula ϕ (or circuit C) is
#P-hard! (since #SAT is #P-hard)

→ Which restrictions on ϕ or C make this possible?

• Knowledge compilation studies which classes of circuits ensure
tractability of...

• SAT
• #SAT
• probability computation

• · · ·

31/42

Hardness of probability computation

→ Computing the probability of a Boolean formula ϕ (or circuit C) is
#P-hard! (since #SAT is #P-hard)

→ Which restrictions on ϕ or C make this possible?

• Knowledge compilation studies which classes of circuits ensure
tractability of...

• SAT
• #SAT
• probability computation
• · · ·

31/42

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
circuits:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
→ message passing algorithm for #SAT and probabilistic evaluation
• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
→ #SAT and probabilistic evaluation are easy because these classes

have strong semantic constraints
• Used to understand #SAT solvers

Question: what are the links between the two?

32/42

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
circuits:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.

→ message passing algorithm for #SAT and probabilistic evaluation
• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
→ #SAT and probabilistic evaluation are easy because these classes

have strong semantic constraints
• Used to understand #SAT solvers

Question: what are the links between the two?

32/42

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
circuits:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
→ message passing algorithm for #SAT and probabilistic evaluation

• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
→ #SAT and probabilistic evaluation are easy because these classes

have strong semantic constraints
• Used to understand #SAT solvers

Question: what are the links between the two?

32/42

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
circuits:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
→ message passing algorithm for #SAT and probabilistic evaluation
• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
→ #SAT and probabilistic evaluation are easy because these classes

have strong semantic constraints
• Used to understand #SAT solvers

Question: what are the links between the two?

32/42

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
circuits:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
→ message passing algorithm for #SAT and probabilistic evaluation
• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)

→ #SAT and probabilistic evaluation are easy because these classes
have strong semantic constraints

• Used to understand #SAT solvers

Question: what are the links between the two?

32/42

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
circuits:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
→ message passing algorithm for #SAT and probabilistic evaluation
• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
→ #SAT and probabilistic evaluation are easy because these classes

have strong semantic constraints

• Used to understand #SAT solvers

Question: what are the links between the two?

32/42

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
circuits:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
→ message passing algorithm for #SAT and probabilistic evaluation
• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
→ #SAT and probabilistic evaluation are easy because these classes

have strong semantic constraints
• Used to understand #SAT solvers

Question: what are the links between the two?

32/42

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
circuits:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
→ message passing algorithm for #SAT and probabilistic evaluation
• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
→ #SAT and probabilistic evaluation are easy because these classes

have strong semantic constraints
• Used to understand #SAT solvers

Question: what are the links between the two?
32/42

Treewidth and d-SDNNFs

33/42

Bounded treewidth Boolean circuits

∧

∧

x ¬ ∨

t ¬

∨

∧

z y

Treewidth of C = that of the underlying
graph

We can do message passing:

Theorem (Lauritzen & Spielgelhalter, 1988)
Fix k ∈ N. Given a Boolean circuit C of treewidth 6 k, we can compute
its probability in time O(f (k)× |C|), where f is singly exponential

34/42

Bounded treewidth Boolean circuits

∧

∧

x ¬ ∨

t ¬

∨

∧

z y

Treewidth of C = that of the underlying
graph

We can do message passing:

Theorem (Lauritzen & Spielgelhalter, 1988)
Fix k ∈ N. Given a Boolean circuit C of treewidth 6 k, we can compute
its probability in time O(f (k)× |C|), where f is singly exponential

34/42

Bounded treewidth Boolean circuits

∧

∧

x ¬ ∨

t ¬

∨

∧

z y

Treewidth of C = that of the underlying
graph

We can do message passing:

Theorem (Lauritzen & Spielgelhalter, 1988)
Fix k ∈ N. Given a Boolean circuit C of treewidth 6 k, we can compute
its probability in time O(f (k)× |C|), where f is singly exponential

34/42

d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)
→ SAT can be solved e�ciently

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ #SAT and probability evaluation

• Structured: there is a v-tree that
structures the ∧-gates

35/42

d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)
→ SAT can be solved e�ciently

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ #SAT and probability evaluation

• Structured: there is a v-tree that
structures the ∧-gates

35/42

d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)

→ SAT can be solved e�ciently

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ #SAT and probability evaluation

• Structured: there is a v-tree that
structures the ∧-gates

35/42

d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)
→ SAT can be solved e�ciently

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ #SAT and probability evaluation

• Structured: there is a v-tree that
structures the ∧-gates

35/42

d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)
→ SAT can be solved e�ciently

• Deterministic: inputs of ∨-gates are
mutually exclusive

→ #SAT and probability evaluation

• Structured: there is a v-tree that
structures the ∧-gates

35/42

d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)
→ SAT can be solved e�ciently

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ #SAT and probability evaluation

• Structured: there is a v-tree that
structures the ∧-gates

35/42

d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)
→ SAT can be solved e�ciently

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ #SAT and probability evaluation

• Structured: there is a v-tree that
structures the ∧-gates

35/42

Treewidth and d-SDNNFs: Upper bound

Theorem
Let C be a Boolean circuit of treewidth 6 k.
We can compute a d-SDNNF equivalent to C in time O(|C| × f (k)),
where f is singly exponential

→ Recaptures message passing through the use of knowledge
compilation

36/42

Treewidth and d-SDNNFs: Upper bound

Theorem
Let C be a Boolean circuit of treewidth 6 k.
We can compute a d-SDNNF equivalent to C in time O(|C| × f (k)),
where f is singly exponential

→ Recaptures message passing through the use of knowledge
compilation

36/42

Treewidth and d-SDNNFs: Lower bound

• Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

• Treewidth of a DNF/CNF: that of its Gaifman graph
• Arity: size of the largest clause
• Degree: maximal number of clauses to which a variable belongs

Theorem
Let ϕ be a monotone DNF of treewidth k, let a := arity(ϕ) and

d := degree(ϕ). Then any d-SDNNF for ϕ has size > 2
⌊

k
3×a3×d2

⌋
− 1

• For CNFs, the bound even works for (non-deterministic) SDNNF
• The bound is generic: it applies to any monotone DNF/CNF

37/42

Treewidth and d-SDNNFs: Lower bound

• Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

• Treewidth of a DNF/CNF: that of its Gaifman graph

• Arity: size of the largest clause
• Degree: maximal number of clauses to which a variable belongs

Theorem
Let ϕ be a monotone DNF of treewidth k, let a := arity(ϕ) and

d := degree(ϕ). Then any d-SDNNF for ϕ has size > 2
⌊

k
3×a3×d2

⌋
− 1

• For CNFs, the bound even works for (non-deterministic) SDNNF
• The bound is generic: it applies to any monotone DNF/CNF

37/42

Treewidth and d-SDNNFs: Lower bound

• Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

• Treewidth of a DNF/CNF: that of its Gaifman graph
• Arity: size of the largest clause

• Degree: maximal number of clauses to which a variable belongs
Theorem
Let ϕ be a monotone DNF of treewidth k, let a := arity(ϕ) and

d := degree(ϕ). Then any d-SDNNF for ϕ has size > 2
⌊

k
3×a3×d2

⌋
− 1

• For CNFs, the bound even works for (non-deterministic) SDNNF
• The bound is generic: it applies to any monotone DNF/CNF

37/42

Treewidth and d-SDNNFs: Lower bound

• Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

• Treewidth of a DNF/CNF: that of its Gaifman graph
• Arity: size of the largest clause
• Degree: maximal number of clauses to which a variable belongs

Theorem
Let ϕ be a monotone DNF of treewidth k, let a := arity(ϕ) and

d := degree(ϕ). Then any d-SDNNF for ϕ has size > 2
⌊

k
3×a3×d2

⌋
− 1

• For CNFs, the bound even works for (non-deterministic) SDNNF
• The bound is generic: it applies to any monotone DNF/CNF

37/42

Treewidth and d-SDNNFs: Lower bound

• Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

• Treewidth of a DNF/CNF: that of its Gaifman graph
• Arity: size of the largest clause
• Degree: maximal number of clauses to which a variable belongs

Theorem
Let ϕ be a monotone DNF of treewidth k, let a := arity(ϕ) and

d := degree(ϕ). Then any d-SDNNF for ϕ has size > 2
⌊

k
3×a3×d2

⌋
− 1

• For CNFs, the bound even works for (non-deterministic) SDNNF
• The bound is generic: it applies to any monotone DNF/CNF

37/42

Treewidth and d-SDNNFs: Lower bound

• Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

• Treewidth of a DNF/CNF: that of its Gaifman graph
• Arity: size of the largest clause
• Degree: maximal number of clauses to which a variable belongs

Theorem
Let ϕ be a monotone DNF of treewidth k, let a := arity(ϕ) and

d := degree(ϕ). Then any d-SDNNF for ϕ has size > 2
⌊

k
3×a3×d2

⌋
− 1

• For CNFs, the bound even works for (non-deterministic) SDNNF

• The bound is generic: it applies to any monotone DNF/CNF

37/42

Treewidth and d-SDNNFs: Lower bound

• Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

• Treewidth of a DNF/CNF: that of its Gaifman graph
• Arity: size of the largest clause
• Degree: maximal number of clauses to which a variable belongs

Theorem
Let ϕ be a monotone DNF of treewidth k, let a := arity(ϕ) and

d := degree(ϕ). Then any d-SDNNF for ϕ has size > 2
⌊

k
3×a3×d2

⌋
− 1

• For CNFs, the bound even works for (non-deterministic) SDNNF
• The bound is generic: it applies to any monotone DNF/CNF

37/42

Proof Sketch for CNFs (1/2)

Use the connection made in [Bova, Capelli & Mengel, 2016] between
the notion of combinatorial rectangle in communication complexity
and SDNNFs.

De�nition
A (X, Y)-rectangle is a Boolean function R : 2X∪Y → {0, 1} that can be
written as RX ∧ RY , for some Boolean functions RX : 2X → {0, 1} and
RY : 2Y → {0, 1}. A (X, Y)-rectangle cover of a function f : 2X∪Y → {0, 1}
is a set {R1, · · · ,Rn} of (X, Y)-rectangles such that f ≡

∨n
i=1 Ri.

Theorem (Bova, Capelli & Mengel, 2016)
Let C be an SDNNF computing a function ϕ on variables V, structured
by a v-tree T. Let n ∈ T, and let (X, Y) be the partition of V that n
induces. Then ϕ has a (X, Y)-rectangle cover of size at most |C|.

38/42

Proof Sketch for CNFs (1/2)

Use the connection made in [Bova, Capelli & Mengel, 2016] between
the notion of combinatorial rectangle in communication complexity
and SDNNFs.

De�nition
A (X, Y)-rectangle is a Boolean function R : 2X∪Y → {0, 1} that can be
written as RX ∧ RY , for some Boolean functions RX : 2X → {0, 1} and
RY : 2Y → {0, 1}. A (X, Y)-rectangle cover of a function f : 2X∪Y → {0, 1}
is a set {R1, · · · ,Rn} of (X, Y)-rectangles such that f ≡

∨n
i=1 Ri.

Theorem (Bova, Capelli & Mengel, 2016)
Let C be an SDNNF computing a function ϕ on variables V, structured
by a v-tree T. Let n ∈ T, and let (X, Y) be the partition of V that n
induces. Then ϕ has a (X, Y)-rectangle cover of size at most |C|.

38/42

Proof Sketch for CNFs (2/2)

A CNF having no small rectangle cover:

Theorem (Sherstov, 2014)
Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be two disjoint sets of
variables. Then any (X, Y)-rectangle cover of the Boolean function
SCOVn(X, Y) :=

∧n
i=1 xi ∨ yi has size > 2n.

We show that we can �nd SCOV k
3×a3×d2

(X, Y) within any CNF of
treewidth > k.

→ Rephrase treewidth as treesplitwidth, a new measure capturing
the ‘performance’ of a v-tree

39/42

Proof Sketch for CNFs (2/2)

A CNF having no small rectangle cover:

Theorem (Sherstov, 2014)
Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be two disjoint sets of
variables. Then any (X, Y)-rectangle cover of the Boolean function
SCOVn(X, Y) :=

∧n
i=1 xi ∨ yi has size > 2n.

We show that we can �nd SCOV k
3×a3×d2

(X, Y) within any CNF of
treewidth > k.

→ Rephrase treewidth as treesplitwidth, a new measure capturing
the ‘performance’ of a v-tree

39/42

Proof Sketch for CNFs (2/2)

A CNF having no small rectangle cover:

Theorem (Sherstov, 2014)
Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be two disjoint sets of
variables. Then any (X, Y)-rectangle cover of the Boolean function
SCOVn(X, Y) :=

∧n
i=1 xi ∨ yi has size > 2n.

We show that we can �nd SCOV k
3×a3×d2

(X, Y) within any CNF of
treewidth > k.

→ Rephrase treewidth as treesplitwidth, a new measure capturing
the ‘performance’ of a v-tree

39/42

Application to PQE

Tree encoding E

Two-way Alternating

 Tree Automaton A

Database D

of treewidth ≤ k
D

 C(x): Subway(`Corvisart , x)’

 Goal(): NOT C("Ch telet")â

“Under which conditions is it

impossible to go from station

Corvisart to station Châtelet with the

subway?"

Provenance Cycluit

1

2

(Paris Metro map)

C(x): C(y) AND Subway(y, x)

CFG-Datalog program P
of body-size ≤ k

P

O(g (’ k
P
,k

D
)

P)

O(A E)

O(g(k
D
)

D)

| |

| |

| | | |

40/42

Application to PQE

Cycluit
size O(|P| × |D|)
treewidth O(|P|)

Circuit
size O(2|P|α × |D|)
treewidth O(2|P|α)

d-SDNNF
size O(22|P|

α

× |D|)

Theorem
Fix kP and kI. We can solve PQE of a CFG-Datalog program P on a
treelike database D in time O(22|P|

α

|D|).

• 2EXP, but still better than previous nonelementary bounds

40/42

Application to PQE

Cycluit
size O(|P| × |D|)
treewidth O(|P|)

Circuit
size O(2|P|α × |D|)
treewidth O(2|P|α)

d-SDNNF
size O(22|P|

α

× |D|)

Theorem
Fix kP and kI. We can solve PQE of a CFG-Datalog program P on a
treelike database D in time O(22|P|

α

|D|).

• 2EXP, but still better than previous nonelementary bounds

40/42

Application to PQE

Cycluit
size O(|P| × |D|)
treewidth O(|P|)

Circuit
size O(2|P|α × |D|)
treewidth O(2|P|α)

d-SDNNF
size O(22|P|

α

× |D|)

Theorem
Fix kP and kI. We can solve PQE of a CFG-Datalog program P on a
treelike database D in time O(22|P|

α

|D|).

• 2EXP, but still better than previous nonelementary bounds

40/42

Application to PQE

Cycluit
size O(|P| × |D|)
treewidth O(|P|)

Circuit
size O(2|P|α × |D|)
treewidth O(2|P|α)

d-SDNNF
size O(22|P|

α

× |D|)

Theorem
Fix kP and kI. We can solve PQE of a CFG-Datalog program P on a
treelike database D in time O(22|P|

α

|D|).

• 2EXP, but still better than previous nonelementary bounds

40/42

Application to PQE

Cycluit
size O(|P| × |D|)
treewidth O(|P|)

Circuit
size O(2|P|α × |D|)
treewidth O(2|P|α)

d-SDNNF
size O(22|P|

α

× |D|)

Theorem
Fix kP and kI. We can solve PQE of a CFG-Datalog program P on a
treelike database D in time O(22|P|

α

|D|).

• 2EXP, but still better than previous nonelementary bounds

40/42

Conclusion (1/2)

Main contributions:

1. Detailed study of the combined complexity of PQE of conjunctive
queries on binary signatures

2. E�cient provenance computation for a new expressive query
language (CFG-Datalog) on treelike data, introduction of a new
provenance representation (cycluits)

3. Connections between two classes of Boolean circuits in
knowledge compilation: width-based and semantics-based.
Application to PQE of CFG-Datalog

41/42

Conclusion (1/2)

Main contributions:

1. Detailed study of the combined complexity of PQE of conjunctive
queries on binary signatures

2. E�cient provenance computation for a new expressive query
language (CFG-Datalog) on treelike data, introduction of a new
provenance representation (cycluits)

3. Connections between two classes of Boolean circuits in
knowledge compilation: width-based and semantics-based.
Application to PQE of CFG-Datalog

41/42

Conclusion (1/2)

Main contributions:

1. Detailed study of the combined complexity of PQE of conjunctive
queries on binary signatures

2. E�cient provenance computation for a new expressive query
language (CFG-Datalog) on treelike data, introduction of a new
provenance representation (cycluits)

3. Connections between two classes of Boolean circuits in
knowledge compilation: width-based and semantics-based.
Application to PQE of CFG-Datalog

41/42

Conclusion (1/2)

Main contributions:

1. Detailed study of the combined complexity of PQE of conjunctive
queries on binary signatures

2. E�cient provenance computation for a new expressive query
language (CFG-Datalog) on treelike data, introduction of a new
provenance representation (cycluits)

3. Connections between two classes of Boolean circuits in
knowledge compilation: width-based and semantics-based.
Application to PQE of CFG-Datalog

41/42

Conclusion (2/2)

Ideas for Future work:

• Correlations?
• More general provenance semirings?
• Approximations?
• Notion of width for d-SDNNFs?
• Obtain 1EXP for PQE of CFG-Datalog on treelike data?
• Practical implementations?

Thanks for your attention!

42/42

Conclusion (2/2)

Ideas for Future work:

• Correlations?

• More general provenance semirings?
• Approximations?
• Notion of width for d-SDNNFs?
• Obtain 1EXP for PQE of CFG-Datalog on treelike data?
• Practical implementations?

Thanks for your attention!

42/42

Conclusion (2/2)

Ideas for Future work:

• Correlations?
• More general provenance semirings?

• Approximations?
• Notion of width for d-SDNNFs?
• Obtain 1EXP for PQE of CFG-Datalog on treelike data?
• Practical implementations?

Thanks for your attention!

42/42

Conclusion (2/2)

Ideas for Future work:

• Correlations?
• More general provenance semirings?
• Approximations?

• Notion of width for d-SDNNFs?
• Obtain 1EXP for PQE of CFG-Datalog on treelike data?
• Practical implementations?

Thanks for your attention!

42/42

Conclusion (2/2)

Ideas for Future work:

• Correlations?
• More general provenance semirings?
• Approximations?
• Notion of width for d-SDNNFs?

• Obtain 1EXP for PQE of CFG-Datalog on treelike data?
• Practical implementations?

Thanks for your attention!

42/42

Conclusion (2/2)

Ideas for Future work:

• Correlations?
• More general provenance semirings?
• Approximations?
• Notion of width for d-SDNNFs?
• Obtain 1EXP for PQE of CFG-Datalog on treelike data?

• Practical implementations?
Thanks for your attention!

42/42

Conclusion (2/2)

Ideas for Future work:

• Correlations?
• More general provenance semirings?
• Approximations?
• Notion of width for d-SDNNFs?
• Obtain 1EXP for PQE of CFG-Datalog on treelike data?
• Practical implementations?

Thanks for your attention!

42/42

CFG-Datalog: De�nition by example

• Fragment of Datalog with strati�ed negation

• σ = σext t σint = {R1,R2, . . .} t {S1, S2, . . .}

• Boolean programs: special 0-ary intensional predicate Goal()

...
S3(x, y, t)← R1(x, y) ∧ S3(y, t, y) ∧ S2(x, t) ∧ ¬S1(x, z)
...
Goal()← · · ·

body-size = MaxArity(σ)×maxrule r NbAtoms(r)
"size to write a rule"

CFG-Datalog: De�nition by example

• Fragment of Datalog with strati�ed negation
• σ = σext t σint = {R1,R2, . . .} t {S1, S2, . . .}

• Boolean programs: special 0-ary intensional predicate Goal()

...
S3(x, y, t)← R1(x, y) ∧ S3(y, t, y) ∧ S2(x, t) ∧ ¬S1(x, z)
...
Goal()← · · ·

body-size = MaxArity(σ)×maxrule r NbAtoms(r)
"size to write a rule"

CFG-Datalog: De�nition by example

• Fragment of Datalog with strati�ed negation
• σ = σext t σint = {R1,R2, . . .} t {S1, S2, . . .}

• Boolean programs: special 0-ary intensional predicate Goal()



...
S3(x, y, t)← R1(x, y) ∧ S3(y, t, y) ∧ S2(x, t) ∧ ¬S1(x, z)
...
Goal()← · · ·

body-size = MaxArity(σ)×maxrule r NbAtoms(r)
"size to write a rule"

CFG-Datalog: De�nition by example

• Fragment of Datalog with strati�ed negation
• σ = σext t σint = {R1,R2, . . .} t {S1, S2, . . .}

• Boolean programs: special 0-ary intensional predicate Goal()

...
S3(x, y, t)← R1(x, y) ∧ S3(y, t, y) ∧ S2(x, t) ∧ ¬S1(x, z)
...
Goal()← · · ·

body-size = MaxArity(σ)×maxrule r NbAtoms(r)
"size to write a rule"

CFG-Datalog: De�nition by example

• Fragment of Datalog with strati�ed negation
• σ = σext t σint = {R1,R2, . . .} t {S1, S2, . . .}

• Boolean programs: special 0-ary intensional predicate Goal()

...
S3(x, y, t)← R1(x, y) ∧ S3(y, t, y) ∧ S2(x, t) ∧ ¬S1(x, z)
...
Goal()← · · ·

body-size = MaxArity(σ)×maxrule r NbAtoms(r)
"size to write a rule"

Construction sketch for slide 36

V1

L

x

V

2 V3

Construction sketch for slide 36

V1

L
V

2

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L
V

2

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L
V

2

V1

V

2

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L
V

2

V1

V

2 V1

V

2

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L
V

2

V1

V

2 V1

V

2 V1

V

2

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L
V

2

V1

V

2 V1

V

2 V1

V

2

V1 V1 V1 V3V3
V3

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L

V

2

V1

V

2 V1

V

2 V1

V

2

V1 V1 V1 V3V3
V3

V1

L

x

V1

L

x

V1

L

x

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L
V

2

V1

V

2 V1

V

2 V1

V

2

V1 V1 V1 V3V3
V3

V1
L

x

V1
L

x

V1
L

x

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L
V

2

V1

V

2 V1

V

2 V1

V

2

V1 V1 V1 V3V3
V3

V1
L

x

V1
L

x

V1
L

x

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L
V

2

V1

V

2 V1

V

2 V1

V

2

V1 V1 V1 V3V3
V3

V1
L

x

V1
L

x

V1
L

x

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L
V

2

V1

V

2 V1

V

2 V1

V

2

V1 V1 V1 V3V3
V3

V1
L

x

V1
L

x

V1
L

x

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L
V

2

V1

V

2 V1

V

2 V1

V

2

V1 V1 V1 V3V3
V3

V1
L

x

V1
L

x

V1
L

x

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L
V

2

V1

V

2 V1

V

2 V1

V

2

V1 V1 V1 V3V3
V3

V1
L

x

V1
L

x

V1
L

x

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L
V

2

V1

V

2 V1

V

2 V1

V

2

V1 V1 V1 V3V3
V3

V1
L

x

V1
L

x

V1
L

x

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L
V

2

V1

V

2 V1

V

2 V1

V

2

V1 V1 V1 V3V3
V3

V1
L

x

V1
L

x

V1
L

x

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L
V

2

V1

V

2 V1

V

2 V1

V

2

V1 V1 V1 V3V3
V3

V1
L

x

V1
L

x

V1
L

x

x

V3

V1

V1

L

x

V

2 V3

V1

Construction sketch for slide 36

V1

L
V

2

V1

V

2 V1

V

2 V1

V

2

V1 V1 V1 V3V3
V3

V1
L

x

V1
L

x

V1
L

x

x

V3

V1

V1

L

x

V

2 V3

V1

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X2 Y1 Y2Y2

Q:

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X2 Y1 Y2Y2

Q:

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X2 Y1 Y2Y2

Q:

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2

Y1 Y2Y2

S
S

Q:

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

Q:

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

Q:

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

Q:

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

Q:

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

Q:

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

Q:

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T T

Q:

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

Q:

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

Q:

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

Q: T−−→ S−−→ S−−→ S−−→ S−−→ S−−→ S−−→ T−−→

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

Q: T−−→ S−−→ S−−→ S−−→ S−−→ S−−→ S−−→ T−−→

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

Q: T−−→ S−−→ S−−→ S−−→ S−−→ S−−→ S−−→ T−−→

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

Q: T−−→ S−−→ S−−→ S−−→ S−−→ S−−→ S−−→ T−−→

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

SS

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

Q: T−−→ S−−→ S−−→ S−−→ S−−→ S−−→ S−−→ T−−→

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

SS

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

Q: T−−→ S−−→ S−−→ S−−→ S−−→ S−−→ S−−→ T−−→

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

SS

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

Q: T−−→ S−−→ S−−→ S−−→ S−−→ S−−→ S−−→ T−−→

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

SS

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

Q: T−−→ S−−→ S−−→ S−−→ S−−→ S−−→ S−−→ T−−→

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

SS

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

Q: T−−→ S−−→ S−−→ S−−→ S−−→ S−−→ S−−→ T−−→

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1

Y2

Y2

S
S S

S

SS

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

Q: T−−→ S−−→ S−−→ S−−→ S−−→ S−−→ S−−→ T−−→

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1

Y2

Y2

S
S S

S

SS

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

Q: T−−→ S−−→ S−−→ S−−→ S−−→ S−−→ S−−→ T−−→

Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2
#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1

Y2

Y2

S
S S

S

SS

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

Q: T−−→ S−−→ S−−→ S−−→ S−−→ S−−→ S−−→ T−−→

	Appendix

