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Uncertain data management

e Traditional database research assumes that the data is reliable,
complete, clean. ..

e But real life data is often uncertain, untrustworthy, missing,
inconsistent, etc.
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Uncertain data management

e Traditional database research assumes that the data is reliable,
complete, clean. ..

e But real life data is often uncertain, untrustworthy, missing,
inconsistent, etc.

— imperfect sensor precision, error-prone automatic information
extraction processes, data integration from multiple sources,
missing information

e We could simply clean the data and remove every uncertain
data item

e But what if we actually need/want to acknowledge this
uncertainty? (e.g, if querying the data without taking the
uncertainty into account could lead to incorrect answers)

— Need to develop theories, tools, etc. to be able to represent
and query such uncertain data

— This is uncertain data management!
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Frameworks for uncertain data management

Lots of existing frameworks to represent and query uncertain data:

e Bayesian networks
e Markov random fields
e Graphical models

e Possibility theory, fuzzy logic, etc.

In this talk, focus on frameworks for relational databases:
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Probabilistic databases: example

e Probabilistic databases: to represent and
reason about data uncertainty
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— simplest formalism: tuple-independent database

Likes T
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Probabilistic databases: example

e Probabilistic databases: to represent and
reason about data uncertainty

— simplest formalism: tuple-independent database

Likes T
: g = “there are two people who
b Al!ce Bob 0.5 like the same person”
Alice John 1 Ix,y,z : L(x,z) AL(y,z) Ax#y
Bob Bob 0.2

John Bob 0.7

Pr((D,m)Eq)=05x[1-(1-0.2)(1-0.7)]

+(1-0.5) % [0.2x0.7]
4/28



Incomplete databases: example

e Probabilistic databases: nice, but this is not what is used in

practice most of the time...

439 Printer $100 NULL Paris center
782 Mouse $10 red NULL
398 Mouse $30 red Miami center

6 Bob NULL male 36 main street
76 Mary 551780726 NULL NULL
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Incomplete databases: example

e Probabilistic databases: nice, but this is not what is used in

practice most of the time...

439 Printer $100 NULL Paris center
782 Mouse $10 red NULL
398 Mouse $30 red Miami center

6 Bob NULL male 36 main street
76 Mary 551780726 NULL NULL

— Incomplete databases: relational databases with missing

values
5/28



How do we query incomplete databases?

e Default approach of database theorists for querying
incomplete data: certain answers

e fora v of the nulls of D into constants, let us
write (D) the corresponding complete database
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How do we query incomplete databases?

e Default approach of database theorists for querying
incomplete data: certain answers

e fora v of the nulls of D into constants, let us
write (D) the corresponding complete database
— atuple 3isa of g(x) over the incomplete

database D if for every valuation v of the nulls of D, we
have 3¢ q(v(D))

Example (from now on, nulls are named and represented with 1):

R S

D= 5 s

q(x) =3y,z : R(x,y) A S(y,2)
11 b Certain answers: (a) and (b)
b 11 b 5
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How do we query incomplete databases?

e Default approach of database theorists for querying
incomplete data: certain answers

e fora v of the nulls of D into constants, let us
write (D) the corresponding complete database
— atuple 3isa of g(x) over the incomplete

database D if for every valuation v of the nulls of D, we
have 3¢ q(v(D))

Example (from now on, nulls are named and represented with 1):

R S
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How do we query incomplete databases?

e Default approach of database theorists for querying
incomplete data: certain answers

e fora v of the nulls of D into constants, let us
write (D) the corresponding complete database
— atuple 3isa of g(x) over the incomplete

database D if for every valuation v of the nulls of D, we
have 3¢ q(v(D))

Example (from now on, nulls are named and represented with 1):

R S

D= 5 s

q'(x) = R(x,x)
11 b No certain answer :(
b 11 b 5
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Problem: what if there are no certain answers?
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Problem: what if there are no certain answers?

— We could return possible answers... Not very informative
— Recently, Libkin [PODS'18] proposes the notion of better
answers

e a tuple 3 is a better answer than another tuple b
if {v| beq(D)} < {v| 3¢ q(D)}
— induces a notion of best answer
— also, we can compare (some) tuples

7/28



Another approach: counting

To compare all the tuples, why not study the associated counting
problems?
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— we can answer queries quantitatively (similar to probabilistic
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Another approach: counting

To compare all the tuples, why not study the associated counting
problems?

— “How many valuations v are such that 3¢ q(v(D))?"

— "How many distinct databases of the form v(D) are such
that 3¢ q(v(D))?"

—

— we can answer queries quantitatively (similar to probabilistic
databases)

— This is what we’ll do in this talk!
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Rest of the talk is based on paper “Counting Problems over
Incomplete Databases” [PODS'20] with Marcelo Arenas and Pablo
Barcelo
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e Incomplete databases with named (marked) nulls

e Each null 1 comes with its own finite domain dom(1); all
valuations v are such that v(1) e dom(1)

e v(D): the (complete) database obtained from D by
substituting every null 1 by v (1), and then removing duplicate
tuples. We call such a database a completion of D
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e Incomplete databases with named (marked) nulls
e Each null 1 comes with its own finite domain dom(1); all
valuations v are such that v(1) e dom(1)

e v(D): the (complete) database obtained from D by
substituting every null 1 by v (1), and then removing duplicate
tuples. We call such a database a completion of D

R
D= 1 13 dom(11) ={a, b}, dom(12) = {b,c}
a 15
v={li~=b,lo»c} - v(D)={R(b,b),R(a,c)}

v={li~a,lp—~a} - v(D)={R(aa)}
10/28



Problems studied

e Fix a Boolean query g

Definition: problem #Val(q)

Input: an incomplete database D, together with finite
domains dom( 1) for each null of D

Output: the number of valuations v such that v(D) = g
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Problems studied

e Fix a Boolean query g

Definition: problem #Val(q)

Input: an incomplete database D, together with finite
domains dom( 1) for each null of D

Output: the number of valuations v such that v(D) £ q

Definition: problem #Comp(q)

Input: an incomplete database D, together with finite
domains dom(L) for each null of D

Output: the number of completions v(D) such that v(D) & q
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e Example: D ={S(a,b),S(11,a),5(a,12)},
dom(L1) ={a,b,c},dom(L2) ={a, b}, g=3x5(x,x)
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e Example: D ={S(a,b),S(11,a),5(a,12)},
dom(L1) ={a,b,c},dom(L2) ={a, b}, g=3x5(x,x)

(v(L1),v(L2)) | (a,a)  (ab) (b,a) (bb) (c,a) (c,b)
v(D)
S S S S S S
a b a b a b a b a b a b
a a b a b a c a c a
a a a
v(D) = Q7 Yes Yes Yes No Yes No

4 satisfying valuations, 3 satisfying completions

— Study the complexity of these problems depending on g (data
complexity). Obtain 7 Can we efficiently
the number of solutions? Etc.
12/28



Problems variants and query language

We also study the settings where:

e all labeled nulls are distinct ( ; by contrast to

)

e all nulls share the same domain ( )

— In total we consider 8 different settings
({#Val,#Comp} x {naive/Codd} x {non-uniform/uniform})
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Problems variants and query language

We also study the settings where:

e all labeled nulls are distinct (Codd tables; by contrast to

naive tables)

e all nulls share the same domain (uniform setting)

— In total we consider 8 different settings
({#Val,#Comp} x {naive/Codd} x {non-uniform/uniform})

e We focus only on self-join free Boolean conjunctive
queries (sjifBCQs)
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The dichotomies for exact counting
Counting valuations vs. counting completions

Approximations
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The dichotomies for exact
counting




Patterns in sjfBCQs

Definition: pattern

A sifBCQ ¢’ is a pattern of another sifBCQ q if g’ can be
obtained from g by deleting atoms or variable occurrences, and
then reordering the variables inside the atoms and renaming
(injectively) the variables and relation names
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Definition: pattern

A sifBCQ ¢’ is a pattern of another sjfBCQ q if ¢’ can be
obtained from g by deleting atoms or variable occurrences, and
then reordering the variables inside the atoms and renaming

(injectively) the variables and relation names

Example: (from now on all variables are existentially quantified)
q' = R'(u,u,y) AS5(z) is a pattern
of @ = R(u,x, ) A S(y,y) A T(x,5,2,5)

- R(u,x,u) AS(y,y) (delete third atom)

- R(u,x,u) AS(y) (delete a variable occurrence)

- R(u,u,x)AS(y) (reorder variables occurrences)

- R'(u,u,x)AS(y) (
(

= R'(u,u,y) AnS5(2)

rename R into R')

rename x into y and y into z)
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Patterns in sjfBCQs

Definition: pattern

A sifBCQ ¢’ is a pattern of another sjfBCQ q if ¢’ can be
obtained from g by deleting atoms or variable occurrences, and
then reordering the variables inside the atoms and renaming

(injectively) the variables and relation names

Example: (from now on all variables are existentially quantified)

q = is a pattern

of g = R(u,x,u) AS(y,y) A T(x,5,2,5)

- R(u,x,u) AS(y,y) (delete third atom)

- R(u,x,u) AS(y) (delete a variable occurrence)
- R(u,u,x)AS(y) (reorder variables occurrences)
- R'(u,u,x) A S(y) (rename R into R’)

- (rename x into y and y into z)

15/28



Note: reordering and injective renaming are not important, it is just
so that we can formally say things like:

e R(x,y) is a pattern of R(y,x); or
e R(x) is a pattern of S(y)

e etc.

16/28



Proof strategy

Lemma

Let g,q" be sjifBCQs such that ¢’ is a pattern of g. Then we
have #Val(q") <P #Val(q)

Where <P denote polynomial-time parsimonious reductions
(and the same results holds for counting completions, and also if we
restrict to Codd tables and/or to the uniform setting)
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Proof strategy

Lemma

Let g,q" be sjifBCQs such that ¢’ is a pattern of g. Then we
have #Val(q") <P #Val(q)

Where <P denote polynomial-time parsimonious reductions
(and the same results holds for counting completions, and also if we
restrict to Codd tables and/or to the uniform setting)

— for each of the 8 variants of the problem, find a set of patterns
that are hard and such that if a sjfBCQ does not have any of
these patterns then the problem is in PTIME
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Example 1: #Val, naive, non-uniform

Consider counting valuations, naive setting (named nulls that can
appear in multiple places), non-uniform (each null 1 comes with its
own domain dom(1))

e g1 = R(x,x) is a hard pattern: easy reduction from
of a graph (#P-complete)
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Consider counting valuations, naive setting (named nulls that can
appear in multiple places), non-uniform (each null 1 comes with its
own domain dom(1))

e g1 = R(x,x) is a hard pattern: easy reduction from counting
3-colorings of a graph (#P-complete)
— on input undirected graph G = (V, E), construct database D¢
containing facts R(L,,1,) and R(1,,1,) for every edge
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Example 1: #Val, naive, non-uniform

Consider counting valuations, naive setting (named nulls that can
appear in multiple places), non-uniform (each null 1 comes with its
own domain dom(1))

e g1 = R(x,x) is a hard pattern: easy reduction from counting
3-colorings of a graph (#P-complete)
— on input undirected graph G = (V, E), construct database D¢
containing facts R(L,,1,) and R(1,,1,) for every edge
{u,v} € E. The domain of every null L is dom(1) = {e e e}.
Then #3Cols(G) = 3V - #Val(q1)(Dg)

e g2 = R(x) A S(x) is also a hard pattern (trust me)

e If a sifBCQ g does not have g1 or g» as a pattern then
#Val(q) is PTIME. Why?
— All variable occurrences are distinct, so every valuation is
satisfying
18/28



Example 2: completions, naive, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

19/28



Example 2: completions, naive, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

e g = R(x) is a hard pattern! Reduction from counting the
number of of a graph

19/28



Example 2: completions, naive, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

e g = R(x) is a hard pattern! Reduction from counting the
number of of a graph
— on input graph G = (V, E), construct database D¢ having:

e one null L. and fact R(L.) for every edge e = {u, v} of G with
domain dom(Le) = {u, v}

19/28



Example 2: completions, naive, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

e g = R(x) is a hard pattern! Reduction from counting the
number of of a graph
— on input graph G = (V, E), construct database D¢ having:
e one null L. and fact R(L.) for every edge e = {u, v} of G with
domain dom(Le) = {u, v}
e one fact R(e) where “o" is a special symbol

e one null 1, and fact R(1,) for every node u of G with domain
dom(1,) = {u, e}

19/28



Example 2: completions, naive, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

e g = R(x) is a hard pattern! Reduction from counting the
number of of a graph
— on input graph G = (V, E), construct database D¢ having:
e one null L. and fact R(L.) for every edge e = {u, v} of G with
domain dom(Le) = {u, v}
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Example 2: completions, naive, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

e g = R(x) is a hard pattern! Reduction from counting the
number of vertex covers of a graph
— on input graph G = (V, E), construct database D¢ having:

e one null L. and fact R(L.) for every edge e = {u, v} of G with
domain dom(Le) = {u, v}
e one fact R(e) where “o" is a special symbol
e one null 1, and fact R(1,) for every node u of G with domain
dom(Ly) = {u,e}
— We have that #VC(G) = #Comp(q)(Dg¢)

e In other words, here every sifBCQ is hard...
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The hard patterns

‘ ‘ Counting valuations ‘ Counting completions
Non-uniform Uniform Non-uniform Uniform
Naive R(x,x) R(x) R(x,x)
R(x) A S(x.y) A T(y) R(x,y)

R(x,y) nS(x,y)

R(x,x)

Codd R(x)AS(x,y) AT
?() Coy)AT(y) Rixy)
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The hard patterns

‘ ‘ Counting valuations Counting completions

Non-uniform Uniform Non-uniform Uniform

Naive

Codd

— Valuations, non-uniform, Codd: each variable occurs in at
most one atom

— Completions, uniform (naive or Codd): all the atoms are unary

(So...not much is tractable)
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Counting valuations vs. counting
completions




When are our problems in #P7?

e For a Boolean query g, let MC(q) denote the model checking
problem for ¢

Fact
If MC(q) is PTIME then #Val(q) is in #P.
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When are our problems in #P7?

e For a Boolean query g, let MC(q) denote the model checking
problem for ¢

Fact
If MC(q) is PTIME then #Val(q) is in #P.

e for counting valuations of sjfBCQs, we had dichotomies
between PTIME and #P-completeness

What about counting completions? In general when MC(q) is
PTIME, is #Comp(q) in #P?

Proposition
There exists an sjfBCQ g such that #Comp(q) is not in
#P unless NP c SPP
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A natural complexity class for counting completions (1/2)

e A counting problem A is in SpanP if there exists a
nondeterministic transducer M (= Turing machine with output
tape) running in polynomial time such that, on input x, the

for M(x) is equal to A(x)
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A natural complexity class for counting completions (1/2)

e A counting problem A is in SpanP if there exists a
nondeterministic transducer M (= Turing machine with output
tape) running in polynomial time such that, on input x, the
number of distinct outputs for M(x) is equal to A(x)

— Clearly #P ¢ SpanP, but we have #P = SpanP if and only if
NP = UP (Kobler et al. [Acta Informatica'89])

— A complete problem for SpanP: INPUT: a 3-CNF ¢ and
integer k; OUTPUT: the number of assignments of the first k
variables that can be extended to a satisfying assignment of ¢

— (A problem in SpanP but unknown to be complete for it:
INPUT: a graph G; OUTPUT: the number of Hamiltonian
subgraphs of G)
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A natural complexity class for counting completions (2/2)

Fact
If MC(q) is PTIME then #Comp(q) is in SpanP.
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with Turing reductions)]
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A natural complexity class for counting completions (2/2)

Fact
If MC(q) is PTIME then #Comp(q) is in SpanP.

Proposition
There exists a siffBCQ g such that #Comp(-q) is
SpanP-complete.

[WARNING: hardness for SpanP is defined in terms of
parsimonious reductions (while #P-completeness is usually defined
with Turing reductions)]

For Codd tables we can still show membership in #P:

Proposition
For , if MC(q) is PTIME then #Comp(q) is in #P
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Approximations




My counting problem is very
much intractable :(

— Try Fully Polynomial-time Randomized Approximation Scheme!
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Fully Polynomial-time Randomized Approximation Scheme!

Definition (FPRAS)

Let ¥ be a finite alphabet and f: ¥* — N be a counting problem.
Then f is said to have an FPRAS if there is a randomized
algorithm A : ¥* x (0,1) - N and a polynomial p(u, v) such that,
given x € X* and e € (0,1), algorithm A runs in time p(|x|, 1/e)
and satisfies the following condition:

Pr(If(x) - A(x,€)| < ef(x)) > §
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Fully Polynomial-time Randomized Approximation Scheme!

Definition (FPRAS)

Let ¥ be a finite alphabet and f: ¥* — N be a counting problem.
Then f is said to have an FPRAS if there is a randomized
algorithm A : ¥* x (0,1) - N and a polynomial p(u, v) such that,
given x € X* and e € (0,1), algorithm A runs in time p(|x|, 1/e)
and satisfies the following condition:

Pr(|f(x)—A(x,e)| Sef(x)) > §

Note: the property of having an FPRAS is closed under
polynomial-time parsimonious reductions (i.e., if we have an
FPRAS for a counting problem A and for counting problem B we
have that B <P A, then we also have an FPRAS for B).
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FPRAS for counting valuations

Proposition
For every Boolean UCQ g, the problem #Val(g) has a FPRAS

Proof: via . SpanL = there exists an NL transducer with
write-only output tape such that the result is the number of
distinct outputs
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FPRAS for counting valuations

Proposition

For every Boolean UCQ g, the problem #Val(g) has a FPRAS

Proof: via . SpanL = there exists an NL transducer with
write-only output tape such that the result is the number of
distinct outputs

Theorem (Arenas et al. [PODS’19])
Every problem in Spanl. has an FPRAS

Fact
For every Boolean UCQ g, the problem #Val(q) is in SpanL
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FPRAS for counting completions?

Theorem (Dyer et al. [SICOMP’2002])
Counting vertex covers has no FPRAS unless NP = RP

e Our reduction from #VC for Codd tables to
#Comp(3Ix R(x)) was

e Our reduction for the notion of pattern is also

— Therefore #Comp(q) restricted to Codd tables for any sjfBCQ
has no FPRAS unless NP = RP
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FPRAS for counting completions?

Theorem (Dyer et al. [SICOMP’2002])
Counting vertex covers has no FPRAS unless NP = RP

e Our reduction from #VC for Codd tables to
#Comp(3Ix R(x)) was

e Our reduction for the notion of pattern is also

— Therefore #Comp(q) restricted to Codd tables for any sjfBCQ
has no FPRAS unless NP = RP

What about the uniform setting? We prove that for naive tables,
uniform setting, #Comp(q) has no FPRAS if g contains a
non-unary symbol (otherwise it is PTIME)

e For uniform Codd tables,
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Conclusion

To sum up:

e Counting valuations and completions is , even in very
restricted settings (uniform Codd tables)

But counting valuations has a for UCQs

e While counting completions does not

° is the right class to consider for problems of the

form #Comp(q)

If you liked it, we have a lot of cute reductions in the paper :)

Thanks for your attention!
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