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Uncertain data management

• Traditional database research assumes that the data is reliable,
complete, clean. . .

• But real life data is often uncertain, untrustworthy, missing,
inconsistent, etc.

→ imperfect sensor precision, error-prone automatic information
extraction processes, data integration from multiple sources,
missing information

• We could simply clean the data and remove every uncertain
data item

• But what if we actually need/want to acknowledge this
uncertainty? (e.g, if querying the data without taking the
uncertainty into account could lead to incorrect answers)

→ Need to develop theories, tools, etc. to be able to represent
and query such uncertain data
→ This is uncertain data management!
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Frameworks for uncertain data management

Lots of existing frameworks to represent and query uncertain data:

• Bayesian networks

• Markov random fields

• Graphical models

• Possibility theory, fuzzy logic, etc.

In this talk, focus on frameworks for relational databases:

• Probabilistic databases

• Incomplete databases
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Probabilistic databases: example

• Probabilistic databases: to quantitatively represent and
reason about data uncertainty

→ simplest formalism: tuple-independent database

Pr(D ′) = (1 − 0.5) × 1 × (1 − 0.2) × 0.7

q = “there are two people who
like the same person”
∃x , y , z ∶ L(x , z) ∧ L(y , z) ∧ x ≠ y

+ (1 − 0.5) × [0.2 × 0.7]
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Incomplete databases: example

• Probabilistic databases: nice, but this is not what is used in
practice most of the time...

ProductId ProductName Price Color Localisation
439 Printer $100 NULL Paris center
782 Mouse $10 red NULL
398 Mouse $30 red Miami center
... ... ... ... ...

CustomerId Name Phone number Gender Address
6 Bob NULL male 36 main street
76 Mary 551780726 NULL NULL
... ... ... ... ...

→ Incomplete databases: relational databases with missing
values
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How do we query incomplete databases?

• Default approach of database theorists for querying
incomplete data: certain answers

• for a valuation ν of the nulls of D into constants, let us
write ν(D) the corresponding complete database

→ a tuple ā is a certain answer of q(x̄) over the incomplete
database D if for every valuation ν of the nulls of D, we
have ā ∈ q(ν(D))

Example (from now on, nulls are named and represented with �):
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have ā ∈ q(ν(D))

Example (from now on, nulls are named and represented with �):

D =
R

a b

b �1

S

�1 b

b �2

6 / 28



How do we query incomplete databases?

• Default approach of database theorists for querying
incomplete data: certain answers

• for a valuation ν of the nulls of D into constants, let us
write ν(D) the corresponding complete database
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have ā ∈ q(ν(D))

Example (from now on, nulls are named and represented with �):

D =
R

a b

b �1

S

�1 b

b �2

ν ∶ �1 ↦ c ,�2 ↦ a

6 / 28



How do we query incomplete databases?

• Default approach of database theorists for querying
incomplete data: certain answers

• for a valuation ν of the nulls of D into constants, let us
write ν(D) the corresponding complete database
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Problem: what if there are no certain answers?

→ We could return possible answers... Not very informative

→ Recently, Libkin [PODS’18] proposes the notion of better
answers

• a tuple ā is a better answer than another tuple b̄
if {ν ∣ b̄ ∈ q(D)} ⊆ {ν ∣ ā ∈ q(D)}
→ induces a notion of best answer
→ also, we can compare (some) tuples
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Another approach: counting

To compare all the tuples, why not study the associated counting
problems?

→ “How many valuations ν are such that ā ∈ q(ν(D))?”
→ “How many distinct databases of the form ν(D) are such

that ā ∈ q(ν(D))?”
→ we can compare all tuples
→ we can answer queries quantitatively (similar to probabilistic

databases)

→ This is what we’ll do in this talk!
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→ “How many distinct databases of the form ν(D) are such
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My co-authors

Rest of the talk is based on paper “Counting Problems over
Incomplete Databases” [PODS’20] with Marcelo Arenas and Pablo
Barceló
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Setting

• Incomplete databases with named (marked) nulls

• Each null � comes with its own finite domain dom(�); all
valuations ν are such that ν(�) ∈ dom(�)

• ν(D): the (complete) database obtained from D by
substituting every null � by ν(�), and then removing duplicate
tuples. We call such a database a completion of D

D =
R

�1 �1

a �2

dom(�1) = {a,b}, dom(�2) = {b, c}

ν = {�1 ↦ b,�2 ↦ c} → ν(D) = {R(b,b),R(a, c)}

ν = {�1 ↦ a,�2 ↦ a} → ν(D) = {R(a, a)}

10 / 28



Setting

• Incomplete databases with named (marked) nulls

• Each null � comes with its own finite domain dom(�); all
valuations ν are such that ν(�) ∈ dom(�)

• ν(D): the (complete) database obtained from D by
substituting every null � by ν(�), and then removing duplicate
tuples. We call such a database a completion of D

D =
R

�1 �1

a �2

dom(�1) = {a,b}, dom(�2) = {b, c}

ν = {�1 ↦ b,�2 ↦ c} → ν(D) = {R(b,b),R(a, c)}

ν = {�1 ↦ a,�2 ↦ a} → ν(D) = {R(a, a)}

10 / 28



Setting

• Incomplete databases with named (marked) nulls

• Each null � comes with its own finite domain dom(�); all
valuations ν are such that ν(�) ∈ dom(�)

• ν(D): the (complete) database obtained from D by
substituting every null � by ν(�), and then removing duplicate
tuples. We call such a database a completion of D

D =
R

�1 �1

a �2

dom(�1) = {a,b}, dom(�2) = {b, c}

ν = {�1 ↦ b,�2 ↦ c} → ν(D) = {R(b,b),R(a, c)}

ν = {�1 ↦ a,�2 ↦ a} → ν(D) = {R(a, a)}

10 / 28



Setting

• Incomplete databases with named (marked) nulls

• Each null � comes with its own finite domain dom(�); all
valuations ν are such that ν(�) ∈ dom(�)

• ν(D): the (complete) database obtained from D by
substituting every null � by ν(�), and then removing duplicate
tuples. We call such a database a completion of D

D =
R

�1 �1

a �2

dom(�1) = {a,b}, dom(�2) = {b, c}

ν = {�1 ↦ b,�2 ↦ c} → ν(D) = {R(b,b),R(a, c)}

ν = {�1 ↦ a,�2 ↦ a} → ν(D) = {R(a, a)}

10 / 28



Problems studied

• Fix a Boolean query q

Definition: problem #Val(q)
Input: an incomplete database D, together with finite
domains dom(�) for each null of D
Output: the number of valuations ν such that ν(D) ⊧ q

Definition: problem #Comp(q)
Input: an incomplete database D, together with finite
domains dom(�) for each null of D
Output: the number of completions ν(D) such that ν(D) ⊧ q
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Example

• Example: D = {S(a,b),S(�1, a),S(a,�2)},
dom(�1) = {a,b, c},dom(�2) = {a,b}, q = ∃x S(x , x)

(ν(�1), ν(�2)) (a, a) (a,b) (b, a) (b,b) (c , a) (c ,b)
ν(D)

S

a b

a a

S

a b

a a

S

a b

b a

a a

S

a b

b a

S

a b

c a

a a

S

a b

c a

ν(D) ⊧ Q? Yes Yes Yes No Yes No

4 satisfying valuations, 3 satisfying completions

→ Study the complexity of these problems depending on q (data
complexity). Obtain dichotomies? Can we efficiently
approximate the number of solutions? Etc.
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Problems variants and query language

We also study the settings where:

• all labeled nulls are distinct (Codd tables; by contrast to
naïve tables)

• all nulls share the same domain (uniform setting)

→ In total we consider 8 different settings
({#Val,#Comp} × {naïve/Codd} × {non-uniform/uniform})

• We focus only on self-join free Boolean conjunctive
queries (sjfBCQs)
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Outline

The dichotomies for exact counting

Counting valuations vs. counting completions

Approximations
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The dichotomies for exact
counting



Patterns in sjfBCQs

Definition: pattern

A sjfBCQ q′ is a pattern of another sjfBCQ q if q′ can be
obtained from q by deleting atoms or variable occurrences, and
then reordering the variables inside the atoms and renaming
(injectively) the variables and relation names

Example: (from now on all variables are existentially quantified) is
a pattern of q = R(u, x ,u) ∧ S(y , y) ∧T (x , s, z , s)

→ R(u, x ,u) ∧ S(y , y) (delete third atom)

→ R(u, x ,u) ∧ S(y) (delete a variable occurrence)

→ R(u,u, x) ∧ S(y) (reorder variables occurrences)

→ R ′(u,u, x) ∧ S(y) (rename R into R ′)

→ (rename x into y and y into z)
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Note: reordering and injective renaming are not important, it is just
so that we can formally say things like:

• R(x , y) is a pattern of R(y , x); or
• R(x) is a pattern of S(y)
• etc.

16 / 28



Proof strategy

Lemma

Let q,q′ be sjfBCQs such that q′ is a pattern of q. Then we
have #Val(q′) ≤p #Val(q)

Where ≤p denote polynomial-time parsimonious reductions
(and the same results holds for counting completions, and also if we
restrict to Codd tables and/or to the uniform setting)

→ for each of the 8 variants of the problem, find a set of patterns
that are hard and such that if a sjfBCQ does not have any of
these patterns then the problem is in PTIME

17 / 28
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Example 1: #Val, naïve, non-uniform

Consider counting valuations, naïve setting (named nulls that can
appear in multiple places), non-uniform (each null � comes with its
own domain dom(�))

• q1 = R(x , x) is a hard pattern: easy reduction from counting
3-colorings of a graph (#P-complete)

→ on input undirected graph G = (V ,E), construct database DG

containing facts R(�u,�v) and R(�v ,�u) for every edge
{u, v} ∈ E . The domain of every null � is dom(�) = {●, ●, ●}.
Then #3Cols(G) = 3∣V ∣ −#Val(q1)(DG)

• q2 = R(x) ∧ S(x) is also a hard pattern (trust me)

• If a sjfBCQ q does not have q1 or q2 as a pattern then
#Val(q) is PTIME. Why?
→ All variable occurrences are distinct, so every valuation is

satisfying
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Example 2: completions, naïve, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

• q = R(x) is a hard pattern! Reduction from counting the
number of vertex covers of a graph
→ on input graph G = (V ,E), construct database DG having:

• one null �e and fact R(�e) for every edge e = {u, v} of G with
domain dom(�e) = {u, v}

• one fact R(●) where “●” is a special symbol
• one null �u and fact R(�u) for every node u of G with domain

dom(�u) = {u, ●}

→ We have that #VC(G) = #Comp(q)(DG)

• In other words, here every sjfBCQ is hard...

19 / 28



Example 2: completions, naïve, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

• q = R(x) is a hard pattern! Reduction from counting the
number of vertex covers of a graph

→ on input graph G = (V ,E), construct database DG having:
• one null �e and fact R(�e) for every edge e = {u, v} of G with

domain dom(�e) = {u, v}
• one fact R(●) where “●” is a special symbol
• one null �u and fact R(�u) for every node u of G with domain

dom(�u) = {u, ●}

→ We have that #VC(G) = #Comp(q)(DG)

• In other words, here every sjfBCQ is hard...

19 / 28



Example 2: completions, naïve, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

• q = R(x) is a hard pattern! Reduction from counting the
number of vertex covers of a graph
→ on input graph G = (V ,E), construct database DG having:

• one null �e and fact R(�e) for every edge e = {u, v} of G with
domain dom(�e) = {u, v}

• one fact R(●) where “●” is a special symbol
• one null �u and fact R(�u) for every node u of G with domain

dom(�u) = {u, ●}

→ We have that #VC(G) = #Comp(q)(DG)

• In other words, here every sjfBCQ is hard...

19 / 28



Example 2: completions, naïve, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

• q = R(x) is a hard pattern! Reduction from counting the
number of vertex covers of a graph
→ on input graph G = (V ,E), construct database DG having:

• one null �e and fact R(�e) for every edge e = {u, v} of G with
domain dom(�e) = {u, v}

• one fact R(●) where “●” is a special symbol
• one null �u and fact R(�u) for every node u of G with domain

dom(�u) = {u, ●}

→ We have that #VC(G) = #Comp(q)(DG)

• In other words, here every sjfBCQ is hard...

19 / 28



Example 2: completions, naïve, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

• q = R(x) is a hard pattern! Reduction from counting the
number of vertex covers of a graph
→ on input graph G = (V ,E), construct database DG having:

• one null �e and fact R(�e) for every edge e = {u, v} of G with
domain dom(�e) = {u, v}

• one fact R(●) where “●” is a special symbol
• one null �u and fact R(�u) for every node u of G with domain

dom(�u) = {u, ●}

→ We have that #VC(G) = #Comp(q)(DG)

• In other words, here every sjfBCQ is hard...

19 / 28



Example 2: completions, naïve, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

• q = R(x) is a hard pattern! Reduction from counting the
number of vertex covers of a graph
→ on input graph G = (V ,E), construct database DG having:

• one null �e and fact R(�e) for every edge e = {u, v} of G with
domain dom(�e) = {u, v}

• one fact R(●) where “●” is a special symbol
• one null �u and fact R(�u) for every node u of G with domain

dom(�u) = {u, ●}

→ We have that #VC(G) = #Comp(q)(DG)

• In other words, here every sjfBCQ is hard...

19 / 28



The hard patterns

Counting valuations Counting completions

Non-uniform Uniform Non-uniform Uniform

Naïve R(x , x)
R(x) ∧ S(x)

R(x , x)
R(x) ∧ S(x , y) ∧T (y)
R(x , y) ∧ S(x , y)

R(x) R(x , x)
R(x , y)

Codd R(x) ∧ S(x) R(x) ∧ S(x , y) ∧T (y)
?

R(x) R(x , x)
R(x , y)

→ Valuations, non-uniform, Codd: each variable occurs in at
most one atom

→ Completions, uniform (naïve or Codd): all the atoms are unary

(So. . . not much is tractable)
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Counting valuations vs. counting
completions



When are our problems in #P?

• For a Boolean query q, let MC(q) denote the model checking
problem for q

Fact

If MC(q) is PTIME then #Val(q) is in #P.

• for counting valuations of sjfBCQs, we had dichotomies
between PTIME and #P-completeness

What about counting completions? In general when MC(q) is
PTIME, is #Comp(q) in #P? Unlikely:

Proposition

There exists an sjfBCQ q such that #Comp(q) is not in
#P unless NP ⊆ SPP
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• for counting valuations of sjfBCQs, we had dichotomies
between PTIME and #P-completeness
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A natural complexity class for counting completions (1/2)

• A counting problem A is in SpanP if there exists a
nondeterministic transducer M (= Turing machine with output
tape) running in polynomial time such that, on input x , the
number of distinct outputs for M(x) is equal to A(x)

→ Clearly #P ⊆ SpanP, but we have #P = SpanP if and only if
NP = UP (Köbler et al. [Acta Informatica’89])

→ A complete problem for SpanP: INPUT: a 3-CNF ϕ and
integer k; OUTPUT: the number of assignments of the first k
variables that can be extended to a satisfying assignment of ϕ

→ (A problem in SpanP but unknown to be complete for it:
INPUT: a graph G ; OUTPUT: the number of Hamiltonian
subgraphs of G )
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A natural complexity class for counting completions (2/2)

Fact

If MC(q) is PTIME then #Comp(q) is in SpanP.

Proposition

There exists a sjfBCQ q such that #Comp(¬q) is
SpanP-complete.

[WARNING: hardness for SpanP is defined in terms of
parsimonious reductions (while #P-completeness is usually defined
with Turing reductions)]

For Codd tables we can still show membership in #P:

Proposition

For Codd tables, if MC(q) is PTIME then #Comp(q) is in #P
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Approximations



My counting problem is very
much intractable :(

→ Try Fully Polynomial-time Randomized Approximation Scheme!
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Fully Polynomial-time Randomized Approximation Scheme!

Definition (FPRAS)
Let Σ be a finite alphabet and f ∶ Σ∗ → N be a counting problem.
Then f is said to have an FPRAS if there is a randomized
algorithm A ∶ Σ∗ × (0,1) → N and a polynomial p(u, v) such that,
given x ∈ Σ∗ and ε ∈ (0,1), algorithm A runs in time p(∣x ∣, 1/ε)
and satisfies the following condition:

Pr (∣f (x) −A(x , ε)∣ ≤ εf (x)) ≥ 3
4
.

Note: the property of having an FPRAS is closed under
polynomial-time parsimonious reductions (i.e., if we have an
FPRAS for a counting problem A and for counting problem B we
have that B ≤p A, then we also have an FPRAS for B).
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FPRAS for counting valuations

Proposition

For every Boolean UCQ q, the problem #Val(q) has a FPRAS

Proof: via SpanL. SpanL = there exists an NL transducer with
write-only output tape such that the result is the number of
distinct outputs

Theorem (Arenas et al. [PODS’19])
Every problem in SpanL has an FPRAS

Fact

For every Boolean UCQ q, the problem #Val(q) is in SpanL
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FPRAS for counting completions?

Theorem (Dyer et al. [SICOMP’2002])
Counting vertex covers has no FPRAS unless NP = RP

• Our reduction from #VC for Codd tables to
#Comp(∃x R(x)) was parsimonious

• Our reduction for the notion of pattern is also parsimonious

→ Therefore #Comp(q) restricted to Codd tables for any sjfBCQ
has no FPRAS unless NP = RP

What about the uniform setting? We prove that for naïve tables,
uniform setting, #Comp(q) has no FPRAS if q contains a
non-unary symbol (otherwise it is PTIME)

• For uniform Codd tables, we do not know
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Conclusion

To sum up:

• Counting valuations and completions is hard, even in very
restricted settings (uniform Codd tables)

• But counting valuations has a FPRAS for UCQs

• While counting completions does not

• SpanP is the right class to consider for problems of the
form #Comp(q)

• If you liked it, we have a lot of cute reductions in the paper :)

Thanks for your attention!
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