
Counting Problems over Incomplete
Databases

Mikaël Monet
Formal Methods team seminar at LaBRI

Setpember 29th, 2020

About me

[2012–2015] Engineering school in Nancy

[2015–2018] PhD in Paris (Télécom ParisTech) with Pierre
Senellart and Antoine Amarilli

→ Database theory, uncertain data management

[2019–August 2020] Postdoctorate in Santiago de Chile
(IMFD) with Pablo Barceló

→ Database theory, uncertain data management,
logical aspects of machine learning, complexity
of explainability tasks (AI)

[September] Off

[1st October] Research position at Inria Lille, team LINKS

1 / 28

Uncertain data management

• Traditional database research assumes that the data is reliable,
complete, clean. . .

• But real life data is often uncertain, untrustworthy, missing,
inconsistent, etc.

→ imperfect sensor precision, error-prone automatic information
extraction processes, data integration from multiple sources,
missing information

• We could simply clean the data and remove every uncertain
data item

• But what if we actually need/want to acknowledge this
uncertainty? (e.g, if querying the data without taking the
uncertainty into account could lead to incorrect answers)

→ Need to develop theories, tools, etc. to be able to represent
and query such uncertain data
→ This is uncertain data management!

2 / 28

Uncertain data management

• Traditional database research assumes that the data is reliable,
complete, clean. . .

• But real life data is often uncertain, untrustworthy, missing,
inconsistent, etc.
→ imperfect sensor precision, error-prone automatic information

extraction processes, data integration from multiple sources,
missing information

• We could simply clean the data and remove every uncertain
data item

• But what if we actually need/want to acknowledge this
uncertainty? (e.g, if querying the data without taking the
uncertainty into account could lead to incorrect answers)

→ Need to develop theories, tools, etc. to be able to represent
and query such uncertain data
→ This is uncertain data management!

2 / 28

Uncertain data management

• Traditional database research assumes that the data is reliable,
complete, clean. . .

• But real life data is often uncertain, untrustworthy, missing,
inconsistent, etc.
→ imperfect sensor precision, error-prone automatic information

extraction processes, data integration from multiple sources,
missing information

• We could simply clean the data and remove every uncertain
data item

• But what if we actually need/want to acknowledge this
uncertainty? (e.g, if querying the data without taking the
uncertainty into account could lead to incorrect answers)

→ Need to develop theories, tools, etc. to be able to represent
and query such uncertain data
→ This is uncertain data management!

2 / 28

Uncertain data management

• Traditional database research assumes that the data is reliable,
complete, clean. . .

• But real life data is often uncertain, untrustworthy, missing,
inconsistent, etc.
→ imperfect sensor precision, error-prone automatic information

extraction processes, data integration from multiple sources,
missing information

• We could simply clean the data and remove every uncertain
data item

• But what if we actually need/want to acknowledge this
uncertainty? (e.g, if querying the data without taking the
uncertainty into account could lead to incorrect answers)

→ Need to develop theories, tools, etc. to be able to represent
and query such uncertain data
→ This is uncertain data management!

2 / 28

Frameworks for uncertain data management

Lots of existing frameworks to represent and query uncertain data:

• Bayesian networks

• Markov random fields

• Graphical models

• Possibility theory, fuzzy logic, etc.

In this talk, focus on frameworks for relational databases:

• Probabilistic databases

• Incomplete databases

3 / 28

Probabilistic databases: example

• Probabilistic databases: to quantitatively represent and
reason about data uncertainty

→ simplest formalism: tuple-independent database

Pr(D ′) = (1 − 0.5) × 1 × (1 − 0.2) × 0.7

q = “there are two people who
like the same person”
∃x , y , z ∶ L(x , z) ∧ L(y , z) ∧ x ≠ y

+ (1 − 0.5) × [0.2 × 0.7]

4 / 28

Probabilistic databases: example

• Probabilistic databases: to quantitatively represent and
reason about data uncertainty
→ simplest formalism: tuple-independent database

D =

Likes π

Alice Bob 0.5
Alice John 1
Bob Bob 0.2
John Bob 0.7

Pr(D ′) = (1 − 0.5) × 1 × (1 − 0.2) × 0.7

q = “there are two people who
like the same person”
∃x , y , z ∶ L(x , z) ∧ L(y , z) ∧ x ≠ y

+ (1 − 0.5) × [0.2 × 0.7]

4 / 28

Probabilistic databases: example

• Probabilistic databases: to quantitatively represent and
reason about data uncertainty
→ simplest formalism: tuple-independent database

D ′ =

Likes π

0.5
Alice John 1

0.2
John Bob 0.7

Pr(D ′) = (1 − 0.5) × 1 × (1 − 0.2) × 0.7

q = “there are two people who
like the same person”
∃x , y , z ∶ L(x , z) ∧ L(y , z) ∧ x ≠ y

+ (1 − 0.5) × [0.2 × 0.7]

4 / 28

Probabilistic databases: example

• Probabilistic databases: to quantitatively represent and
reason about data uncertainty
→ simplest formalism: tuple-independent database

D ′ =

Likes π

0.5
Alice John 1

0.2
John Bob 0.7

Pr(D ′) = (1 − 0.5) × 1 × (1 − 0.2) × 0.7

q = “there are two people who
like the same person”
∃x , y , z ∶ L(x , z) ∧ L(y , z) ∧ x ≠ y

+ (1 − 0.5) × [0.2 × 0.7]

4 / 28

Probabilistic databases: example

• Probabilistic databases: to quantitatively represent and
reason about data uncertainty
→ simplest formalism: tuple-independent database

D =

Likes π

Alice Bob 0.5
Alice John 1
Bob Bob 0.2
John Bob 0.7

Pr(D ′) = (1 − 0.5) × 1 × (1 − 0.2) × 0.7

q = “there are two people who
like the same person”

∃x , y , z ∶ L(x , z) ∧ L(y , z) ∧ x ≠ y

+ (1 − 0.5) × [0.2 × 0.7]

4 / 28

Probabilistic databases: example

• Probabilistic databases: to quantitatively represent and
reason about data uncertainty
→ simplest formalism: tuple-independent database

D =

Likes π

Alice Bob 0.5
Alice John 1
Bob Bob 0.2
John Bob 0.7

Pr(D ′) = (1 − 0.5) × 1 × (1 − 0.2) × 0.7

q = “there are two people who
like the same person”
∃x , y , z ∶ L(x , z) ∧ L(y , z) ∧ x ≠ y

+ (1 − 0.5) × [0.2 × 0.7]

4 / 28

Probabilistic databases: example

• Probabilistic databases: to quantitatively represent and
reason about data uncertainty
→ simplest formalism: tuple-independent database

D =

Likes π

Alice Bob 0.5
Alice John 1
Bob Bob 0.2
John Bob 0.7

Pr(D ′) = (1 − 0.5) × 1 × (1 − 0.2) × 0.7

q = “there are two people who
like the same person”
∃x , y , z ∶ L(x , z) ∧ L(y , z) ∧ x ≠ y

Pr((D, π) ⊧ q) = ∑D′⊆D
D⊧q

Pr(D ′)

+ (1 − 0.5) × [0.2 × 0.7]

4 / 28

Probabilistic databases: example

• Probabilistic databases: to quantitatively represent and
reason about data uncertainty
→ simplest formalism: tuple-independent database

D =

Likes π

Alice Bob 0.5
Alice John 1
Bob Bob 0.2
John Bob 0.7

Pr(D ′) = (1 − 0.5) × 1 × (1 − 0.2) × 0.7

q = “there are two people who
like the same person”
∃x , y , z ∶ L(x , z) ∧ L(y , z) ∧ x ≠ y

Pr((D, π) ⊧ q) = ∑D′⊆D
D⊧q

Pr(D ′) (not efficient)

+ (1 − 0.5) × [0.2 × 0.7]

4 / 28

Probabilistic databases: example

• Probabilistic databases: to quantitatively represent and
reason about data uncertainty
→ simplest formalism: tuple-independent database

D =

Likes π

Alice Bob 0.5
Alice John 1
Bob Bob 0.2
John Bob 0.7

Pr(D ′) = (1 − 0.5) × 1 × (1 − 0.2) × 0.7

q = “there are two people who
like the same person”
∃x , y , z ∶ L(x , z) ∧ L(y , z) ∧ x ≠ y

Pr((D, π) ⊧ q) = 0.5 × [1 − (1 − 0.2)(1 − 0.7)]

+ (1 − 0.5) × [0.2 × 0.7]

4 / 28

Probabilistic databases: example

• Probabilistic databases: to quantitatively represent and
reason about data uncertainty
→ simplest formalism: tuple-independent database

D =

Likes π

Alice Bob 0.5
Alice John 1
Bob Bob 0.2
John Bob 0.7

Pr(D ′) = (1 − 0.5) × 1 × (1 − 0.2) × 0.7

q = “there are two people who
like the same person”
∃x , y , z ∶ L(x , z) ∧ L(y , z) ∧ x ≠ y

Pr((D, π) ⊧ q) = 0.5 × [1 − (1 − 0.2)(1 − 0.7)]

+ (1 − 0.5) × [0.2 × 0.7]

4 / 28

Incomplete databases: example

• Probabilistic databases: nice, but this is not what is used in
practice most of the time...

ProductId ProductName Price Color Localisation
439 Printer $100 NULL Paris center
782 Mouse $10 red NULL
398 Mouse $30 red Miami center
...

CustomerId Name Phone number Gender Address
6 Bob NULL male 36 main street
76 Mary 551780726 NULL NULL
...

→ Incomplete databases: relational databases with missing
values

5 / 28

Incomplete databases: example

• Probabilistic databases: nice, but this is not what is used in
practice most of the time...

ProductId ProductName Price Color Localisation
439 Printer $100 NULL Paris center
782 Mouse $10 red NULL
398 Mouse $30 red Miami center
...

CustomerId Name Phone number Gender Address
6 Bob NULL male 36 main street
76 Mary 551780726 NULL NULL
...

→ Incomplete databases: relational databases with missing
values

5 / 28

How do we query incomplete databases?

• Default approach of database theorists for querying
incomplete data: certain answers

• for a valuation ν of the nulls of D into constants, let us
write ν(D) the corresponding complete database

→ a tuple ā is a certain answer of q(x̄) over the incomplete
database D if for every valuation ν of the nulls of D, we
have ā ∈ q(ν(D))

Example (from now on, nulls are named and represented with �):

6 / 28

How do we query incomplete databases?

• Default approach of database theorists for querying
incomplete data: certain answers

• for a valuation ν of the nulls of D into constants, let us
write ν(D) the corresponding complete database

→ a tuple ā is a certain answer of q(x̄) over the incomplete
database D if for every valuation ν of the nulls of D, we
have ā ∈ q(ν(D))

Example (from now on, nulls are named and represented with �):

D =
R

a b

b �1

S

�1 b

b �2

6 / 28

How do we query incomplete databases?

• Default approach of database theorists for querying
incomplete data: certain answers

• for a valuation ν of the nulls of D into constants, let us
write ν(D) the corresponding complete database

→ a tuple ā is a certain answer of q(x̄) over the incomplete
database D if for every valuation ν of the nulls of D, we
have ā ∈ q(ν(D))

Example (from now on, nulls are named and represented with �):

D =
R

a b

b �1

S

�1 b

b �2

ν ∶ �1 ↦ c ,�2 ↦ a

6 / 28

How do we query incomplete databases?

• Default approach of database theorists for querying
incomplete data: certain answers

• for a valuation ν of the nulls of D into constants, let us
write ν(D) the corresponding complete database

→ a tuple ā is a certain answer of q(x̄) over the incomplete
database D if for every valuation ν of the nulls of D, we
have ā ∈ q(ν(D))

Example (from now on, nulls are named and represented with �):

ν(D) =
R

a b

b c

S

c b

b a

ν ∶ �1 ↦ c ,�2 ↦ a

6 / 28

How do we query incomplete databases?

• Default approach of database theorists for querying
incomplete data: certain answers

• for a valuation ν of the nulls of D into constants, let us
write ν(D) the corresponding complete database

→ a tuple ā is a certain answer of q(x̄) over the incomplete
database D if for every valuation ν of the nulls of D, we
have ā ∈ q(ν(D))

Example (from now on, nulls are named and represented with �):

D =
R

a b

b �1

S

�1 b

b �2

6 / 28

How do we query incomplete databases?

• Default approach of database theorists for querying
incomplete data: certain answers

• for a valuation ν of the nulls of D into constants, let us
write ν(D) the corresponding complete database

→ a tuple ā is a certain answer of q(x̄) over the incomplete
database D if for every valuation ν of the nulls of D, we
have ā ∈ q(ν(D))

Example (from now on, nulls are named and represented with �):

D =
R

a b

b �1

S

�1 b

b �2

6 / 28

How do we query incomplete databases?

• Default approach of database theorists for querying
incomplete data: certain answers

• for a valuation ν of the nulls of D into constants, let us
write ν(D) the corresponding complete database

→ a tuple ā is a certain answer of q(x̄) over the incomplete
database D if for every valuation ν of the nulls of D, we
have ā ∈ q(ν(D))

Example (from now on, nulls are named and represented with �):

D =
R

a b

b �1

S

�1 b

b �2

q(x) = ∃y , z ∶ R(x , y) ∧ S(y , z)

Certain answers: (a) and (b)

6 / 28

How do we query incomplete databases?

• Default approach of database theorists for querying
incomplete data: certain answers

• for a valuation ν of the nulls of D into constants, let us
write ν(D) the corresponding complete database

→ a tuple ā is a certain answer of q(x̄) over the incomplete
database D if for every valuation ν of the nulls of D, we
have ā ∈ q(ν(D))

Example (from now on, nulls are named and represented with �):

D =
R

a b

b �1

S

�1 b

b �2

q(x) = ∃y , z ∶ R(x , y) ∧ S(y , z)
Certain answers: (a) and (b)

6 / 28

How do we query incomplete databases?

• Default approach of database theorists for querying
incomplete data: certain answers

• for a valuation ν of the nulls of D into constants, let us
write ν(D) the corresponding complete database

→ a tuple ā is a certain answer of q(x̄) over the incomplete
database D if for every valuation ν of the nulls of D, we
have ā ∈ q(ν(D))

Example (from now on, nulls are named and represented with �):

D =
R

a b

b �1

S

�1 b

b �2

q′(x) = R(x , x)

No certain answer :(

6 / 28

How do we query incomplete databases?

• Default approach of database theorists for querying
incomplete data: certain answers

• for a valuation ν of the nulls of D into constants, let us
write ν(D) the corresponding complete database

→ a tuple ā is a certain answer of q(x̄) over the incomplete
database D if for every valuation ν of the nulls of D, we
have ā ∈ q(ν(D))

Example (from now on, nulls are named and represented with �):

D =
R

a b

b �1

S

�1 b

b �2

q′(x) = R(x , x)
No certain answer :(

6 / 28

Problem: what if there are no certain answers?

→ We could return possible answers... Not very informative

→ Recently, Libkin [PODS’18] proposes the notion of better
answers

• a tuple ā is a better answer than another tuple b̄
if {ν ∣ b̄ ∈ q(D)} ⊆ {ν ∣ ā ∈ q(D)}
→ induces a notion of best answer
→ also, we can compare (some) tuples

7 / 28

Problem: what if there are no certain answers?

→ We could return possible answers... Not very informative

→ Recently, Libkin [PODS’18] proposes the notion of better
answers

• a tuple ā is a better answer than another tuple b̄
if {ν ∣ b̄ ∈ q(D)} ⊆ {ν ∣ ā ∈ q(D)}
→ induces a notion of best answer
→ also, we can compare (some) tuples

7 / 28

Problem: what if there are no certain answers?

→ We could return possible answers... Not very informative

→ Recently, Libkin [PODS’18] proposes the notion of better
answers

• a tuple ā is a better answer than another tuple b̄
if {ν ∣ b̄ ∈ q(D)} ⊆ {ν ∣ ā ∈ q(D)}

→ induces a notion of best answer
→ also, we can compare (some) tuples

7 / 28

Problem: what if there are no certain answers?

→ We could return possible answers... Not very informative

→ Recently, Libkin [PODS’18] proposes the notion of better
answers

• a tuple ā is a better answer than another tuple b̄
if {ν ∣ b̄ ∈ q(D)} ⊆ {ν ∣ ā ∈ q(D)}
→ induces a notion of best answer
→ also, we can compare (some) tuples

7 / 28

Another approach: counting

To compare all the tuples, why not study the associated counting
problems?

→ “How many valuations ν are such that ā ∈ q(ν(D))?”
→ “How many distinct databases of the form ν(D) are such

that ā ∈ q(ν(D))?”
→ we can compare all tuples
→ we can answer queries quantitatively (similar to probabilistic

databases)

→ This is what we’ll do in this talk!

8 / 28

Another approach: counting

To compare all the tuples, why not study the associated counting
problems?

→ “How many valuations ν are such that ā ∈ q(ν(D))?”
→ “How many distinct databases of the form ν(D) are such

that ā ∈ q(ν(D))?”

→ we can compare all tuples
→ we can answer queries quantitatively (similar to probabilistic

databases)

→ This is what we’ll do in this talk!

8 / 28

Another approach: counting

To compare all the tuples, why not study the associated counting
problems?

→ “How many valuations ν are such that ā ∈ q(ν(D))?”
→ “How many distinct databases of the form ν(D) are such

that ā ∈ q(ν(D))?”
→ we can compare all tuples
→ we can answer queries quantitatively (similar to probabilistic

databases)

→ This is what we’ll do in this talk!

8 / 28

Another approach: counting

To compare all the tuples, why not study the associated counting
problems?

→ “How many valuations ν are such that ā ∈ q(ν(D))?”
→ “How many distinct databases of the form ν(D) are such

that ā ∈ q(ν(D))?”
→ we can compare all tuples
→ we can answer queries quantitatively (similar to probabilistic

databases)

→ This is what we’ll do in this talk!

8 / 28

My co-authors

Rest of the talk is based on paper “Counting Problems over
Incomplete Databases” [PODS’20] with Marcelo Arenas and Pablo
Barceló

9 / 28

Setting

• Incomplete databases with named (marked) nulls

• Each null � comes with its own finite domain dom(�); all
valuations ν are such that ν(�) ∈ dom(�)

• ν(D): the (complete) database obtained from D by
substituting every null � by ν(�), and then removing duplicate
tuples. We call such a database a completion of D

D =
R

�1 �1

a �2

dom(�1) = {a,b}, dom(�2) = {b, c}

ν = {�1 ↦ b,�2 ↦ c} → ν(D) = {R(b,b),R(a, c)}

ν = {�1 ↦ a,�2 ↦ a} → ν(D) = {R(a, a)}

10 / 28

Setting

• Incomplete databases with named (marked) nulls

• Each null � comes with its own finite domain dom(�); all
valuations ν are such that ν(�) ∈ dom(�)

• ν(D): the (complete) database obtained from D by
substituting every null � by ν(�), and then removing duplicate
tuples. We call such a database a completion of D

D =
R

�1 �1

a �2

dom(�1) = {a,b}, dom(�2) = {b, c}

ν = {�1 ↦ b,�2 ↦ c} → ν(D) = {R(b,b),R(a, c)}

ν = {�1 ↦ a,�2 ↦ a} → ν(D) = {R(a, a)}

10 / 28

Setting

• Incomplete databases with named (marked) nulls

• Each null � comes with its own finite domain dom(�); all
valuations ν are such that ν(�) ∈ dom(�)

• ν(D): the (complete) database obtained from D by
substituting every null � by ν(�), and then removing duplicate
tuples. We call such a database a completion of D

D =
R

�1 �1

a �2

dom(�1) = {a,b}, dom(�2) = {b, c}

ν = {�1 ↦ b,�2 ↦ c} → ν(D) = {R(b,b),R(a, c)}

ν = {�1 ↦ a,�2 ↦ a} → ν(D) = {R(a, a)}

10 / 28

Setting

• Incomplete databases with named (marked) nulls

• Each null � comes with its own finite domain dom(�); all
valuations ν are such that ν(�) ∈ dom(�)

• ν(D): the (complete) database obtained from D by
substituting every null � by ν(�), and then removing duplicate
tuples. We call such a database a completion of D

D =
R

�1 �1

a �2

dom(�1) = {a,b}, dom(�2) = {b, c}

ν = {�1 ↦ b,�2 ↦ c} → ν(D) = {R(b,b),R(a, c)}

ν = {�1 ↦ a,�2 ↦ a} → ν(D) = {R(a, a)}

10 / 28

Problems studied

• Fix a Boolean query q

Definition: problem #Val(q)
Input: an incomplete database D, together with finite
domains dom(�) for each null of D
Output: the number of valuations ν such that ν(D) ⊧ q

Definition: problem #Comp(q)
Input: an incomplete database D, together with finite
domains dom(�) for each null of D
Output: the number of completions ν(D) such that ν(D) ⊧ q

11 / 28

Problems studied

• Fix a Boolean query q

Definition: problem #Val(q)
Input: an incomplete database D, together with finite
domains dom(�) for each null of D
Output: the number of valuations ν such that ν(D) ⊧ q

Definition: problem #Comp(q)
Input: an incomplete database D, together with finite
domains dom(�) for each null of D
Output: the number of completions ν(D) such that ν(D) ⊧ q

11 / 28

Example

• Example: D = {S(a,b),S(�1, a),S(a,�2)},
dom(�1) = {a,b, c},dom(�2) = {a,b}, q = ∃x S(x , x)

(ν(�1), ν(�2)) (a, a) (a,b) (b, a) (b,b) (c , a) (c ,b)
ν(D)

S

a b

a a

S

a b

a a

S

a b

b a

a a

S

a b

b a

S

a b

c a

a a

S

a b

c a

ν(D) ⊧ Q? Yes Yes Yes No Yes No

4 satisfying valuations, 3 satisfying completions

→ Study the complexity of these problems depending on q (data
complexity). Obtain dichotomies? Can we efficiently
approximate the number of solutions? Etc.

12 / 28

Example

• Example: D = {S(a,b),S(�1, a),S(a,�2)},
dom(�1) = {a,b, c},dom(�2) = {a,b}, q = ∃x S(x , x)

(ν(�1), ν(�2)) (a, a) (a,b) (b, a) (b,b) (c , a) (c ,b)
ν(D)

S

a b

a a

S

a b

a a

S

a b

b a

a a

S

a b

b a

S

a b

c a

a a

S

a b

c a

ν(D) ⊧ Q? Yes Yes Yes No Yes No

4 satisfying valuations, 3 satisfying completions

→ Study the complexity of these problems depending on q (data
complexity). Obtain dichotomies? Can we efficiently
approximate the number of solutions? Etc.

12 / 28

Example

• Example: D = {S(a,b),S(�1, a),S(a,�2)},
dom(�1) = {a,b, c},dom(�2) = {a,b}, q = ∃x S(x , x)

(ν(�1), ν(�2)) (a, a) (a,b) (b, a) (b,b) (c , a) (c ,b)
ν(D)

S

a b

a a

S

a b

a a

S

a b

b a

a a

S

a b

b a

S

a b

c a

a a

S

a b

c a

ν(D) ⊧ Q? Yes Yes Yes No Yes No

4 satisfying valuations, 3 satisfying completions

→ Study the complexity of these problems depending on q (data
complexity). Obtain dichotomies? Can we efficiently
approximate the number of solutions? Etc.

12 / 28

Example

• Example: D = {S(a,b),S(�1, a),S(a,�2)},
dom(�1) = {a,b, c},dom(�2) = {a,b}, q = ∃x S(x , x)

(ν(�1), ν(�2)) (a, a) (a,b) (b, a) (b,b) (c , a) (c ,b)
ν(D)

S

a b

a a

S

a b

a a

S

a b

b a

a a

S

a b

b a

S

a b

c a

a a

S

a b

c a

ν(D) ⊧ Q? Yes Yes Yes No Yes No

4 satisfying valuations, 3 satisfying completions

→ Study the complexity of these problems depending on q (data
complexity). Obtain dichotomies? Can we efficiently
approximate the number of solutions? Etc.

12 / 28

Problems variants and query language

We also study the settings where:

• all labeled nulls are distinct (Codd tables; by contrast to
naïve tables)

• all nulls share the same domain (uniform setting)

→ In total we consider 8 different settings
({#Val,#Comp} × {naïve/Codd} × {non-uniform/uniform})

• We focus only on self-join free Boolean conjunctive
queries (sjfBCQs)

13 / 28

Problems variants and query language

We also study the settings where:

• all labeled nulls are distinct (Codd tables; by contrast to
naïve tables)

• all nulls share the same domain (uniform setting)

→ In total we consider 8 different settings
({#Val,#Comp} × {naïve/Codd} × {non-uniform/uniform})

• We focus only on self-join free Boolean conjunctive
queries (sjfBCQs)

13 / 28

Outline

The dichotomies for exact counting

Counting valuations vs. counting completions

Approximations

14 / 28

The dichotomies for exact
counting

Patterns in sjfBCQs

Definition: pattern

A sjfBCQ q′ is a pattern of another sjfBCQ q if q′ can be
obtained from q by deleting atoms or variable occurrences, and
then reordering the variables inside the atoms and renaming
(injectively) the variables and relation names

Example: (from now on all variables are existentially quantified) is
a pattern of q = R(u, x ,u) ∧ S(y , y) ∧T (x , s, z , s)

→ R(u, x ,u) ∧ S(y , y) (delete third atom)

→ R(u, x ,u) ∧ S(y) (delete a variable occurrence)

→ R(u,u, x) ∧ S(y) (reorder variables occurrences)

→ R ′(u,u, x) ∧ S(y) (rename R into R ′)

→ (rename x into y and y into z)

15 / 28

Patterns in sjfBCQs

Definition: pattern

A sjfBCQ q′ is a pattern of another sjfBCQ q if q′ can be
obtained from q by deleting atoms or variable occurrences, and
then reordering the variables inside the atoms and renaming
(injectively) the variables and relation names

Example: (from now on all variables are existentially quantified)
q′ = R ′(u,u, y) ∧ S(z) is a pattern
of q = R(u, x ,u) ∧ S(y , y) ∧T (x , s, z , s)

→ R(u, x ,u) ∧ S(y , y) (delete third atom)
→ R(u, x ,u) ∧ S(y) (delete a variable occurrence)
→ R(u,u, x) ∧ S(y) (reorder variables occurrences)
→ R ′(u,u, x) ∧ S(y) (rename R into R ′)
→ (rename x into y and y into z)

15 / 28

Patterns in sjfBCQs

Definition: pattern

A sjfBCQ q′ is a pattern of another sjfBCQ q if q′ can be
obtained from q by deleting atoms or variable occurrences, and
then reordering the variables inside the atoms and renaming
(injectively) the variables and relation names

Example: (from now on all variables are existentially quantified)
q′ = R ′(u,u, y) ∧ S(z) is a pattern
of q = R(u, x ,u) ∧ S(y , y) ∧T (x , s, z , s)

→ R(u, x ,u) ∧ S(y , y) (delete third atom)

→ R(u, x ,u) ∧ S(y) (delete a variable occurrence)
→ R(u,u, x) ∧ S(y) (reorder variables occurrences)
→ R ′(u,u, x) ∧ S(y) (rename R into R ′)
→ (rename x into y and y into z)

15 / 28

Patterns in sjfBCQs

Definition: pattern

A sjfBCQ q′ is a pattern of another sjfBCQ q if q′ can be
obtained from q by deleting atoms or variable occurrences, and
then reordering the variables inside the atoms and renaming
(injectively) the variables and relation names

Example: (from now on all variables are existentially quantified)
q′ = R ′(u,u, y) ∧ S(z) is a pattern
of q = R(u, x ,u) ∧ S(y , y) ∧T (x , s, z , s)

→ R(u, x ,u) ∧ S(y , y) (delete third atom)
→ R(u, x ,u) ∧ S(y) (delete a variable occurrence)

→ R(u,u, x) ∧ S(y) (reorder variables occurrences)
→ R ′(u,u, x) ∧ S(y) (rename R into R ′)
→ (rename x into y and y into z)

15 / 28

Patterns in sjfBCQs

Definition: pattern

A sjfBCQ q′ is a pattern of another sjfBCQ q if q′ can be
obtained from q by deleting atoms or variable occurrences, and
then reordering the variables inside the atoms and renaming
(injectively) the variables and relation names

Example: (from now on all variables are existentially quantified)
q′ = R ′(u,u, y) ∧ S(z) is a pattern
of q = R(u, x ,u) ∧ S(y , y) ∧T (x , s, z , s)

→ R(u, x ,u) ∧ S(y , y) (delete third atom)
→ R(u, x ,u) ∧ S(y) (delete a variable occurrence)
→ R(u,u, x) ∧ S(y) (reorder variables occurrences)

→ R ′(u,u, x) ∧ S(y) (rename R into R ′)
→ (rename x into y and y into z)

15 / 28

Patterns in sjfBCQs

Definition: pattern

A sjfBCQ q′ is a pattern of another sjfBCQ q if q′ can be
obtained from q by deleting atoms or variable occurrences, and
then reordering the variables inside the atoms and renaming
(injectively) the variables and relation names

Example: (from now on all variables are existentially quantified)
q′ = R ′(u,u, y) ∧ S(z) is a pattern
of q = R(u, x ,u) ∧ S(y , y) ∧T (x , s, z , s)

→ R(u, x ,u) ∧ S(y , y) (delete third atom)
→ R(u, x ,u) ∧ S(y) (delete a variable occurrence)
→ R(u,u, x) ∧ S(y) (reorder variables occurrences)
→ R ′(u,u, x) ∧ S(y) (rename R into R ′)

→ (rename x into y and y into z)

15 / 28

Patterns in sjfBCQs

Definition: pattern

A sjfBCQ q′ is a pattern of another sjfBCQ q if q′ can be
obtained from q by deleting atoms or variable occurrences, and
then reordering the variables inside the atoms and renaming
(injectively) the variables and relation names

Example: (from now on all variables are existentially quantified)
q′ = R ′(u,u, y) ∧ S(z) is a pattern
of q = R(u, x ,u) ∧ S(y , y) ∧T (x , s, z , s)

→ R(u, x ,u) ∧ S(y , y) (delete third atom)
→ R(u, x ,u) ∧ S(y) (delete a variable occurrence)
→ R(u,u, x) ∧ S(y) (reorder variables occurrences)
→ R ′(u,u, x) ∧ S(y) (rename R into R ′)
→ R ′(u,u, y) ∧ S(z) (rename x into y and y into z)

15 / 28

Patterns in sjfBCQs

Definition: pattern

A sjfBCQ q′ is a pattern of another sjfBCQ q if q′ can be
obtained from q by deleting atoms or variable occurrences, and
then reordering the variables inside the atoms and renaming
(injectively) the variables and relation names

Example: (from now on all variables are existentially quantified)
q′ = R ′(u,u, y) ∧ S(z) is a pattern
of q = R(u, x ,u) ∧ S(y , y) ∧T (x , s, z , s)

→ R(u, x ,u) ∧ S(y , y) (delete third atom)
→ R(u, x ,u) ∧ S(y) (delete a variable occurrence)
→ R(u,u, x) ∧ S(y) (reorder variables occurrences)
→ R ′(u,u, x) ∧ S(y) (rename R into R ′)
→ R ′(u,u, y) ∧ S(z) (rename x into y and y into z)

15 / 28

Note: reordering and injective renaming are not important, it is just
so that we can formally say things like:

• R(x , y) is a pattern of R(y , x); or
• R(x) is a pattern of S(y)
• etc.

16 / 28

Proof strategy

Lemma

Let q,q′ be sjfBCQs such that q′ is a pattern of q. Then we
have #Val(q′) ≤p #Val(q)

Where ≤p denote polynomial-time parsimonious reductions
(and the same results holds for counting completions, and also if we
restrict to Codd tables and/or to the uniform setting)

→ for each of the 8 variants of the problem, find a set of patterns
that are hard and such that if a sjfBCQ does not have any of
these patterns then the problem is in PTIME

17 / 28

Proof strategy

Lemma

Let q,q′ be sjfBCQs such that q′ is a pattern of q. Then we
have #Val(q′) ≤p #Val(q)

Where ≤p denote polynomial-time parsimonious reductions
(and the same results holds for counting completions, and also if we
restrict to Codd tables and/or to the uniform setting)

→ for each of the 8 variants of the problem, find a set of patterns
that are hard and such that if a sjfBCQ does not have any of
these patterns then the problem is in PTIME

17 / 28

Example 1: #Val, naïve, non-uniform

Consider counting valuations, naïve setting (named nulls that can
appear in multiple places), non-uniform (each null � comes with its
own domain dom(�))

• q1 = R(x , x) is a hard pattern: easy reduction from counting
3-colorings of a graph (#P-complete)

→ on input undirected graph G = (V ,E), construct database DG

containing facts R(�u,�v) and R(�v ,�u) for every edge
{u, v} ∈ E . The domain of every null � is dom(�) = {●, ●, ●}.
Then #3Cols(G) = 3∣V ∣ −#Val(q1)(DG)

• q2 = R(x) ∧ S(x) is also a hard pattern (trust me)

• If a sjfBCQ q does not have q1 or q2 as a pattern then
#Val(q) is PTIME. Why?
→ All variable occurrences are distinct, so every valuation is

satisfying

18 / 28

Example 1: #Val, naïve, non-uniform

Consider counting valuations, naïve setting (named nulls that can
appear in multiple places), non-uniform (each null � comes with its
own domain dom(�))

• q1 = R(x , x) is a hard pattern: easy reduction from counting
3-colorings of a graph (#P-complete)
→ on input undirected graph G = (V ,E), construct database DG

containing facts R(�u,�v) and R(�v ,�u) for every edge
{u, v} ∈ E . The domain of every null � is dom(�) = {●, ●, ●}.

Then #3Cols(G) = 3∣V ∣ −#Val(q1)(DG)

• q2 = R(x) ∧ S(x) is also a hard pattern (trust me)

• If a sjfBCQ q does not have q1 or q2 as a pattern then
#Val(q) is PTIME. Why?
→ All variable occurrences are distinct, so every valuation is

satisfying

18 / 28

Example 1: #Val, naïve, non-uniform

Consider counting valuations, naïve setting (named nulls that can
appear in multiple places), non-uniform (each null � comes with its
own domain dom(�))

• q1 = R(x , x) is a hard pattern: easy reduction from counting
3-colorings of a graph (#P-complete)
→ on input undirected graph G = (V ,E), construct database DG

containing facts R(�u,�v) and R(�v ,�u) for every edge
{u, v} ∈ E . The domain of every null � is dom(�) = {●, ●, ●}.
Then #3Cols(G) = 3∣V ∣ −#Val(q1)(DG)

• q2 = R(x) ∧ S(x) is also a hard pattern (trust me)

• If a sjfBCQ q does not have q1 or q2 as a pattern then
#Val(q) is PTIME. Why?
→ All variable occurrences are distinct, so every valuation is

satisfying

18 / 28

Example 1: #Val, naïve, non-uniform

Consider counting valuations, naïve setting (named nulls that can
appear in multiple places), non-uniform (each null � comes with its
own domain dom(�))

• q1 = R(x , x) is a hard pattern: easy reduction from counting
3-colorings of a graph (#P-complete)
→ on input undirected graph G = (V ,E), construct database DG

containing facts R(�u,�v) and R(�v ,�u) for every edge
{u, v} ∈ E . The domain of every null � is dom(�) = {●, ●, ●}.
Then #3Cols(G) = 3∣V ∣ −#Val(q1)(DG)

• q2 = R(x) ∧ S(x) is also a hard pattern (trust me)

• If a sjfBCQ q does not have q1 or q2 as a pattern then
#Val(q) is PTIME. Why?
→ All variable occurrences are distinct, so every valuation is

satisfying

18 / 28

Example 1: #Val, naïve, non-uniform

Consider counting valuations, naïve setting (named nulls that can
appear in multiple places), non-uniform (each null � comes with its
own domain dom(�))

• q1 = R(x , x) is a hard pattern: easy reduction from counting
3-colorings of a graph (#P-complete)
→ on input undirected graph G = (V ,E), construct database DG

containing facts R(�u,�v) and R(�v ,�u) for every edge
{u, v} ∈ E . The domain of every null � is dom(�) = {●, ●, ●}.
Then #3Cols(G) = 3∣V ∣ −#Val(q1)(DG)

• q2 = R(x) ∧ S(x) is also a hard pattern (trust me)

• If a sjfBCQ q does not have q1 or q2 as a pattern then
#Val(q) is PTIME. Why?

→ All variable occurrences are distinct, so every valuation is
satisfying

18 / 28

Example 1: #Val, naïve, non-uniform

Consider counting valuations, naïve setting (named nulls that can
appear in multiple places), non-uniform (each null � comes with its
own domain dom(�))

• q1 = R(x , x) is a hard pattern: easy reduction from counting
3-colorings of a graph (#P-complete)
→ on input undirected graph G = (V ,E), construct database DG

containing facts R(�u,�v) and R(�v ,�u) for every edge
{u, v} ∈ E . The domain of every null � is dom(�) = {●, ●, ●}.
Then #3Cols(G) = 3∣V ∣ −#Val(q1)(DG)

• q2 = R(x) ∧ S(x) is also a hard pattern (trust me)

• If a sjfBCQ q does not have q1 or q2 as a pattern then
#Val(q) is PTIME. Why?
→ All variable occurrences are distinct, so every valuation is

satisfying

18 / 28

Example 2: completions, naïve, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

• q = R(x) is a hard pattern! Reduction from counting the
number of vertex covers of a graph
→ on input graph G = (V ,E), construct database DG having:

• one null �e and fact R(�e) for every edge e = {u, v} of G with
domain dom(�e) = {u, v}

• one fact R(●) where “●” is a special symbol
• one null �u and fact R(�u) for every node u of G with domain

dom(�u) = {u, ●}

→ We have that #VC(G) = #Comp(q)(DG)

• In other words, here every sjfBCQ is hard...

19 / 28

Example 2: completions, naïve, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

• q = R(x) is a hard pattern! Reduction from counting the
number of vertex covers of a graph

→ on input graph G = (V ,E), construct database DG having:
• one null �e and fact R(�e) for every edge e = {u, v} of G with

domain dom(�e) = {u, v}
• one fact R(●) where “●” is a special symbol
• one null �u and fact R(�u) for every node u of G with domain

dom(�u) = {u, ●}

→ We have that #VC(G) = #Comp(q)(DG)

• In other words, here every sjfBCQ is hard...

19 / 28

Example 2: completions, naïve, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

• q = R(x) is a hard pattern! Reduction from counting the
number of vertex covers of a graph
→ on input graph G = (V ,E), construct database DG having:

• one null �e and fact R(�e) for every edge e = {u, v} of G with
domain dom(�e) = {u, v}

• one fact R(●) where “●” is a special symbol
• one null �u and fact R(�u) for every node u of G with domain

dom(�u) = {u, ●}

→ We have that #VC(G) = #Comp(q)(DG)

• In other words, here every sjfBCQ is hard...

19 / 28

Example 2: completions, naïve, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

• q = R(x) is a hard pattern! Reduction from counting the
number of vertex covers of a graph
→ on input graph G = (V ,E), construct database DG having:

• one null �e and fact R(�e) for every edge e = {u, v} of G with
domain dom(�e) = {u, v}

• one fact R(●) where “●” is a special symbol
• one null �u and fact R(�u) for every node u of G with domain

dom(�u) = {u, ●}

→ We have that #VC(G) = #Comp(q)(DG)

• In other words, here every sjfBCQ is hard...

19 / 28

Example 2: completions, naïve, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

• q = R(x) is a hard pattern! Reduction from counting the
number of vertex covers of a graph
→ on input graph G = (V ,E), construct database DG having:

• one null �e and fact R(�e) for every edge e = {u, v} of G with
domain dom(�e) = {u, v}

• one fact R(●) where “●” is a special symbol
• one null �u and fact R(�u) for every node u of G with domain

dom(�u) = {u, ●}

→ We have that #VC(G) = #Comp(q)(DG)

• In other words, here every sjfBCQ is hard...

19 / 28

Example 2: completions, naïve, Codd

Now consider counting completions for Codd databases (all nulls
are distinct), non-uniform

• q = R(x) is a hard pattern! Reduction from counting the
number of vertex covers of a graph
→ on input graph G = (V ,E), construct database DG having:

• one null �e and fact R(�e) for every edge e = {u, v} of G with
domain dom(�e) = {u, v}

• one fact R(●) where “●” is a special symbol
• one null �u and fact R(�u) for every node u of G with domain

dom(�u) = {u, ●}

→ We have that #VC(G) = #Comp(q)(DG)

• In other words, here every sjfBCQ is hard...

19 / 28

The hard patterns

Counting valuations Counting completions

Non-uniform Uniform Non-uniform Uniform

Naïve R(x , x)
R(x) ∧ S(x)

R(x , x)
R(x) ∧ S(x , y) ∧T (y)
R(x , y) ∧ S(x , y)

R(x) R(x , x)
R(x , y)

Codd R(x) ∧ S(x) R(x) ∧ S(x , y) ∧T (y)
?

R(x) R(x , x)
R(x , y)

→ Valuations, non-uniform, Codd: each variable occurs in at
most one atom

→ Completions, uniform (naïve or Codd): all the atoms are unary

(So. . . not much is tractable)

20 / 28

The hard patterns

Counting valuations Counting completions

Non-uniform Uniform Non-uniform Uniform

Naïve R(x , x)
R(x) ∧ S(x)

R(x , x)
R(x) ∧ S(x , y) ∧T (y)
R(x , y) ∧ S(x , y)

R(x) R(x , x)
R(x , y)

Codd R(x) ∧ S(x) R(x) ∧ S(x , y) ∧T (y)
?

R(x) R(x , x)
R(x , y)

→ Valuations, non-uniform, Codd: each variable occurs in at
most one atom

→ Completions, uniform (naïve or Codd): all the atoms are unary

(So. . . not much is tractable)

20 / 28

The hard patterns

Counting valuations Counting completions

Non-uniform Uniform Non-uniform Uniform

Naïve R(x , x)
R(x) ∧ S(x)

R(x , x)
R(x) ∧ S(x , y) ∧T (y)
R(x , y) ∧ S(x , y)

R(x) R(x , x)
R(x , y)

Codd R(x) ∧ S(x) R(x) ∧ S(x , y) ∧T (y)
?

R(x) R(x , x)
R(x , y)

→ Valuations, non-uniform, Codd: each variable occurs in at
most one atom

→ Completions, uniform (naïve or Codd): all the atoms are unary

(So. . . not much is tractable)

20 / 28

The hard patterns

Counting valuations Counting completions

Non-uniform Uniform Non-uniform Uniform

Naïve R(x , x)
R(x) ∧ S(x)

R(x , x)
R(x) ∧ S(x , y) ∧T (y)
R(x , y) ∧ S(x , y)

R(x) R(x , x)
R(x , y)

Codd R(x) ∧ S(x) R(x) ∧ S(x , y) ∧T (y)
?

R(x) R(x , x)
R(x , y)

→ Valuations, non-uniform, Codd: each variable occurs in at
most one atom

→ Completions, uniform (naïve or Codd): all the atoms are unary

(So. . . not much is tractable)

20 / 28

The hard patterns

Counting valuations Counting completions

Non-uniform Uniform Non-uniform Uniform

Naïve R(x , x)
R(x) ∧ S(x)

R(x , x)
R(x) ∧ S(x , y) ∧T (y)
R(x , y) ∧ S(x , y)

R(x) R(x , x)
R(x , y)

Codd R(x) ∧ S(x) R(x) ∧ S(x , y) ∧T (y)
?

R(x) R(x , x)
R(x , y)

→ Valuations, non-uniform, Codd: each variable occurs in at
most one atom

→ Completions, uniform (naïve or Codd): all the atoms are unary

(So. . . not much is tractable)

20 / 28

The hard patterns

Counting valuations Counting completions

Non-uniform Uniform Non-uniform Uniform

Naïve R(x , x)
R(x) ∧ S(x)

R(x , x)
R(x) ∧ S(x , y) ∧T (y)
R(x , y) ∧ S(x , y)

R(x) R(x , x)
R(x , y)

Codd R(x) ∧ S(x) R(x) ∧ S(x , y) ∧T (y)
?

R(x) R(x , x)
R(x , y)

→ Valuations, non-uniform, Codd: each variable occurs in at
most one atom

→ Completions, uniform (naïve or Codd): all the atoms are unary

(So. . . not much is tractable)

20 / 28

The hard patterns

Counting valuations Counting completions

Non-uniform Uniform Non-uniform Uniform

Naïve R(x , x)
R(x) ∧ S(x)

R(x , x)
R(x) ∧ S(x , y) ∧T (y)
R(x , y) ∧ S(x , y)

R(x) R(x , x)
R(x , y)

Codd R(x) ∧ S(x) R(x) ∧ S(x , y) ∧T (y)
?

R(x) R(x , x)
R(x , y)

→ Valuations, non-uniform, Codd: each variable occurs in at
most one atom

→ Completions, uniform (naïve or Codd): all the atoms are unary

(So. . . not much is tractable)

20 / 28

The hard patterns

Counting valuations Counting completions

Non-uniform Uniform Non-uniform Uniform

Naïve R(x , x)
R(x) ∧ S(x)

R(x , x)
R(x) ∧ S(x , y) ∧T (y)
R(x , y) ∧ S(x , y)

R(x) R(x , x)
R(x , y)

Codd R(x) ∧ S(x) R(x) ∧ S(x , y) ∧T (y)
?

R(x) R(x , x)
R(x , y)

→ Valuations, non-uniform, Codd: each variable occurs in at
most one atom

→ Completions, uniform (naïve or Codd): all the atoms are unary

(So. . . not much is tractable)

20 / 28

The hard patterns

Counting valuations Counting completions

Non-uniform Uniform Non-uniform Uniform

Naïve R(x , x)
R(x) ∧ S(x)

R(x , x)
R(x) ∧ S(x , y) ∧T (y)
R(x , y) ∧ S(x , y)

R(x) R(x , x)
R(x , y)

Codd R(x) ∧ S(x) R(x) ∧ S(x , y) ∧T (y)
?

R(x) R(x , x)
R(x , y)

→ Valuations, non-uniform, Codd: each variable occurs in at
most one atom

→ Completions, uniform (naïve or Codd): all the atoms are unary

(So. . . not much is tractable)

20 / 28

The hard patterns

Counting valuations Counting completions

Non-uniform Uniform Non-uniform Uniform

Naïve R(x , x)
R(x) ∧ S(x)

R(x , x)
R(x) ∧ S(x , y) ∧T (y)
R(x , y) ∧ S(x , y)

R(x) R(x , x)
R(x , y)

Codd R(x) ∧ S(x) R(x) ∧ S(x , y) ∧T (y)
?

R(x) R(x , x)
R(x , y)

→ Valuations, non-uniform, Codd: each variable occurs in at
most one atom

→ Completions, uniform (naïve or Codd): all the atoms are unary

(So. . . not much is tractable)

20 / 28

Counting valuations vs. counting
completions

When are our problems in #P?

• For a Boolean query q, let MC(q) denote the model checking
problem for q

Fact

If MC(q) is PTIME then #Val(q) is in #P.

• for counting valuations of sjfBCQs, we had dichotomies
between PTIME and #P-completeness

What about counting completions? In general when MC(q) is
PTIME, is #Comp(q) in #P? Unlikely:

Proposition

There exists an sjfBCQ q such that #Comp(q) is not in
#P unless NP ⊆ SPP

21 / 28

When are our problems in #P?

• For a Boolean query q, let MC(q) denote the model checking
problem for q

Fact

If MC(q) is PTIME then #Val(q) is in #P.

• for counting valuations of sjfBCQs, we had dichotomies
between PTIME and #P-completeness

What about counting completions? In general when MC(q) is
PTIME, is #Comp(q) in #P?

Unlikely:

Proposition

There exists an sjfBCQ q such that #Comp(q) is not in
#P unless NP ⊆ SPP

21 / 28

When are our problems in #P?

• For a Boolean query q, let MC(q) denote the model checking
problem for q

Fact

If MC(q) is PTIME then #Val(q) is in #P.

• for counting valuations of sjfBCQs, we had dichotomies
between PTIME and #P-completeness

What about counting completions? In general when MC(q) is
PTIME, is #Comp(q) in #P? Unlikely:

Proposition

There exists an sjfBCQ q such that #Comp(q) is not in
#P unless NP ⊆ SPP

21 / 28

A natural complexity class for counting completions (1/2)

• A counting problem A is in SpanP if there exists a
nondeterministic transducer M (= Turing machine with output
tape) running in polynomial time such that, on input x , the
number of distinct outputs for M(x) is equal to A(x)

→ Clearly #P ⊆ SpanP, but we have #P = SpanP if and only if
NP = UP (Köbler et al. [Acta Informatica’89])

→ A complete problem for SpanP: INPUT: a 3-CNF ϕ and
integer k; OUTPUT: the number of assignments of the first k
variables that can be extended to a satisfying assignment of ϕ

→ (A problem in SpanP but unknown to be complete for it:
INPUT: a graph G ; OUTPUT: the number of Hamiltonian
subgraphs of G)

22 / 28

A natural complexity class for counting completions (1/2)

• A counting problem A is in SpanP if there exists a
nondeterministic transducer M (= Turing machine with output
tape) running in polynomial time such that, on input x , the
number of distinct outputs for M(x) is equal to A(x)
→ Clearly #P ⊆ SpanP, but we have #P = SpanP if and only if

NP = UP (Köbler et al. [Acta Informatica’89])

→ A complete problem for SpanP: INPUT: a 3-CNF ϕ and
integer k; OUTPUT: the number of assignments of the first k
variables that can be extended to a satisfying assignment of ϕ

→ (A problem in SpanP but unknown to be complete for it:
INPUT: a graph G ; OUTPUT: the number of Hamiltonian
subgraphs of G)

22 / 28

A natural complexity class for counting completions (1/2)

• A counting problem A is in SpanP if there exists a
nondeterministic transducer M (= Turing machine with output
tape) running in polynomial time such that, on input x , the
number of distinct outputs for M(x) is equal to A(x)
→ Clearly #P ⊆ SpanP, but we have #P = SpanP if and only if

NP = UP (Köbler et al. [Acta Informatica’89])
→ A complete problem for SpanP: INPUT: a 3-CNF ϕ and

integer k ; OUTPUT: the number of assignments of the first k
variables that can be extended to a satisfying assignment of ϕ

→ (A problem in SpanP but unknown to be complete for it:
INPUT: a graph G ; OUTPUT: the number of Hamiltonian
subgraphs of G)

22 / 28

A natural complexity class for counting completions (1/2)

• A counting problem A is in SpanP if there exists a
nondeterministic transducer M (= Turing machine with output
tape) running in polynomial time such that, on input x , the
number of distinct outputs for M(x) is equal to A(x)
→ Clearly #P ⊆ SpanP, but we have #P = SpanP if and only if

NP = UP (Köbler et al. [Acta Informatica’89])
→ A complete problem for SpanP: INPUT: a 3-CNF ϕ and

integer k ; OUTPUT: the number of assignments of the first k
variables that can be extended to a satisfying assignment of ϕ

→ (A problem in SpanP but unknown to be complete for it:
INPUT: a graph G ; OUTPUT: the number of Hamiltonian
subgraphs of G)

22 / 28

A natural complexity class for counting completions (2/2)

Fact

If MC(q) is PTIME then #Comp(q) is in SpanP.

Proposition

There exists a sjfBCQ q such that #Comp(¬q) is
SpanP-complete.

[WARNING: hardness for SpanP is defined in terms of
parsimonious reductions (while #P-completeness is usually defined
with Turing reductions)]

For Codd tables we can still show membership in #P:

Proposition

For Codd tables, if MC(q) is PTIME then #Comp(q) is in #P

23 / 28

A natural complexity class for counting completions (2/2)

Fact

If MC(q) is PTIME then #Comp(q) is in SpanP.

Proposition

There exists a sjfBCQ q such that #Comp(¬q) is
SpanP-complete.

[WARNING: hardness for SpanP is defined in terms of
parsimonious reductions (while #P-completeness is usually defined
with Turing reductions)]

For Codd tables we can still show membership in #P:

Proposition

For Codd tables, if MC(q) is PTIME then #Comp(q) is in #P

23 / 28

A natural complexity class for counting completions (2/2)

Fact

If MC(q) is PTIME then #Comp(q) is in SpanP.

Proposition

There exists a sjfBCQ q such that #Comp(¬q) is
SpanP-complete.

[WARNING: hardness for SpanP is defined in terms of
parsimonious reductions (while #P-completeness is usually defined
with Turing reductions)]

For Codd tables we can still show membership in #P:

Proposition

For Codd tables, if MC(q) is PTIME then #Comp(q) is in #P

23 / 28

A natural complexity class for counting completions (2/2)

Fact

If MC(q) is PTIME then #Comp(q) is in SpanP.

Proposition

There exists a sjfBCQ q such that #Comp(¬q) is
SpanP-complete.

[WARNING: hardness for SpanP is defined in terms of
parsimonious reductions (while #P-completeness is usually defined
with Turing reductions)]

For Codd tables we can still show membership in #P:

Proposition

For Codd tables, if MC(q) is PTIME then #Comp(q) is in #P

23 / 28

Approximations

My counting problem is very
much intractable :(

→ Try Fully Polynomial-time Randomized Approximation Scheme!

24 / 28

Fully Polynomial-time Randomized Approximation Scheme!

Definition (FPRAS)
Let Σ be a finite alphabet and f ∶ Σ∗ → N be a counting problem.
Then f is said to have an FPRAS if there is a randomized
algorithm A ∶ Σ∗ × (0,1) → N and a polynomial p(u, v) such that,
given x ∈ Σ∗ and ε ∈ (0,1), algorithm A runs in time p(∣x ∣, 1/ε)
and satisfies the following condition:

Pr (∣f (x) −A(x , ε)∣ ≤ εf (x)) ≥ 3
4
.

Note: the property of having an FPRAS is closed under
polynomial-time parsimonious reductions (i.e., if we have an
FPRAS for a counting problem A and for counting problem B we
have that B ≤p A, then we also have an FPRAS for B).

25 / 28

Fully Polynomial-time Randomized Approximation Scheme!

Definition (FPRAS)
Let Σ be a finite alphabet and f ∶ Σ∗ → N be a counting problem.
Then f is said to have an FPRAS if there is a randomized
algorithm A ∶ Σ∗ × (0,1) → N and a polynomial p(u, v) such that,
given x ∈ Σ∗ and ε ∈ (0,1), algorithm A runs in time p(∣x ∣, 1/ε)
and satisfies the following condition:

Pr (∣f (x) −A(x , ε)∣ ≤ εf (x)) ≥ 3
4
.

Note: the property of having an FPRAS is closed under
polynomial-time parsimonious reductions (i.e., if we have an
FPRAS for a counting problem A and for counting problem B we
have that B ≤p A, then we also have an FPRAS for B).

25 / 28

FPRAS for counting valuations

Proposition

For every Boolean UCQ q, the problem #Val(q) has a FPRAS

Proof: via SpanL. SpanL = there exists an NL transducer with
write-only output tape such that the result is the number of
distinct outputs

Theorem (Arenas et al. [PODS’19])
Every problem in SpanL has an FPRAS

Fact

For every Boolean UCQ q, the problem #Val(q) is in SpanL

26 / 28

FPRAS for counting valuations

Proposition

For every Boolean UCQ q, the problem #Val(q) has a FPRAS

Proof: via SpanL. SpanL = there exists an NL transducer with
write-only output tape such that the result is the number of
distinct outputs

Theorem (Arenas et al. [PODS’19])
Every problem in SpanL has an FPRAS

Fact

For every Boolean UCQ q, the problem #Val(q) is in SpanL

26 / 28

FPRAS for counting valuations

Proposition

For every Boolean UCQ q, the problem #Val(q) has a FPRAS

Proof: via SpanL. SpanL = there exists an NL transducer with
write-only output tape such that the result is the number of
distinct outputs

Theorem (Arenas et al. [PODS’19])
Every problem in SpanL has an FPRAS

Fact

For every Boolean UCQ q, the problem #Val(q) is in SpanL

26 / 28

FPRAS for counting completions?

Theorem (Dyer et al. [SICOMP’2002])
Counting vertex covers has no FPRAS unless NP = RP

• Our reduction from #VC for Codd tables to
#Comp(∃x R(x)) was parsimonious

• Our reduction for the notion of pattern is also parsimonious

→ Therefore #Comp(q) restricted to Codd tables for any sjfBCQ
has no FPRAS unless NP = RP

What about the uniform setting? We prove that for naïve tables,
uniform setting, #Comp(q) has no FPRAS if q contains a
non-unary symbol (otherwise it is PTIME)

• For uniform Codd tables, we do not know

27 / 28

FPRAS for counting completions?

Theorem (Dyer et al. [SICOMP’2002])
Counting vertex covers has no FPRAS unless NP = RP

• Our reduction from #VC for Codd tables to
#Comp(∃x R(x)) was parsimonious

• Our reduction for the notion of pattern is also parsimonious

→ Therefore #Comp(q) restricted to Codd tables for any sjfBCQ
has no FPRAS unless NP = RP

What about the uniform setting? We prove that for naïve tables,
uniform setting, #Comp(q) has no FPRAS if q contains a
non-unary symbol (otherwise it is PTIME)

• For uniform Codd tables, we do not know

27 / 28

Conclusion

To sum up:

• Counting valuations and completions is hard, even in very
restricted settings (uniform Codd tables)

• But counting valuations has a FPRAS for UCQs

• While counting completions does not

• SpanP is the right class to consider for problems of the
form #Comp(q)

• If you liked it, we have a lot of cute reductions in the paper :)

Thanks for your attention!

28 / 28

Bibliography i

Marcelo Arenas, Pablo Barceló, and Mikaël Monet.
Counting Problems over Incomplete Databases.
In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 165–177,
2020.

Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram,
and Cristian Riveros.
Efficient logspace classes for enumeration, counting, and
uniform generation.
In PODS, pages 59–73, 2019.

Martin Dyer, Alan Frieze, and Mark Jerrum.
On counting independent sets in sparse graphs.
SIAM J. on Computing, 31(5):1527–1541, 2002.

https://arxiv.org/abs/1912.11064
https://arxiv.org/abs/1906.09226
https://arxiv.org/abs/1906.09226
http://yaroslavvb.com/papers/dyer-on.pdf

Bibliography ii

Johannes Köbler, Uwe Schöning, and Jacobo Torán.
On counting and approximation.
Acta Informatica, 26(4):363–379, 1989.

Leonid Libkin.
Certain Answers Meet Zero-One Laws.
In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 195–207,
2018.

https://www.researchgate.net/publication/226508658_On_counting_and_approximation
https://homepages.inf.ed.ac.uk/libkin/papers/pods18.pdf

	The dichotomies for exact counting
	Counting valuations vs. counting completions
	Approximations
	Appendix

