Counting Problems over Incomplete Databases

Mikaël Monet Formal Methods team seminar at LaBRI Setpember 29th, 2020 [2012–2015] Engineering school in Nancy [2015–2018] PhD in Paris (*Télécom ParisTech*) with Pierre Senellart and Antoine Amarilli

 $\rightarrow\,$ Database theory, uncertain data management

[2019–August 2020] Postdoctorate in Santiago de Chile (*IMFD*) with Pablo Barceló

> → Database theory, uncertain data management, logical aspects of machine learning, complexity of explainability tasks (AI)

[September] Off

[1st October] Research position at Inria Lille, team LINKS

- Traditional database research assumes that the data is reliable, complete, clean...
- But real life data is often uncertain, untrustworthy, missing, inconsistent, etc.

- Traditional database research assumes that the data is reliable, complete, clean...
- But real life data is often uncertain, untrustworthy, missing, inconsistent, etc.
 - → imperfect sensor precision, error-prone automatic information extraction processes, data integration from multiple sources, missing information
- We could simply clean the data and remove every uncertain data item

- Traditional database research assumes that the data is reliable, complete, clean...
- But real life data is often uncertain, untrustworthy, missing, inconsistent, etc.
 - → imperfect sensor precision, error-prone automatic information extraction processes, data integration from multiple sources, missing information
- We could simply clean the data and remove every uncertain data item
- But what if we actually need/want to acknowledge this uncertainty? (e.g, if querying the data without taking the uncertainty into account could lead to incorrect answers)

- Traditional database research assumes that the data is reliable, complete, clean...
- But real life data is often uncertain, untrustworthy, missing, inconsistent, etc.
 - → imperfect sensor precision, error-prone automatic information extraction processes, data integration from multiple sources, missing information
- We could simply clean the data and remove every uncertain data item
- But what if we actually need/want to acknowledge this uncertainty? (e.g, if querying the data without taking the uncertainty into account could lead to incorrect answers)
- \rightarrow Need to develop theories, tools, etc. to be able to represent and query such uncertain data
 - → This is uncertain data management!

Lots of existing frameworks to represent and query uncertain data:

- Bayesian networks
- Markov random fields
- Graphical models
- Possibility theory, fuzzy logic, etc.

In this talk, focus on frameworks for relational databases:

- Probabilistic databases
- Incomplete databases

• **Probabilistic databases**: to **quantitatively** represent and reason about data uncertainty

• **Probabilistic databases**: to **quantitatively** represent and reason about data uncertainty

 \rightarrow simplest formalism: tuple-independent database

	Lik	π	
	Alice	Bob	0.5
<i>D</i> =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

• **Probabilistic databases**: to **quantitatively** represent and reason about data uncertainty

 $\rightarrow\,$ simplest formalism: tuple-independent database

	Likes		π
_			0.5
D' =	Alice	John	1
			0.2
	John	Bob	0.7

• Probabilistic databases: to quantitatively represent and reason about data uncertainty

 $\rightarrow\,$ simplest formalism: tuple-independent database

	Lik	π	
			0.5
D' =	Alice	John	1
			0.2
	John	Bob	0.7

 $\Pr(D') = (1 - 0.5) \times 1 \times (1 - 0.2) \times 0.7$

• Probabilistic databases: to quantitatively represent and reason about data uncertainty

 $\rightarrow\,$ simplest formalism: tuple-independent database

	Lik	π	
	Alice	Bob	0.5
<i>D</i> =	Alice John		1
	Bob	Bob	0.2
	John	Bob	0.7

q = "there are two people who
like the same person"

• Probabilistic databases: to quantitatively represent and reason about data uncertainty

 \rightarrow simplest formalism: tuple-independent database

	Lik	π	
	Alice	Bob	0.5
<i>D</i> =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

q = ``there are two people wholike the same person'' $\exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$

• Probabilistic databases: to quantitatively represent and reason about data uncertainty

 $\rightarrow\,$ simplest formalism: tuple-independent database

	Lik	π	
	Alice	Bob	0.5
<i>D</i> =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

 $\begin{aligned} q &= \text{``there are two people who} \\ \text{like the same person''} \\ \exists x, y, z : L(x, z) \land L(y, z) \land x \neq y \end{aligned}$

 $\Pr((D, \pi) \vDash q) = \sum_{\substack{D' \subseteq D \\ D \vDash q}} \Pr(D')$

• Probabilistic databases: to quantitatively represent and reason about data uncertainty

 $\rightarrow\,$ simplest formalism: tuple-independent database

		Lik	π	
		Alice	Bob	0.5
D	=	Alice	John	1
		Bob	Bob	0.2
		John	Bob	0.7

q = ``there are two people wholike the same person'' $\exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$

$$\Pr((D,\pi) \vDash q) = \sum_{\substack{D' \subseteq D \\ D \vDash q}} \Pr(D')$$

(not efficient)

• Probabilistic databases: to quantitatively represent and reason about data uncertainty

 $\rightarrow\,$ simplest formalism: tuple-independent database

		Lik	π	
		Alice	Bob	0.5
D	=	Alice	John	1
		Bob	Bob	0.2
		John	Bob	0.7

q = ``there are two people wholike the same person'' $\exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$

 $\Pr((D, \pi) \vDash q) = 0.5 \times [1 - (1 - 0.2)(1 - 0.7)]$

• Probabilistic databases: to quantitatively represent and reason about data uncertainty

 $\rightarrow\,$ simplest formalism: tuple-independent database

	Lik	π	
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

q = ``there are two people wholike the same person'' $\exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$

 $\Pr((D, \pi) \vDash q) = 0.5 \times [1 - (1 - 0.2)(1 - 0.7)]$

 $+(1-0.5)\times[0.2\times0.7]$

Incomplete databases: example

• Probabilistic databases: nice, but this is not what is used in practice most of the time...

ProductId	ProductName	Price	Color	Localisation
439	Printer	\$100	NULL	Paris center
782	Mouse	\$10	red	NULL
398	Mouse	\$30	red	Miami center

CustomerId	Name	Phone number	Gender	Address
6	Bob	NULL	male	36 main street
76	Mary	551780726	NULL	NULL

Incomplete databases: example

• Probabilistic databases: nice, but this is not what is used in practice most of the time...

ProductId	ProductName	Price	Color	Localisation
439	Printer	\$100	NULL	Paris center
782	Mouse	\$10	red	NULL
398	Mouse	\$30	red	Miami center

CustomerId	Name	Phone number	Gender	Address
6	Bob	NULL	male	36 main street
76	Mary	551780726	NULL	NULL

→ Incomplete databases: relational databases with missing values

- **Default approach** of database theorists for querying incomplete data: certain answers
 - for a valuation ν of the nulls of D into constants, let us write ν(D) the corresponding complete database

- **Default approach** of database theorists for querying incomplete data: certain answers
 - for a valuation ν of the nulls of D into constants, let us write ν(D) the corresponding complete database

		R	9	5
D =	а	b	\perp_1	b
	Ь	\perp_1	b	\perp_2

- **Default approach** of database theorists for querying incomplete data: certain answers
 - for a valuation ν of the nulls of D into constants, let us write ν(D) the corresponding complete database

$\nu: \bot_1 \mapsto c, \bot_2 \mapsto a$

- **Default approach** of database theorists for querying incomplete data: certain answers
 - for a valuation ν of the nulls of D into constants, let us write ν(D) the corresponding complete database

ĸ		S	
b	с	b	$\nu: \bot_1 \mapsto c, \bot_2 \mapsto a$
С	Ь	а	
		,	

- **Default approach** of database theorists for querying incomplete data: certain answers
 - for a valuation ν of the nulls of D into constants, let us write ν(D) the corresponding complete database

		R	9	5
D =	а	b	\perp_1	b
	Ь	\perp_1	b	\perp_2

- **Default approach** of database theorists for querying incomplete data: certain answers
 - for a valuation ν of the nulls of D into constants, let us write ν(D) the corresponding complete database
 - → a tuple \bar{a} is a certain answer of $q(\bar{x})$ over the incomplete database D if for every valuation ν of the nulls of D, we have $\bar{a} \in q(\nu(D))$

		R	9	5
D =	а	b	\perp_1	b
	Ь	\perp_1	b	⊥2

- **Default approach** of database theorists for querying incomplete data: certain answers
 - for a valuation ν of the nulls of D into constants, let us write ν(D) the corresponding complete database
 - → a tuple \bar{a} is a certain answer of $q(\bar{x})$ over the incomplete database D if for every valuation ν of the nulls of D, we have $\bar{a} \in q(\nu(D))$

		R		Ş	5
<i>D</i> =	а	b		\perp_1	b
	Ь	\perp_1		b	⊥2

$$q(x) = \exists y, z : R(x, y) \land S(y, z)$$

- **Default approach** of database theorists for querying incomplete data: certain answers
 - for a valuation ν of the nulls of D into constants, let us write ν(D) the corresponding complete database
 - → a tuple \bar{a} is a certain answer of $q(\bar{x})$ over the incomplete database D if for every valuation ν of the nulls of D, we have $\bar{a} \in q(\nu(D))$

Example (from now on, nulls are *named* and represented with \perp):

	R		5	6
D =	а	b	\perp_1	b
	b	\perp_1	b	⊥2

 $q(x) = \exists y, z : R(x, y) \land S(y, z)$ Certain answers: (a) and (b)

- **Default approach** of database theorists for querying incomplete data: certain answers
 - for a valuation ν of the nulls of D into constants, let us write ν(D) the corresponding complete database
 - → a tuple \bar{a} is a certain answer of $q(\bar{x})$ over the incomplete database D if for every valuation ν of the nulls of D, we have $\bar{a} \in q(\nu(D))$

		R		S	q'(x) = R(x, x)
D =	а	b	\perp_1	b	9 (//) //(//,//)
	b	\perp_1	b	\perp_2	

- **Default approach** of database theorists for querying incomplete data: certain answers
 - for a valuation ν of the nulls of D into constants, let us write ν(D) the corresponding complete database
 - → a tuple \bar{a} is a certain answer of $q(\bar{x})$ over the incomplete database D if for every valuation ν of the nulls of D, we have $\bar{a} \in q(\nu(D))$

Example (from now on, nulls are *named* and represented with \perp):

R			S	q'(x)
D =	a k	b \perp_1	Ь	No c
	b ⊥	<u>b</u>	⊥2	

q'(x) = R(x,x)No certain answer :(

 $\rightarrow\,$ We could return possible answers... Not very informative

- $\rightarrow\,$ We could return possible answers... Not very informative
- \rightarrow Recently, Libkin [PODS'18] proposes the notion of better answers
 - a tuple \bar{a} is a *better answer* than another tuple \bar{b} if $\{\nu \mid \bar{b} \in q(D)\} \subseteq \{\nu \mid \bar{a} \in q(D)\}$

- $\rightarrow\,$ We could return possible answers... Not very informative
- \rightarrow Recently, Libkin [PODS'18] proposes the notion of better answers
- a tuple \bar{a} is a *better answer* than another tuple \bar{b} if $\{\nu \mid \bar{b} \in q(D)\} \subseteq \{\nu \mid \bar{a} \in q(D)\}$
 - \rightarrow induces a notion of **best answer**
 - → also, we can compare (some) tuples

To compare all the tuples, why not study the associated counting problems?

To compare all the tuples, why not study the associated counting problems?

- → "How many valuations ν are such that $\bar{a} \in q(\nu(D))$?"
- → "How many distinct databases of the form $\nu(D)$ are such that $\bar{a} \in q(\nu(D))$?"

To compare all the tuples, why not study the associated counting problems?

- \rightarrow "How many valuations ν are such that $\bar{a} \in q(\nu(D))?"$
- → "How many distinct databases of the form $\nu(D)$ are such that $\bar{a} \in q(\nu(D))$?"
 - \rightarrow we can compare *all* tuples
 - → we can answer queries quantitatively (similar to probabilistic databases)

To compare all the tuples, why not study the associated counting problems?

- \rightarrow "How many valuations ν are such that $\bar{a} \in q(\nu(D))?"$
- → "How many distinct databases of the form $\nu(D)$ are such that $\bar{a} \in q(\nu(D))$?"
 - \rightarrow we can compare *all* tuples
 - → we can answer queries quantitatively (similar to probabilistic databases)
- \rightarrow This is what we'll do in this talk!

Rest of the talk is based on paper "Counting Problems over Incomplete Databases" [PODS'20] with Marcelo Arenas and Pablo Barceló

- Incomplete databases with named (marked) nulls
- Each null ⊥ comes with its own finite domain dom(⊥); all valuations ν are such that ν(⊥) ∈ dom(⊥)
- ν(D): the (complete) database obtained from D by substituting every null ⊥ by ν(⊥), and then removing duplicate tuples. We call such a database a completion of D

- Incomplete databases with named (marked) nulls
- Each null ⊥ comes with its own finite domain dom(⊥); all valuations ν are such that ν(⊥) ∈ dom(⊥)
- ν(D): the (complete) database obtained from D by substituting every null ⊥ by ν(⊥), and then removing duplicate tuples. We call such a database a completion of D

R

 $D = \bigcup_{\substack{\perp 1 \\ a \\ \perp_2}} \operatorname{dom}(\bot_1) = \{a, b\}, \operatorname{dom}(\bot_2) = \{b, c\}$

- Incomplete databases with named (marked) nulls
- Each null ⊥ comes with its own finite domain dom(⊥); all valuations ν are such that ν(⊥) ∈ dom(⊥)
- ν(D): the (complete) database obtained from D by substituting every null ⊥ by ν(⊥), and then removing duplicate tuples. We call such a database a completion of D

$$D = \underbrace{\downarrow_1 \quad \downarrow_1}_{a \quad \perp_2} \quad \operatorname{dom}(\downarrow_1) = \{a, b\}, \ \operatorname{dom}(\downarrow_2) = \{b, c\}$$
$$\underbrace{a \quad \downarrow_2}_{\nu = \{\downarrow_1 \mapsto b, \downarrow_2 \mapsto c\}} \rightarrow \nu(D) = \{R(b, b), R(a, c)\}$$

- Incomplete databases with named (marked) nulls
- Each null ⊥ comes with its own finite domain dom(⊥); all valuations ν are such that ν(⊥) ∈ dom(⊥)
- ν(D): the (complete) database obtained from D by substituting every null ⊥ by ν(⊥), and then removing duplicate tuples. We call such a database a completion of D

R

$$D = \underbrace{\downarrow_1 \quad \downarrow_1}_{a \quad \perp_2} \quad \operatorname{dom}(\downarrow_1) = \{a, b\}, \ \operatorname{dom}(\downarrow_2) = \{b, c\}$$
$$= \underbrace{\downarrow_1 \quad \mapsto \quad b, \downarrow_2 \mapsto \quad c\} \quad \rightarrow \quad \nu(D) = \{R(b, b), R(a, c)\}$$

 $\nu = \{ \bot_1 \mapsto a, \bot_2 \mapsto a \} \quad \rightarrow \quad \nu(D) = \{ R(a, a) \}$

Problems studied

• Fix a Boolean query q

Definition: problem #Val(q)

Input: an incomplete database *D*, together with *finite* domains dom(\perp) for each null of *D* **Output**: the number of valuations ν such that $\nu(D) \vDash q$

Problems studied

• Fix a Boolean query q

Definition: problem #Val(q)

Input: an incomplete database *D*, together with *finite* domains dom(\perp) for each null of *D* **Output**: the number of valuations ν such that $\nu(D) \vDash q$

Definition: problem #Comp(q)

Input: an incomplete database *D*, together with *finite* domains dom(\perp) for each null of *D* **Output**: the number of *completions* $\nu(D)$ such that $\nu(D) \vDash q$

• Example: $D = \{S(a, b), S(\bot_1, a), S(a, \bot_2)\},$ dom $(\bot_1) = \{a, b, c\},$ dom $(\bot_2) = \{a, b\}, q = \exists x S(x, x)$

• Example: $D = \{S(a, b), S(\bot_1, a), S(a, \bot_2)\},$ dom $(\bot_1) = \{a, b, c\},$ dom $(\bot_2) = \{a, b\}, q = \exists x S(x, x)$

$(\nu(\perp_1),\nu(\perp_2))$	(<i>a</i> , <i>a</i>)	(a, b)	(b,a)	(b, b)	(c,a)	(<i>c</i> , <i>b</i>)
$\nu(D)$						
	S	S	S	S	S	S
	a b	a b	a b	a b	a b	a b
	a a	a a	b a	b a	с а	c a
			a a		a a	
$\nu(D) \vDash Q?$	Yes	Yes	Yes	No	Yes	No

• Example: $D = \{S(a, b), S(\bot_1, a), S(a, \bot_2)\},$ dom $(\bot_1) = \{a, b, c\},$ dom $(\bot_2) = \{a, b\}, q = \exists x S(x, x)$

$(\nu(\perp_1),\nu(\perp_2))$	(<i>a</i> , <i>a</i>)	(a, b)	(b,a)	(b,b)	(c,a)	(<i>c</i> , <i>b</i>)
$\nu(D)$						
	S	S	S	S	S	S
	a b	a b	a b	a b	a b	a b
	a a	a a	b a	b a	c a	c a
			a a		a a	
$\nu(D) \vDash Q?$	Yes	Yes	Yes	No	Yes	No

4 satisfying valuations, 3 satisfying completions

• Example: $D = \{S(a, b), S(\bot_1, a), S(a, \bot_2)\},$ dom $(\bot_1) = \{a, b, c\},$ dom $(\bot_2) = \{a, b\}, q = \exists x S(x, x)$

$(\nu(\perp_1),\nu(\perp_2))$	(<i>a</i> , <i>a</i>)	(a, b)	(b,a)	(b,b)	(c,a)	(<i>c</i> , <i>b</i>)
$\nu(D)$						
	S	S	S	S	S	S
	a b	a b	a b	a b	a b	a b
	a a	a a	b a	b a	c a	c a
			a a		a a	
$\nu(D) \vDash Q?$	Yes	Yes	Yes	No	Yes	No

4 satisfying valuations, 3 satisfying completions

→ Study the complexity of these problems depending on q (data complexity). Obtain dichotomies? Can we efficiently approximate the number of solutions? Etc.

We also study the settings where:

- all labeled nulls are distinct (*Codd tables*; by contrast to *naïve tables*)
- all nulls share the same domain (uniform setting)

→ In total we consider 8 different settings ({#Val, #Comp} × {naïve/Codd} × {non-uniform/uniform}) We also study the settings where:

- all labeled nulls are distinct (*Codd tables*; by contrast to *naïve tables*)
- all nulls share the same domain (*uniform setting*)

- → In total we consider 8 different settings ({#Val, #Comp} × {naïve/Codd} × {non-uniform/uniform})
 - We focus only on self-join free Boolean conjunctive queries (sjfBCQs)

The dichotomies for exact counting

Counting valuations vs. counting completions

Approximations

The dichotomies for exact counting

Definition: pattern

A sjfBCQ q' is a pattern of another sjfBCQ q if q' can be obtained from q by deleting atoms or variable occurrences, and then reordering the variables inside the atoms and renaming (injectively) the variables and relation names

Definition: pattern

A sjfBCQ q' is a pattern of another sjfBCQ q if q' can be obtained from q by deleting atoms or variable occurrences, and then reordering the variables inside the atoms and renaming (injectively) the variables and relation names

Example: (from now on all variables are existentially quantified) $q' = R'(u, u, y) \land S(z)$ is a pattern of $q = R(u, x, u) \land S(y, y) \land T(x, s, z, s)$

Definition: pattern

A sjfBCQ q' is a pattern of another sjfBCQ q if q' can be obtained from q by deleting atoms or variable occurrences, and then reordering the variables inside the atoms and renaming (injectively) the variables and relation names

Example: (from now on all variables are existentially quantified) $q' = R'(u, u, y) \land S(z)$ is a pattern of $q = R(u, x, u) \land S(y, y) \land T(x, s, z, s)$

 $\rightarrow R(u, x, u) \land S(y, y)$ (delete third atom)

Definition: pattern

A sjfBCQ q' is a pattern of another sjfBCQ q if q' can be obtained from q by deleting atoms or variable occurrences, and then reordering the variables inside the atoms and renaming (injectively) the variables and relation names

Example: (from now on all variables are existentially quantified) $q' = R'(u, u, y) \land S(z)$ is a pattern of $q = R(u, x, u) \land S(y, y) \land T(x, s, z, s)$

 $\begin{array}{ll} \rightarrow & R(u,x,u) \land S(y,y) & (\text{delete third atom}) \\ \rightarrow & R(u,x,u) \land S(y) & (\text{delete a variable occurrence}) \end{array}$

Definition: pattern

A sjfBCQ q' is a pattern of another sjfBCQ q if q' can be obtained from q by deleting atoms or variable occurrences, and then reordering the variables inside the atoms and renaming (injectively) the variables and relation names

Example: (from now on all variables are existentially quantified) $q' = R'(u, u, y) \land S(z)$ is a pattern of $q = R(u, x, u) \land S(y, y) \land T(x, s, z, s)$

- $\rightarrow R(u, x, u) \land S(y, y) \qquad (\text{delete third atom})$
- $\rightarrow R(u, x, u) \land S(y)$

 $\rightarrow R(u,u,x) \wedge S(y)$

(delete a variable occurrence)

(reorder variables occurrences)

Definition: pattern

A sjfBCQ q' is a pattern of another sjfBCQ q if q' can be obtained from q by deleting atoms or variable occurrences, and then reordering the variables inside the atoms and renaming (injectively) the variables and relation names

Example: (from now on all variables are existentially quantified) $q' = R'(u, u, y) \land S(z)$ is a pattern of $q = R(u, x, u) \land S(y, y) \land T(x, s, z, s)$

- $\rightarrow R(u,x,u) \wedge S(y,y)$
- $\rightarrow \ R(u,x,u) \wedge S(y)$
- $\rightarrow R(u, u, x) \land S(y)$
- $\rightarrow \ R'(u,u,x) \wedge S(y)$

(delete third atom) (delete a variable occurrence) (reorder variables occurrences) (rename R into R')

Definition: pattern

A sjfBCQ q' is a pattern of another sjfBCQ q if q' can be obtained from q by deleting atoms or variable occurrences, and then reordering the variables inside the atoms and renaming (injectively) the variables and relation names

Example: (from now on all variables are existentially quantified) $q' = R'(u, u, y) \land S(z)$ is a pattern of $q = R(u, x, u) \land S(y, y) \land T(x, s, z, s)$

- $\rightarrow R(u,x,u) \wedge S(y,y)$
- $\rightarrow R(u,x,u) \wedge S(y)$
- $\rightarrow R(u, u, x) \land S(y)$
- $\rightarrow \ R'(u,u,x) \wedge S(y)$
- $\rightarrow \ R'(u,u,y) \wedge S(z)$

(delete third atom)
(delete a variable occurrence)
(reorder variables occurrences)
(rename R into R')
(rename x into y and y into z)

Definition: pattern

A sjfBCQ q' is a pattern of another sjfBCQ q if q' can be obtained from q by deleting atoms or variable occurrences, and then reordering the variables inside the atoms and renaming (injectively) the variables and relation names

Example: (from now on all variables are existentially quantified) $q' = R'(u, u, y) \land S(z)$ is a pattern of $q = R(u, x, u) \land S(y, y) \land T(x, s, z, s)$

- $\rightarrow R(u,x,u) \wedge S(y,y)$
- $\rightarrow R(u,x,u) \wedge S(y)$
- $\rightarrow R(u, u, x) \land S(y)$
- $\rightarrow \ R'(u,u,x) \wedge S(y)$
- $\rightarrow R'(u,u,y) \wedge S(z)$

(delete third atom)
(delete a variable occurrence)
(reorder variables occurrences)
(rename R into R')
(rename x into y and y into z)

Note: reordering and injective renaming are not important, it is just so that we can formally say things like:

- R(x, y) is a pattern of R(y, x); or
- R(x) is a pattern of S(y)
- etc.

Lemma

Let q,q' be sjfBCQs such that q' is a pattern of q. Then we have $\#Val(q') \leq^p \#Val(q)$

Where \leq^{p} denote polynomial-time parsimonious reductions (and the same results holds for counting completions, and also if we restrict to Codd tables and/or to the uniform setting)

Lemma

Let q,q' be sjfBCQs such that q' is a pattern of q. Then we have $\#Val(q') \leq^p \#Val(q)$

Where \leq^{p} denote polynomial-time parsimonious reductions (and the same results holds for counting completions, and also if we restrict to Codd tables and/or to the uniform setting)

 \rightarrow for each of the 8 variants of the problem, find a set of patterns that are hard and such that if a $\rm sjfBCQ$ does not have any of these patterns then the problem is in $\rm PTIME$

Consider counting valuations, naïve setting (named nulls that can appear in multiple places), non-uniform (each null \perp comes with its own domain dom(\perp))

q₁ = R(x,x) is a hard pattern: easy reduction from counting
 3-colorings of a graph (#P-complete)

- q₁ = R(x,x) is a hard pattern: easy reduction from counting
 3-colorings of a graph (#P-complete)
 - → on input undirected graph G = (V, E), construct database D_G containing facts R(⊥_u, ⊥_v) and R(⊥_v, ⊥_u) for every edge {u, v} ∈ E. The domain of every null ⊥ is dom(⊥) = {•, •, •}.

- q₁ = R(x,x) is a hard pattern: easy reduction from counting
 3-colorings of a graph (#P-complete)
 - → on input undirected graph G = (V, E), construct database D_G containing facts R(⊥_u, ⊥_v) and R(⊥_v, ⊥_u) for every edge {u, v} ∈ E. The domain of every null ⊥ is dom(⊥) = {•, •, •}. Then #3Cols(G) = 3^{|V|} #Val(q₁)(D_G)

- q₁ = R(x,x) is a hard pattern: easy reduction from counting
 3-colorings of a graph (#P-complete)
 - → on input undirected graph G = (V, E), construct database D_G containing facts $R(\perp_u, \perp_v)$ and $R(\perp_v, \perp_u)$ for every edge $\{u, v\} \in E$. The domain of every null \perp is dom $(\perp) = \{\bullet, \bullet, \bullet\}$. Then $\#3Cols(G) = 3^{|V|} - \#Val(q_1)(D_G)$
- $q_2 = R(x) \wedge S(x)$ is also a hard pattern (trust me)

- q₁ = R(x,x) is a hard pattern: easy reduction from counting
 3-colorings of a graph (#P-complete)
 - → on input undirected graph G = (V, E), construct database D_G containing facts R(⊥_u, ⊥_v) and R(⊥_v, ⊥_u) for every edge {u, v} ∈ E. The domain of every null ⊥ is dom(⊥) = {•, •, •}. Then #3Cols(G) = 3^{|V|} #Val(q₁)(D_G)
- $q_2 = R(x) \land S(x)$ is also a hard pattern (trust me)
- If a sjfBCQ q does not have q1 or q2 as a pattern then #Val(q) is PTIME. Why?

- q₁ = R(x,x) is a hard pattern: easy reduction from counting 3-colorings of a graph (#P-complete)
 - → on input undirected graph G = (V, E), construct database D_G containing facts R(⊥_u, ⊥_v) and R(⊥_v, ⊥_u) for every edge {u, v} ∈ E. The domain of every null ⊥ is dom(⊥) = {•, •, •}. Then #3Cols(G) = 3^{|V|} #Val(q₁)(D_G)
- $q_2 = R(x) \wedge S(x)$ is also a hard pattern (trust me)
- If a sjfBCQ q does not have q1 or q2 as a pattern then #Val(q) is PTIME. Why?
 - → All variable occurrences are distinct, so every valuation is satisfying

Now consider counting completions for Codd databases (all nulls are distinct), non-uniform

Now consider counting completions for Codd databases (all nulls are distinct), non-uniform

• *q* = *R*(*x*) is a hard pattern! Reduction from counting the number of vertex covers of a graph

Now consider counting completions for Codd databases (all nulls are distinct), non-uniform

- *q* = *R*(*x*) is a hard pattern! Reduction from counting the number of vertex covers of a graph
 - \rightarrow on input graph G = (V, E), construct database D_G having:
 - one null ⊥_e and fact R(⊥_e) for every edge e = {u, v} of G with domain dom(⊥_e) = {u, v}

Now consider counting completions for Codd databases (all nulls are distinct), non-uniform

- *q* = *R*(*x*) is a hard pattern! Reduction from counting the number of vertex covers of a graph
 - \rightarrow on input graph G = (V, E), construct database D_G having:
 - one null \perp_e and fact $R(\perp_e)$ for every edge $e = \{u, v\}$ of G with domain dom $(\perp_e) = \{u, v\}$
 - one fact $R(\bullet)$ where " \bullet " is a special symbol
 - one null ⊥_u and fact R(⊥_u) for every node u of G with domain dom(⊥_u) = {u, ●}

Now consider counting completions for Codd databases (all nulls are distinct), non-uniform

- *q* = *R*(*x*) is a hard pattern! Reduction from counting the number of vertex covers of a graph
 - \rightarrow on input graph G = (V, E), construct database D_G having:
 - one null \perp_e and fact $R(\perp_e)$ for every edge $e = \{u, v\}$ of G with domain dom $(\perp_e) = \{u, v\}$
 - one fact $R(\bullet)$ where " \bullet " is a special symbol
 - one null ⊥_u and fact R(⊥_u) for every node u of G with domain dom(⊥_u) = {u, ●}
 - \rightarrow We have that $\#VC(G) = \#Comp(q)(D_G)$

Now consider counting completions for Codd databases (all nulls are distinct), non-uniform

- *q* = *R*(*x*) is a hard pattern! Reduction from counting the number of vertex covers of a graph
 - \rightarrow on input graph G = (V, E), construct database D_G having:
 - one null \perp_e and fact $R(\perp_e)$ for every edge $e = \{u, v\}$ of G with domain dom $(\perp_e) = \{u, v\}$
 - one fact $R(\bullet)$ where " \bullet " is a special symbol
 - one null ⊥_u and fact R(⊥_u) for every node u of G with domain dom(⊥_u) = {u, ●}

 \rightarrow We have that $\#VC(G) = \#Comp(q)(D_G)$

• In other words, here every sjfBCQ is hard...

	Counting valuations		Counting completions	
	Non-uniform	Uniform	Non-uniform	Uniform
Naïve	$R(x,x)$ $R(x) \land S(x)$	R(x,x) $R(x) \land S(x,y) \land T(y)$ $R(x,y) \land S(x,y)$	<i>R</i> (<i>x</i>)	$R(x,x) \\ R(x,y)$
Codd	$R(x) \wedge S(x)$	$R(x) \wedge S(x,y) \wedge T(y)$?	R(x)	$R(x,x) \\ R(x,y)$

	Counting valuations		Counting completions	
	Non-uniform	Uniform	Non-uniform	Uniform
Naïve	$R(x,x)$ $R(x) \land S(x)$	$\frac{R(x,x)}{R(x) \land S(x,y) \land T(y)}$ $R(x,y) \land S(x,y)$	<i>R</i> (<i>x</i>)	$R(x,x) \\ R(x,y)$
Codd	$R(x) \wedge S(x)$	$R(x) \wedge S(x,y) \wedge T(y)$?	R(x)	$R(x,x) \\ R(x,y)$

	Counting valuations		Counting completions	
	Non-uniform	Uniform	Non-uniform	Uniform
Naïve	$R(x,x)$ $R(x) \land S(x)$	$\frac{R(x,x)}{R(x) \land S(x,y) \land T(y)}$ $R(x,y) \land S(x,y)$	<i>R</i> (<i>x</i>)	$R(x,x) \\ R(x,y)$
Codd	$R(x) \wedge S(x)$	$R(x) \wedge S(x,y) \wedge T(y)$?	R(x)	$R(x,x) \\ R(x,y)$

	Counting valuations		Counting completions	
	Non-uniform	Uniform	Non-uniform	Uniform
Naïve	$R(x,x)$ $R(x) \land S(x)$	$\frac{R(x,x)}{R(x) \land S(x,y) \land T(y)}$ $R(x,y) \land S(x,y)$	<i>R</i> (<i>x</i>)	R(x,x) $R(x,y)$
Codd	$R(x) \wedge S(x)$	$R(x) \wedge S(x,y) \wedge T(y)$?	R(x)	$R(x,x) \\ R(x,y)$

	Counting valuations		Counting completions	
	Non-uniform	Uniform	Non-uniform	Uniform
Naïve	$R(x,x)$ $R(x) \land S(x)$	R(x,x) $R(x) \land S(x,y) \land T(y)$ $R(x,y) \land S(x,y)$	<i>R</i> (<i>x</i>)	R(x,x) $R(x,y)$
Codd	$R(x) \wedge S(x)$	$R(x) \wedge S(x,y) \wedge T(y)$?	R(x)	$R(x,x) \\ R(x,y)$

	Counting valuations		Counting completions	
	Non-uniform	Uniform	Non-uniform	Uniform
Naïve	$R(x,x)$ $R(x) \land S(x)$	R(x,x) $R(x) \land S(x,y) \land T(y)$ $R(x,y) \land S(x,y)$	<i>R</i> (<i>x</i>)	R(x,x) $R(x,y)$
Codd	$R(x) \wedge S(x)$	$R(x) \wedge S(x,y) \wedge T(y)$?	R(x)	$R(x,x) \\ R(x,y)$

	Counting valuations		Counting completions	
	Non-uniform	Uniform	Non-uniform	Uniform
Naïve	$R(x,x)$ $R(x) \land S(x)$	R(x,x) $R(x) \land S(x,y) \land T(y)$ $R(x,y) \land S(x,y)$	<i>R</i> (<i>x</i>)	R(x,x) $R(x,y)$
Codd	$R(x) \wedge S(x)$	$R(x) \wedge S(x,y) \wedge T(y)$?	R(x)	$R(x,x) \\ R(x,y)$

	Counting valuations		Counting completions	
	Non-uniform	Uniform	Non-uniform	Uniform
Naïve	$R(x,x)$ $R(x) \land S(x)$	R(x,x) $R(x) \land S(x,y) \land T(y)$ $R(x,y) \land S(x,y)$	<i>R</i> (<i>x</i>)	R(x,x) $R(x,y)$
Codd	$R(x) \wedge S(x)$	$R(x) \wedge S(x,y) \wedge T(y)$?	R(x)	$R(x,x) \\ R(x,y)$

 $\rightarrow\,$ Valuations, non-uniform, Codd: each variable occurs in at most one atom

	Counting valuations		Counting completions	
	Non-uniform	Uniform	Non-uniform	Uniform
Naïve	$R(x,x)$ $R(x) \land S(x)$	R(x,x) $R(x) \land S(x,y) \land T(y)$ $R(x,y) \land S(x,y)$	<i>R</i> (<i>x</i>)	$egin{aligned} R(x,x) \ R(x,y) \end{aligned}$
Codd	$R(x) \wedge S(x)$	$R(x) \wedge S(x,y) \wedge T(y)$?	R(x)	$R(x,x) \\ R(x,y)$

- $\rightarrow\,$ Valuations, non-uniform, Codd: each variable occurs in at most one atom
- \rightarrow Completions, uniform (naïve or Codd): all the atoms are unary

	Counting valuations		Counting completions	
	Non-uniform	Uniform	Non-uniform	Uniform
Naïve	$R(x,x)$ $R(x) \land S(x)$	R(x,x) $R(x) \land S(x,y) \land T(y)$ $R(x,y) \land S(x,y)$	<i>R</i> (<i>x</i>)	$egin{aligned} R(x,x) \ R(x,y) \end{aligned}$
Codd	$R(x) \wedge S(x)$	$R(x) \wedge S(x,y) \wedge T(y)$?	R(x)	$R(x,x) \\ R(x,y)$

- $\rightarrow\,$ Valuations, non-uniform, Codd: each variable occurs in at most one atom
- \rightarrow Completions, uniform (naïve or Codd): all the atoms are unary
- (So...not much is tractable)

Counting valuations vs. counting completions

When are our problems in #P?

• For a Boolean query q, let MC(q) denote the model checking problem for q

Fact

If MC(q) is PTIME then #Val(q) is in #P.

When are our problems in #P?

• For a Boolean query q, let MC(q) denote the model checking problem for q

Fact If MC(q) is PTIME then #Val(q) is in #P.

• for counting valuations of sjfBCQs, we had dichotomies between PTIME and #P-completeness

What about counting completions? In general when MC(q) is PTIME, is #Comp(q) in #P?

When are our problems in #P?

• For a Boolean query q, let MC(q) denote the model checking problem for q

```
Fact
If MC(q) is PTIME then \#Val(q) is in \#P.
```

• for counting valuations of sjfBCQs, we had dichotomies between PTIME and #P-completeness

What about counting completions? In general when MC(q) is PTIME, is #Comp(q) in #P? Unlikely:

Proposition

There exists an sjfBCQ q such that #Comp(q) is not in #P unless $NP \subseteq SPP$

A counting problem A is in SpanP if there exists a nondeterministic transducer M (= Turing machine with output tape) running in polynomial time such that, on input x, the number of distinct outputs for M(x) is equal to A(x)

- A counting problem A is in SpanP if there exists a nondeterministic transducer M (= Turing machine with output tape) running in polynomial time such that, on input x, the number of distinct outputs for M(x) is equal to A(x)
 - → Clearly $\#P \subseteq SpanP$, but we have #P = SpanP if and only if NP = UP (Köbler et al. [Acta Informatica'89])

- A counting problem A is in SpanP if there exists a nondeterministic transducer M (= Turing machine with output tape) running in polynomial time such that, on input x, the number of distinct outputs for M(x) is equal to A(x)
 - → Clearly $\#P \subseteq SpanP$, but we have #P = SpanP if and only if NP = UP (Köbler et al. [Acta Informatica'89])
 - → A complete problem for SpanP: INPUT: a 3-CNF φ and integer k; OUTPUT: the number of assignments of the first k variables that can be extended to a satisfying assignment of φ

- A counting problem A is in SpanP if there exists a nondeterministic transducer M (= Turing machine with output tape) running in polynomial time such that, on input x, the number of distinct outputs for M(x) is equal to A(x)
 - → Clearly $\#P \subseteq SpanP$, but we have #P = SpanP if and only if NP = UP (Köbler et al. [Acta Informatica'89])
 - → A complete problem for SpanP: INPUT: a 3-CNF φ and integer k; OUTPUT: the number of assignments of the first k variables that can be extended to a satisfying assignment of φ
 - → (A problem in SpanP but unknown to be complete for it: INPUT: a graph G; OUTPUT: the number of Hamiltonian subgraphs of G)

Fact

If MC(q) is PTIME then #Comp(q) is in SpanP.

Fact

If MC(q) is PTIME then #Comp(q) is in SpanP.

Proposition

There exists a sjfBCQ q such that $\#Comp(\neg q)$ is SpanP-complete.

Fact

If MC(q) is PTIME then #Comp(q) is in SpanP.

Proposition

There exists a sjfBCQ q such that $\#Comp(\neg q)$ is SpanP-complete.

[WARNING: hardness for SpanP is defined in terms of parsimonious reductions (while #P-completeness is usually defined with Turing reductions)]

Fact

If MC(q) is PTIME then #Comp(q) is in SpanP.

Proposition

There exists a sjfBCQ q such that $\#Comp(\neg q)$ is SpanP-complete.

[WARNING: hardness for SpanP is defined in terms of parsimonious reductions (while #P-completeness is usually defined with Turing reductions)]

For Codd tables we can still show membership in #P:

Proposition

For Codd tables, if MC(q) is PTIME then #Comp(q) is in #P

Approximations

My counting problem is very much intractable :(

\rightarrow Try Fully Polynomial-time Randomized Approximation Scheme!

Definition (FPRAS)

Let Σ be a finite alphabet and $f: \Sigma^* \to \mathbb{N}$ be a counting problem. Then f is said to have an FPRAS if there is a randomized algorithm $\mathcal{A}: \Sigma^* \times (0,1) \to \mathbb{N}$ and a polynomial p(u,v) such that, given $x \in \Sigma^*$ and $\epsilon \in (0,1)$, algorithm \mathcal{A} runs in time $p(|x|, 1/\epsilon)$ and satisfies the following condition:

$$\Pr\left(|f(x) - \mathcal{A}(x,\epsilon)| \le \epsilon f(x)\right) \ge \frac{3}{4}.$$

Definition (FPRAS)

Let Σ be a finite alphabet and $f: \Sigma^* \to \mathbb{N}$ be a counting problem. Then f is said to have an FPRAS if there is a randomized algorithm $\mathcal{A}: \Sigma^* \times (0,1) \to \mathbb{N}$ and a polynomial p(u,v) such that, given $x \in \Sigma^*$ and $\epsilon \in (0,1)$, algorithm \mathcal{A} runs in time $p(|x|, 1/\epsilon)$ and satisfies the following condition:

$$\Pr\left(|f(x) - \mathcal{A}(x,\epsilon)| \le \epsilon f(x)\right) \ge \frac{3}{4}.$$

Note: the property of having an FPRAS is closed under polynomial-time parsimonious reductions (i.e., if we have an FPRAS for a counting problem A and for counting problem B we have that $B \leq^{p} A$, then we also have an FPRAS for B).

Proposition

For every Boolean UCQ q, the problem #Val(q) has a FPRAS

Proof: via SpanL. SpanL = there exists an NL transducer with write-only output tape such that the result is the number of distinct outputs

Proposition

For every Boolean UCQ q, the problem #Val(q) has a FPRAS

Proof: via SpanL. SpanL = there exists an NL transducer with write-only output tape such that the result is the number of distinct outputs

Theorem (Arenas et al. [PODS'19]) Every problem in SpanL has an FPRAS

Proposition

For every Boolean UCQ q, the problem #Val(q) has a FPRAS

Proof: via SpanL. SpanL = there exists an NL transducer with write-only output tape such that the result is the number of distinct outputs

Theorem (Arenas et al. [PODS'19]) Every problem in SpanL has an FPRAS

Fact

For every Boolean UCQ q, the problem #Val(q) is in SpanL

FPRAS for counting completions?

Theorem (Dyer et al. [SICOMP'2002])

Counting vertex covers has no FPRAS unless $\mathrm{NP}=\mathrm{RP}$

- Our reduction from #VC for Codd tables to #Comp(∃x R(x)) was parsimonious
- Our reduction for the notion of pattern is also parsimonious
- → Therefore #Comp(q) restricted to Codd tables for any sjfBCQ has no FPRAS unless NP = RP

FPRAS for counting completions?

Theorem (Dyer et al. [SICOMP'2002])

Counting vertex covers has no FPRAS unless NP = RP

- Our reduction from #VC for Codd tables to #Comp(∃x R(x)) was parsimonious
- Our reduction for the notion of pattern is also parsimonious
- → Therefore #Comp(q) restricted to Codd tables for any sjfBCQ has no FPRAS unless NP = RP

What about the uniform setting? We prove that for naïve tables, uniform setting, #Comp(q) has no FPRAS if q contains a non-unary symbol (otherwise it is PTIME)

• For uniform Codd tables, we do not know

To sum up:

- Counting valuations and completions is hard, even in very restricted settings (uniform Codd tables)
- But counting valuations has a FPRAS for UCQs
- While counting completions does not
- SpanP is the right class to consider for problems of the form #Comp(q)
- If you liked it, we have a lot of cute reductions in the paper :)

Thanks for your attention!

Bibliography i

Marcelo Arenas, Pablo Barceló, and Mikaël Monet. **Counting Problems over Incomplete Databases.** In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 165–177, 2020.

- Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros.
 Efficient logspace classes for enumeration, counting, and uniform generation.
 In PODS, pages 59–73, 2019.
- Martin Dyer, Alan Frieze, and Mark Jerrum.
 On counting independent sets in sparse graphs.
 SIAM J. on Computing, 31(5):1527–1541, 2002.

Johannes Köbler, Uwe Schöning, and Jacobo Torán.
 On counting and approximation.
 Acta Informatica, 26(4):363–379, 1989.

Leonid Libkin.

Certain Answers Meet Zero-One Laws.

In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 195–207, 2018.