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Uncertain data, provenance and
knowledge compilation



Uncertain data

• Real-world data can be uncertain
• missing values
• inconsistent data sources
• information extraction from the Web
• machine learning techniques (NLP, etc.)
• imprecise sensors in experimental sciences
• ...

→ We need methods to manage this uncertainty

• Main models for relational data: probabilistic or incomplete
databases
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What’s the (computational) difficulty?

• Example: probabilistic databases

→ Simplest formalism: tuple-independent probabilistic databases

Pr(D ′) = (1 − 0.9) × 0.5 × (1 − 0.2) × 0.7

q = “there are two people
applying to the same institution”
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Provenance

• Provenance of a query on a database D: Boolean function
whose variables are the tuples of D that intuitively represent
“Which combinations of tuples make the query become true?”

D =

Applies π

Alice Inria 0.9
Alice CNRS 0.5
Bob Inria 0.2
John Inria 0.7

q = “there are two people
applying to the same institution”

Prov(q,D) = [C(A, I ) ∧ C(B, I )]
∨ [C(A, I ) ∧ C(J, I )]
∨ [C(B, I ) ∧ C(J, I )]

explain, keep trace of the computation

we can use it for probabilistic
computation!
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Provenance and knowledge compilation

• Use of provenance in probabilistic databases: compute the
provenance φ of a query on a probabilistic database, then
compute the probability that φ evaluates to true. Problem:
This is generally intractable! (#P-hard)

• Need a tractable representation

→ Knowledge compilation: studies Boolean function
representations with “good properties”
→ propositional formulas (DNF, CNF)
→ Binary Decision Diagrams (OBDDs, FBDDs)
→ restricted classes of Boolean circuits (NNF, d-DNNF,

dec-DNNF, SDDs, d-D, d-SDNNFs etc.)
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Relevance score of tuples for query answering

Provenance can also be used to compute so-called Shapley values

Definition: problem Shapley(q)
Input: A database D and a tuple f ∈ D
Output: The value Shapley(q,D, f )

Intuitively: Shapley(q,D, f ) is the “importance” of f in D for the
query q

Proposition [With Daniel Deutch, Nave Frost and Benny
Kimelfeld]
Given as input a deterministic and decomposable circuit C
representing the provenance, we can compute in time
O(∣C ∣ ⋅ ∣D ∣2) the value SHAP(q,D, f ).

Similar results for the SHAP-score from ML (With Marcelo
Arenas, Pablo Barceló and Leopoldo Bertossi).
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A hardness result on counting
weighted matchings for
unbounded-treewidth graph
families



Counting weighted matchings and treewidth

Let G be a family of (undirected) graphs.

Definition: problem ProbMatch(G)
Input: A graph G ∈ G and probability values pe for every edge e

of G
Output: The probability of obtaining a matching of G when we
pick every edge e of G independently with probability pe

If G has bounded treewidth, then ProbMatch(G) is in PTIME.

Theorem [With Antoine Amarilli]
Let G be an arbitrary family of graphs having unbounded
treewidth which is treewidth constructible. Then ProbMatch(G)
is intractable.
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Enumerating regular languages
with bounded delay



Enumerating regular languages with bounded delay

Fix an alphabet Σ, and consider the edit distance δ ∶ Σ∗ ×Σ∗ → N.

Definition: constant-distance enumerable
Call a language L ⊆ Σ∗ constant-distance enumerable if there
exists d ∈ N and an ordering w1,w2, . . . of the words of L such
that δ(wi ,wi+1) ≤ d for all i .

Examples: L1 = a∗, L2 = (a∣b)∗ YES. L3 = a∗∣b∗ NO.

Result [With Antoine Amarilli]
We characterize exactly what are the regular languages that are
enumerable. When it is the case we provide an algorithm that
enumerates the words with a constant delay (the delay depends
on the language but not on the length of the current word).
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An open problem about perfect
matchings in the Boolean lattice



An open problem (1/3)

• A matching of an undirected graph G = (V ,E) is a
subset M ⊆ E of edges such that e ∩ e′ for all e, e′ ∈M.

• A matching M is perfect if it touches all vertices of G

Let’s consider the Boolean lattice over k elements. Example
for k = 5:

∅

0 1 2 3 4

01 02 03 04 12 13 14 23 24 34

012 013 014 023 024 034 123 124 134 234

0123 0124 0134 0234 1234

01234
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An open problem (2/3)

Let O be a set of nodes that is upward-closed and such that O has
as many nodes of even size as nodes of odd size. Example: O =
the orange nodes

∅

0 1 2 3 4

01 02 03 04 12 13 14 23 24 34

012 013 014 023 024 034 123 124 134 234

0123 0124 0134 0234 1234

01234

Is this true?
For any k and O satisfying this property, then: either the graph
induced by O has a perfect matching, or the complement graph
has a perfect matching.
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An open problem (3/3)

In some cases, one the top or the bottom graph (but not both) has
a perfect matching. Example:

∅

0 1 2 3 4 5

01 02 03 04 05 12 13 14 15 23 24 25 34 35 45

012 013 014 015 023 024 025 034 035 045 123 124 125 134 135 145 234 235 245 345

0123 0124 0125 0134 0135 0145 0234 0235 0245 0345 1234 1235 1245 1345 2345

01234 01235 01245 01345 02345 12345

012345

Computer search for counterexample: none so far.
Thanks for your attention!
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