Selected Research Topics

Mikaël Monet

Simons Institute's Meet the Fellows day
Berkeley, Friday September 8th, 2023

Academic career

2012-2015: Engineering school

2014-2015: Parisian master of research in computer science

2015-2018: PhD at Télécom Paris with Pierre Senellart and Antoine Amarilli, on "Combined Complexity of Probabilistic Query Evaluation"

2019-2020: Postdoc at Millennium Institute for Foundational Research on Data (Santiago, Chili) with Pablo Barceló

Octobre 2020-: Research position at Inria Lille

Uncertain data, provenance and knowledge compilation

Uncertain data

- Real-world data can be uncertain
- missing values
- inconsistent data sources
- information extraction from the Web
- machine learning techniques (NLP, etc.)
- imprecise sensors in experimental sciences
- ...
\rightarrow We need methods to manage this uncertainty
- Main models for relational data: probabilistic or incomplete databases

What's the (computational) difficulty?

- Example: probabilistic databases

What's the (computational) difficulty?

- Example: probabilistic databases
\rightarrow Simplest formalism: tuple-independent probabilistic databases

Applies
π
$D=\begin{array}{ccc}\text { Alice } & \text { Inria } & 0.9 \\ \text { Alice } & \text { CNRS } & 0.5 \\ \text { Bob } & \text { Inria } & 0.2 \\ \text { John } & \text { Inria } & 0.7\end{array}$

What's the (computational) difficulty?

- Example: probabilistic databases
\rightarrow Simplest formalism: tuple-independent probabilistic databases

$D^{\prime}=$| Applies | | π |
| :---: | :---: | :---: |
| | Alice | Inria |
| Alice | CNRS | 0.9 |
| Bob | Inria | 0.2 |
| | John | Inria |

What's the (computational) difficulty?

- Example: probabilistic databases
\rightarrow Simplest formalism: tuple-independent probabilistic databases

$D^{\prime}=$| Applies | | π |
| :---: | :---: | :---: |
| | Alice | Inria |
| Alice | CNRS | 0.9 |
| Bob | Inria | 0.2 |
| | John | Inria |
| | 0.7 | |

$$
\operatorname{Pr}\left(D^{\prime}\right)=(1-0.9) \times 0.5 \times(1-0.2) \times 0.7
$$

What's the (computational) difficulty?

- Example: probabilistic databases
\rightarrow Simplest formalism: tuple-independent probabilistic databases

Applies
π

$D=$| Alice | Inria | 0.9 |
| :---: | :---: | :---: |
| Alice | CNRS | 0.5 |
| Bob | Inria | 0.2 |
| John | Inria | 0.7 |

$q=$ "there are two people
applying to the same institution"

What's the (computational) difficulty?

- Example: probabilistic databases
\rightarrow Simplest formalism: tuple-independent probabilistic databases

Applies
π

$D=$| Alice Inria 0.9
 Alice CNRS 0.5$\quad$$q=$ "there are two people
 Bob
 Inria
 John
 Jnria
 | 0.2 |
| :---: | :---: | :---: |\quad| applying to the same institution" |
| :--- |

$$
\operatorname{Pr}((D, \pi) \vDash q)=\sum_{\substack{D^{\prime} \subseteq D \\ D^{\prime} \vDash q}} \operatorname{Pr}\left(D^{\prime}\right)
$$

What's the (computational) difficulty?

- Example: probabilistic databases
\rightarrow Simplest formalism: tuple-independent probabilistic databases

Applies
π

$D=$| Alice Inria 0.9$\quad$$q=$ "there are two people
 Alice
 CNRS | 0.5 |
| :---: | :---: | :---: |\quad| applying to the same institution" |
| :--- |

$\operatorname{Pr}((D, \pi) \vDash q)=\sum_{\substack{D^{\prime} \subseteq D \\ D^{\prime} \vDash q}} \operatorname{Pr}\left(D^{\prime}\right)$ exhaustive computation is too costly!

- Provenance of a query on a database D : Boolean function whose variables are the tuples of D that intuitively represent "Which combinations of tuples make the query become true?"
- Provenance of a query on a database D : Boolean function whose variables are the tuples of D that intuitively represent "Which combinations of tuples make the query become true?"

Applies
 π

$D=$| Alice | Inria | 0.9 |
| :---: | :---: | :---: |
| Alice | CNRS | 0.5 |
| Bob | Inria | 0.2 |
| John | Inria | 0.7 |

$q=$ "there are two people applying to the same institution"

Provenance

- Provenance of a query on a database D : Boolean function whose variables are the tuples of D that intuitively represent "Which combinations of tuples make the query become true?"

$D=$| Applies | | π |
| :---: | :---: | :---: |
| Alice | Inria | 0.9 |
| Alice | CNRS | 0.5 |
| Bob | Inria | 0.2 |
| John | Inria | 0.7 |

$$
\begin{aligned}
\operatorname{Prov}(q, D)= & {[C(A, I) \wedge C(B, I)] } \\
& \vee[C(A, I) \wedge C(J, I)] \\
& \vee[C(B, I) \wedge C(J, I)]
\end{aligned}
$$

$q=$ "there are two people applying to the same institution"

Provenance

- Provenance of a query on a database D : Boolean function whose variables are the tuples of D that intuitively represent "Which combinations of tuples make the query become true?"

$D=$| Applies | | π |
| :---: | :---: | :---: |
| Alice | Inria | 0.9 |
| Alice | CNRS | 0.5 |
| Bob | Inria | 0.2 |
| John | Inria | 0.7 |

$$
\begin{aligned}
\operatorname{Prov}(q, D)= & {[C(A, I) \wedge C(B, I)] } \\
& \vee[C(A, I) \wedge C(J, I)] \\
& \vee[C(B, I) \wedge C(J, I)]
\end{aligned}
$$

explain, keep trace of the computation
$q=$ "there are two people applying to the same institution"

Provenance

- Provenance of a query on a database D : Boolean function whose variables are the tuples of D that intuitively represent "Which combinations of tuples make the query become true?"

$D=$| Applies | | π |
| :---: | :---: | :---: |
| Alice | Inria | 0.9 |
| Alice | CNRS | 0.5 |
| Bob | Inria | 0.2 |
| John | Inria | 0.7 |

$q=$ "there are two people applying to the same institution"

$$
\begin{aligned}
\operatorname{Prov}(q, D)= & {[C(A, I) \wedge C(B, I)] } \\
& \vee[C(A, I) \wedge C(J, I)] \\
& \vee[C(B, I) \wedge C(J, I)]
\end{aligned}
$$

explain, keep trace of the computation
we can use it for probabilistic computation!

Provenance and knowledge compilation

- Use of provenance in probabilistic databases: compute the provenance φ of a query on a probabilistic database, then compute the probability that φ evaluates to true. Problem: This is generally intractable! (\#P-hard)

Provenance and knowledge compilation

- Use of provenance in probabilistic databases: compute the provenance φ of a query on a probabilistic database, then compute the probability that φ evaluates to true. Problem: This is generally intractable! (\#P-hard)
- Need a tractable representation

Provenance and knowledge compilation

- Use of provenance in probabilistic databases: compute the provenance φ of a query on a probabilistic database, then compute the probability that φ evaluates to true. Problem: This is generally intractable! (\#P-hard)
- Need a tractable representation
\rightarrow Knowledge compilation: studies Boolean function representations with "good properties"
\rightarrow propositional formulas (DNF, CNF)
\rightarrow Binary Decision Diagrams (OBDDs, FBDDs)
\rightarrow restricted classes of Boolean circuits (NNF, d-DNNF, dec-DNNF, SDDs, d-D, d-SDNNFs etc.)

Relevance score of tuples for query answering

Provenance can also be used to compute so-called Shapley values

Definition: problem Shapley (q)

Input: A database D and a tuple $f \in D$
Output: The value Shapley (q, D, f)

Intuitively: Shapley (q, D, f) is the "importance" of f in D for the query q

Relevance score of tuples for query answering

Provenance can also be used to compute so-called Shapley values
Definition: problem Shapley (q)
Input: A database D and a tuple $f \in D$
Output: The value Shapley (q, D, f)
Intuitively: Shapley (q, D, f) is the "importance" of f in D for the query q

Proposition [With Daniel Deutch, Nave Frost and Benny Kimelfeld]

Given as input a deterministic and decomposable circuit C representing the provenance, we can compute in time $O\left(|C| \cdot|D|^{2}\right)$ the value $\operatorname{SHAP}(q, D, f)$.

Relevance score of tuples for query answering

Provenance can also be used to compute so-called Shapley values

Definition: problem Shapley (q)

Input: A database D and a tuple $f \in D$
Output: The value Shapley (q, D, f)
Intuitively: Shapley (q, D, f) is the "importance" of f in D for the query q

Proposition [With Daniel Deutch, Nave Frost and Benny Kimelfeld]

Given as input a deterministic and decomposable circuit C representing the provenance, we can compute in time $O\left(|C| \cdot|D|^{2}\right)$ the value $\operatorname{SHAP}(q, D, f)$.

Similar results for the SHAP-score from ML (With Marcelo Arenas, Pablo Barceló and Leopoldo Bertossi).

A hardness result on counting weighted matchings for unbounded-treewidth graph families

Counting weighted matchings and treewidth

Let \mathcal{G} be a family of (undirected) graphs.

Definition: problem ProbMatch (\mathcal{G})

Input: A graph $G \in \mathcal{G}$ and probability values p_{e} for every edge e of G
Output: The probability of obtaining a matching of G when we pick every edge e of G independently with probability p_{e}

Counting weighted matchings and treewidth

Let \mathcal{G} be a family of (undirected) graphs.

Definition: problem ProbMatch (\mathcal{G})

Input: A graph $G \in \mathcal{G}$ and probability values p_{e} for every edge e of G
Output: The probability of obtaining a matching of G when we pick every edge e of G independently with probability p_{e}

If \mathcal{G} has bounded treewidth, then $\operatorname{ProbMatch}(\mathcal{G})$ is in PTIME.

Counting weighted matchings and treewidth

Let \mathcal{G} be a family of (undirected) graphs.
Definition: problem ProbMatch (\mathcal{G})
Input: A graph $G \in \mathcal{G}$ and probability values p_{e} for every edge e of G
Output: The probability of obtaining a matching of G when we pick every edge e of G independently with probability p_{e}

If \mathcal{G} has bounded treewidth, then $\operatorname{ProbMatch}(\mathcal{G})$ is in PTIME.

Theorem [With Antoine Amarilli]

Let \mathcal{G} be an arbitrary family of graphs having unbounded treewidth which is treewidth constructible. Then $\operatorname{ProbMatch}(\mathcal{G})$ is intractable.

Enumerating regular languages with bounded delay

Enumerating regular languages with bounded delay

Fix an alphabet Σ, and consider the edit distance $\delta: \Sigma^{*} \times \Sigma^{*} \rightarrow \mathbb{N}$.

Enumerating regular languages with bounded delay

Fix an alphabet Σ, and consider the edit distance $\delta: \Sigma^{*} \times \Sigma^{*} \rightarrow \mathbb{N}$.

Definition: constant-distance enumerable

Call a language $L \subseteq \Sigma^{*}$ constant-distance enumerable if there exists $d \in \mathbb{N}$ and an ordering w_{1}, w_{2}, \ldots of the words of L such that $\delta\left(w_{i}, w_{i+1}\right) \leq d$ for all i.

Enumerating regular languages with bounded delay

Fix an alphabet Σ, and consider the edit distance $\delta: \Sigma^{*} \times \Sigma^{*} \rightarrow \mathbb{N}$.

Definition: constant-distance enumerable

Call a language $L \subseteq \Sigma^{*}$ constant-distance enumerable if there exists $d \in \mathbb{N}$ and an ordering w_{1}, w_{2}, \ldots of the words of L such that $\delta\left(w_{i}, w_{i+1}\right) \leq d$ for all i.

Examples: $L_{1}=a *, L_{2}=(a \mid b)^{*}$ YES. $L_{3}=a^{*} \mid b^{*}$ NO.

Enumerating regular languages with bounded delay

Fix an alphabet Σ, and consider the edit distance $\delta: \Sigma^{*} \times \Sigma^{*} \rightarrow \mathbb{N}$.

Definition: constant-distance enumerable

Call a language $L \subseteq \Sigma^{*}$ constant-distance enumerable if there exists $d \in \mathbb{N}$ and an ordering w_{1}, w_{2}, \ldots of the words of L such that $\delta\left(w_{i}, w_{i+1}\right) \leq d$ for all i.

Examples: $L_{1}=a *, L_{2}=(a \mid b)^{*}$ YES. $L_{3}=a^{*} \mid b^{*}$ NO.

Result [With Antoine Amarilli]

We characterize exactly what are the regular languages that are enumerable. When it is the case we provide an algorithm that enumerates the words with a constant delay (the delay depends on the language but not on the length of the current word).

An open problem about perfect matchings in the Boolean lattice

An open problem (1/3)

- A matching of an undirected graph $G=(V, E)$ is a subset $M \subseteq E$ of edges such that $e \cap e^{\prime}$ for all $e, e^{\prime} \in M$.
- A matching M is perfect if it touches all vertices of G

An open problem (1/3)

- A matching of an undirected graph $G=(V, E)$ is a subset $M \subseteq E$ of edges such that $e \cap e^{\prime}$ for all $e, e^{\prime} \in M$.
- A matching M is perfect if it touches all vertices of G

Let's consider the Boolean lattice over k elements. Example for $k=5$:

$$
01234
$$

An open problem (2/3)

Let O be a set of nodes that is upward-closed and such that O has as many nodes of even size as nodes of odd size. Example: $O=$ the orange nodes

An open problem (2/3)

Let O be a set of nodes that is upward-closed and such that O has as many nodes of even size as nodes of odd size. Example: $O=$ the orange nodes

```
01234
```


Is this true?

For any k and O satisfying this property, then: either the graph induced by O has a perfect matching, or the complement graph has a perfect matching.

An open problem (2/3)

Let O be a set of nodes that is upward-closed and such that O has as many nodes of even size as nodes of odd size. Example: $O=$ the orange nodes

Is this true?

For any k and O satisfying this property, then: either the graph induced by O has a perfect matching, or the complement graph has a perfect matching.

An open problem (3/3)

In some cases, one the top or the bottom graph (but not both) has a perfect matching. Example:

Computer search for counterexample: none so far.

