Selected Research Topics

Mikaél Monet
Simons Institute's Meet the Fellows day

Berkeley, Friday September 8th, 2023
11
1

11
1
1
L
—_—

V4
lreia —~
SIMONS
[NSTITUTE

Academic career

2012-2015: Engineering school
2014-2015: Parisian master of research in computer science

2015—-2018: PhD at Télécom Paris with Pierre Senellart and
Antoine Amarilli, on “"Combined Complexity of
Probabilistic Query Evaluation”

2019-2020: Postdoc at Millennium Institute for Foundational
Research on Data (Santiago, Chili) with Pablo
Barcel6

Octobre 2020—: Research position at Inria Lille

1/11

Uncertain data, provenance and
knowledge compilation

Uncertain data

e Real-world data can be uncertain

° data sources

° from the Web

o techniques (NLP, etc.)
° in experimental sciences

— We need methods to manage this uncertainty

e Main models for relational data: or
databases

2/11

What's the (computational) difficulty?

e Example: probabilistic databases

3/11

What's the (computational) difficulty?

e Example: probabilistic databases

— Simplest formalism:

Applies T

Alice Inria 0.9
D= Alice CNRS 05
Bob Inria 0.2
John Inria 0.7

3/11

What's the (computational) difficulty?

e Example: probabilistic databases

— Simplest formalism:

Applies T

Alice Inria 0.9
D= Alice CNRS 05
Bob Inria 0.2
John Inria 0.7

3/11

What's the (computational) difficulty?

e Example: probabilistic databases

— Simplest formalism:

Applies T

Alice Inria 0.9
D= Alice CNRS 05
Bob Inria 0.2
John Inria 0.7

Pr(D') = (1-0.9) x 0.5 x (1-0.2) x 0.7

3/11

What's the (computational) difficulty?

e Example: probabilistic databases

— Simplest formalism:

Applies T
Alice Inria 0.9 q = "there are two people
D = Alice CNRS 05 applying to the same institution”

Bob Inria 0.2
John Inria 0.7

3/11

What's the (computational) difficulty?

e Example: probabilistic databases

— Simplest formalism:

Applies T
Alice Inria 0.9 q = "there are two people
D = Alice CNRS 05 applying to the same institution”

Bob Inria 0.2
John Inria 0.7

Pr((D,m) & q) = Xprep Pr(D")
D'q

3/11

What's the (computational) difficulty?

e Example: probabilistic databases

— Simplest formalism:

Applies T
Alice Inria 0.9 q = "there are two people
D = Alice CNRS 05 applying to the same institution”

Bob Inria 0.2
John Inria 0.7

Pr((D,m) E q) = X pep Pr(D’)
D'eq

3/11

Provenance

e Provenance of a query on a database D: Boolean function
whose variables are the tuples of D that intuitively represent
“Which combinations of tuples make the query become true?”

4/11

Provenance

e Provenance of a query on a database D: Boolean function
whose variables are the tuples of D that intuitively represent
“Which combinations of tuples make the query become true?”

Applies 0

Alice Inria 0.9
D="plice CNRS 05
Bob Inria 0.2
John Inria 0.7

q = "there are two people
applying to the same institution”

4/11

Provenance

e Provenance of a query on a database D: Boolean function
whose variables are the tuples of D that intuitively represent
“Which combinations of tuples make the query become true?”

Applies Prov(q, D) = [C(A,1) A C(B,1)]
Alice Inria 0.9 VIC(A 1) A C(J,1)]
D= Alice CNRS 05 vVIC(B, 1)~ C(J, 1]

Bob Inria 0.2
John Inria 0.7

q = "there are two people
applying to the same institution”

4/11

Provenance

e Provenance of a query on a database D: Boolean function
whose variables are the tuples of D that intuitively represent
“Which combinations of tuples make the query become true?”

Applies Prov(q, D) = [C(A,1) A C(B,1)]
Alice Inria 0.9 VIC(A 1) A C(J,1)]
D= Alice CNRS 05 vVIC(B, 1)~ C(J, 1]

Bob Inria 0.2
John Inria 0.7

q = "there are two people
applying to the same institution”

4/11

Provenance

e Provenance of a query on a database D: Boolean function
whose variables are the tuples of D that intuitively represent
“Which combinations of tuples make the query become true?”

Applies Prov(q, D) = [C(A,1) A C(B,1)]
Alice Inria 0.9 VIC(A 1) A C(J,1)]
D= Alice CNRS 05 vVIC(B, 1)~ C(J, 1]

Bob Inria 0.2
John Inria 0.7

q = "there are two people we can use it for probabilistic

applying to the same institution” computation!

4/11

Provenance and knowledge compilation

e Use of provenance in probabilistic databases: compute the
provenance o of a query on a probabilistic database, then
compute the probability that ¢ evaluates to true.

This is generally intractable! (#P-hard)

5/11

Provenance and knowledge compilation

e Use of provenance in probabilistic databases: compute the
provenance o of a query on a probabilistic database, then
compute the probability that ¢ evaluates to true.

This is generally intractable! (#P-hard)

e Need a tractable representation

5/11

Provenance and knowledge compilation

e Use of provenance in probabilistic databases: compute the
provenance ¢ of a query on a probabilistic database, then
compute the probability that ¢ evaluates to true. Problem:
This is generally intractable! (#P-hard)

e Need a tractable representation

— Knowledge compilation: studies Boolean function
representations with “good properties”
— propositional formulas (DNF, CNF)
— Binary Decision Diagrams (OBDDs, FBDDs)
— restricted classes of Boolean circuits (NNF, d-DNNF,
dec-DNNF, SDDs, d-D, d-SDNNFs etc.)

5/11

Relevance score of tuples for query answering

Provenance can also be used to compute so-called Shapley values
Definition: problem Shapley(q)

Input: A database D and a tuple f € D
Output: The value Shapley(q, D, f)

Intuitively: Shapley(q, D, f) is the “importance” of f in D for the
query g

6/11

Relevance score of tuples for query answering

Provenance can also be used to compute so-called Shapley values
Definition: problem Shapley(q)

Input: A database D and a tuple f € D
Output: The value Shapley(q, D, f)

Intuitively: Shapley(q, D, f) is the “importance” of f in D for the

query q

Proposition [With Daniel Deutch, Nave Frost and Benny
Kimelfeld]

Given as input a C

representing the provenance, we can compute in time
O(|C|-|D|?) the value SHAP(q, D, f).

6/11

Relevance score of tuples for query answering

Provenance can also be used to compute so-called Shapley values

Definition: problem Shapley(q)
Input: A database D and a tuple f € D
Output: The value Shapley(q, D, f)

Intuitively: Shapley(q, D, f) is the “importance” of f in D for the

query q

Proposition [With Daniel Deutch, Nave Frost and Benny
Kimelfeld]

Given as input a C

representing the provenance, we can compute in time
O(|C|-|D|?) the value SHAP(q, D, f).

Similar results for the SHAP-score from ML (With Marcelo
Arenas, Pablo Barcel6 and Leopoldo Bertossi). 6/11

A hardness result on counting
weighted matchings for
unbounded-treewidth graph
families

Counting weighted matchings and treewidth

Let G be a family of (undirected) graphs.

Definition: problem ProbMatch(G)

Input: A graph G € G and probability values p. for every edge e
of G

Output: The probability of obtaining a matching of G when we
pick every edge e of G independently with probability pe

7/11

Counting weighted matchings and treewidth

Let G be a family of (undirected) graphs.

Definition: problem ProbMatch(G)

Input: A graph G € G and probability values p. for every edge e
of G

Output: The probability of obtaining a matching of G when we
pick every edge e of G independently with probability pe

If G has bounded treewidth, then ProbMatch(G) is in PTIME.

7/11

Counting weighted matchings and treewidth

Let G be a family of (undirected) graphs.

Definition: problem ProbMatch(G)

Input: A graph G € G and probability values p. for every edge e
of G

Output: The probability of obtaining a matching of G when we
pick every edge e of G independently with probability pe

If G has bounded treewidth, then ProbMatch(G) is in PTIME.

Theorem [With Antoine Amarilli]
Let G be an arbitrary family of graphs having

which is treewidth constructible. Then ProbMatch(G)
is intractable.

7/11

Enumerating regular languages
with bounded delay

Enumerating regular languages with bounded delay

Fix an alphabet X, and consider the edit distance § : ¥* x ¥* — N.

8/11

Enumerating regular languages with bounded delay

Fix an alphabet X, and consider the edit distance § : ¥* x ¥* — N.

Definition: constant-distance enumerable
Call a language L ¢ ¥* constant-distance enumerable if there
exists d € N and an ordering wy, wa, ... of the words of L such

that 0(w;, wjy1) < d for all /.

8/11

Enumerating regular languages with bounded delay

Fix an alphabet X, and consider the edit distance § : ¥* x ¥* — N.

Definition: constant-distance enumerable
Call a language L ¢ ¥* constant-distance enumerable if there
exists d € N and an ordering wy, wa, ... of the words of L such

that 0(w;, wjy1) < d for all /.

Examples: Ly = a*, Ly = (alb)* YES. L3 = a*|b* NO.

8/11

Enumerating regular languages with bounded delay

Fix an alphabet X, and consider the edit distance § : ¥* x ¥* — N.

Definition: constant-distance enumerable

Call a language L ¢ ¥* constant-distance enumerable if there
exists d € N and an ordering wy, wa, ... of the words of L such
that d(w;, wj;1) < d for all J.

Examples: Ly = a*, Ly = (alb)* YES. L3 = a*|b* NO.

Result [With Antoine Amarilli]

We characterize exactly what are the that are
enumerable. When it is the case we provide an algorithm that
enumerates the words with a constant delay (the delay depends
on the language but not on the length of the current word).

8/11

An open problem about perfect
matchings in the Boolean lattice

An open problem (1/3)

e A matching of an undirected graph G = (V,E) is a
subset M c E of edges such that ene’ for all e,e’ € M.
e A matching M is if it touches all vertices of G

9/11

An open problem (1/3)

e A matching of an undirected graph G = (V,E) is a
subset M c E of edges such that ene’ for all e,e’ € M.
e A matching M is if it touches all vertices of G

Let's consider the Boolean lattice over k elements. Example
for k =5:

[o123] [o124] [orsa] [ozsa] [1231]
) (o8] (o (o) 0 () [()) [
[0]

9/11

An open problem (2/3)

Let O be a set of nodes that is upward-closed and such that O has
as many nodes of even size as nodes of odd size. Example: O =

the orange nodes
[o1234]

[o123) otz (o) [o51) 150
- (5 6
B E e o [s

nREngEE o

[

10/11

An open problem (2/3)

Let O be a set of nodes that is upward-closed and such that O has
as many nodes of even size as nodes of odd size. Example: O =

the orange nodes

- (5 6
@ o m

Is this true?

For any k and O satisfying this property, then: either the graph
induced by O has a perfect matching, or the complement graph
has a perfect matching.

10/11

An open problem (2/3)

Let O be a set of nodes that is upward-closed and such that O has
as many nodes of even size as nodes of odd size. Example: O =
the orange nodes

Is this true?

For any k and O satisfying this property, then: either the graph
induced by O has a perfect matching, or the complement graph
has a perfect matching.

10/11

An open problem (3/3)

In some cases, one the top or the bottom graph (but not both) has
a perfect matching. Example:

i 8 e e v W s

o2 M e o

Computer search for counterexample: none so far.
Thanks for your attention!

i1/11

	Uncertain data, provenance and knowledge compilation
	A hardness result on counting weighted matchings for unbounded-treewidth graph families
	Enumerating regular languages with bounded delay
	An open problem about perfect matchings in the Boolean lattice

