The Intensional-Extensional Problem in Probabilistic Databases

Mikaël Monet

January 16th, 2024 Representation, Provenance, and Explanations in Database Theory and Logic Dagstuhl seminar

1. [Probabilistic databases](#page-2-0)

[Tuple-independent probabilistic databases](#page-3-0) [Provenance and knowledge compilation](#page-15-0) [The Intensional-Extensional problem](#page-30-0)

- 2. [Solving the problem for a specific class of UCQs](#page-33-0)
- 3. [The non-cancelling intersections conjecture](#page-69-0)

[Probabilistic databases](#page-2-0)

• Probabilistic databases: to represent data uncertainty \rightarrow simplest formalism: tuple-independent database

• Probabilistic databases: to represent data uncertainty \rightarrow simplest formalism: tuple-independent database

• Probabilistic databases: to represent data uncertainty \rightarrow simplest formalism: tuple-independent database

 $Pr(D') = (1 - 0.5) \times 1 \times (1 - 0.2) \times 0.7$

• Probabilistic databases: to represent data uncertainty \rightarrow simplest formalism: tuple-independent database

• Probabilistic databases: to represent data uncertainty \rightarrow simplest formalism: tuple-independent database

$$
\Pr(D \models q) = \sum_{D' \subseteq D} \Pr(D')
$$

• Probabilistic databases: to represent data uncertainty \rightarrow simplest formalism: tuple-independent database

$$
\Pr(D \models q) = \sum_{\substack{D' \subseteq D \\ D' \models q}} \Pr(D') \qquad \text{(not efficient)}
$$

• Probabilistic databases: to represent data uncertainty \rightarrow simplest formalism: tuple-independent database

$$
Pr(D \models q) = 1 - \left[(1 - 0.5)(1 - 0.2)(1 - 0.7) + 0.5(1 - 0.2)(1 - 0.7) + (1 - 0.5)0.2(1 - 0.7) + (1 - 0.5)(1 - 0.2)0.7 \right]
$$

- Dalvi and Suciu [\[JACM'12\]](#page-90-0) have shown a dichotomy on the (data) complexity of $POE(q)$ for unions of conjunctive queries:
	- either $POE(q) \in PTIME$, and q is called "safe"
	- $\bullet \,$ or $\mathrm{PQE}(q)$ is $\mathrm{FP}^{\# \mathrm{P}}$ -hard, and q is called "unsafe"

- Dalvi and Suciu [\[JACM'12\]](#page-90-0) have shown a dichotomy on the (data) complexity of $POE(q)$ for unions of conjunctive queries:
	- either $POE(q) \in PTIME$, and q is called "safe"
	- $\bullet \,$ or $\mathrm{PQE}(q)$ is $\mathrm{FP}^{\# \mathrm{P}}$ -hard, and q is called "unsafe"
- Their algorithm for a safe query q essentially uses three rules: \rightarrow Independence: $Pr(A \wedge B) = Pr(A) \times Pr(B)$ when A, B are independent events

Definition: problem $PQE(q)$, for q a Boolean query Input: a tuple-independent probabilistic database D Output: $Pr(D \models q)$

- Dalvi and Suciu [\[JACM'12\]](#page-90-0) have shown a dichotomy on the (data) complexity of $POE(q)$ for unions of conjunctive queries:
	- either $POE(q) \in PTIME$, and q is called "safe"
	- $\bullet \,$ or $\mathrm{PQE}(q)$ is $\mathrm{FP}^{\# \mathrm{P}}$ -hard, and q is called "unsafe"
- Their algorithm for a safe query q essentially uses three rules: \rightarrow Independence: $Pr(A \wedge B) = Pr(A) \times Pr(B)$ when A, B are

independent events

 \rightarrow Negation: Pr($\neg A$) = 1 – Pr(A)

- Dalvi and Suciu [\[JACM'12\]](#page-90-0) have shown a dichotomy on the (data) complexity of $\text{PQE}(q)$ for unions of conjunctive queries:
	- either $POE(q) \in PTIME$, and q is called "safe"
	- $\bullet \,$ or $\mathrm{PQE}(q)$ is $\mathrm{FP}^{\# \mathrm{P}}$ -hard, and q is called "unsafe"
- Their algorithm for a safe query q essentially uses three rules:
	- \rightarrow Independence: $Pr(A \wedge B) = Pr(A) \times Pr(B)$ when A, B are independent events
	- \rightarrow Negation: Pr($\neg A$) = 1 Pr(A)
	- \rightarrow Inclusion–exclusion: Pr($A \lor B \lor C \lor ...$) = Pr(A) + Pr(B) + \ldots – Pr($A \wedge B$) – Pr($A \wedge C$) – ... + Pr($A \wedge B \wedge C$) + ...

Definition

The Boolean provenance Prov (q, l) of query q on database D is the Boolean function with facts of D as variables and such that...

Definition

The Boolean provenance Prov (q, l) of query q on database D is the Boolean function with facts of D as variables and such that...

Possible representations:

- Boolean formulas
- Binary Decision Diagrams (OBDDs, FBDDs, etc)
- Boolean circuits

 $Prov(q, D) = [L(A, B) \wedge L(B, B)]$ \vee [*L*(*A*, *B*) \wedge *L*(*J*, *B*)] V [$L(B, B) \wedge L(J, B)$]

Provenance: example

Provenance: example

 $q = \exists x, y, z : L(x, z) \wedge L(y, z) \wedge x \neq y$

We have $Pr(D \models q) = Pr(Prov(q, D) = true)$

 \rightarrow If we can, in PTIME, compute Prov(q, D) in a formalism from knowledge compilation that allows PTIME probability computation, we can solve $PQE(q)$ in PTIME

- \rightarrow If we can, in PTIME, compute Prov(q, D) in a formalism from knowledge compilation that allows PTIME probability computation, we can solve $PQE(q)$ in PTIME
	- free or ordered decision diagrams (OBDDs, FBDDs)

- \rightarrow If we can, in PTIME, compute Prov(q, D) in a formalism from knowledge compilation that allows PTIME probability computation, we can solve $PQE(q)$ in PTIME
	- free or ordered decision diagrams (OBDDs, FBDDs)
	- deterministic and decomposable Boolean circuits (d-Ds)

- \rightarrow If we can, in PTIME, compute Prov(q, D) in a formalism from knowledge compilation that allows PTIME probability computation, we can solve $PQE(q)$ in PTIME
	- free or ordered decision diagrams (OBDDs, FBDDs)
	- deterministic and decomposable Boolean circuits (d-Ds)
	- The safe UCQs for which this is possible with OBDDs are exactly the inversion-free UCQs
- \rightarrow This talk: what about d-Ds?

• a \wedge -gate g is decomposable if any two inputs gates g_1, g_2 of g depend on disjoint sets of variables

- a \wedge -gate g is decomposable if any two inputs gates g_1, g_2 of g depend on disjoint sets of variables
- a \vee -gate g is deterministic if any two inputs gates g_1, g_2 of g are mutually exclusive

- a \wedge -gate g is decomposable if any two inputs gates g_1, g_2 of g depend on disjoint sets of variables
- a ∨-gate g is deterministic if any two inputs gates g_1, g_2 of g are mutually exclusive
- the circuit C is a d-D if all its ∧-gates are decomposable and all its ∨-gates are deterministic

- a \wedge -gate g is decomposable if any two inputs gates g_1, g_2 of g depend on disjoint sets of variables
- a ∨-gate g is deterministic if any two inputs gates g_1, g_2 of g are mutually exclusive
- the circuit C is a d-D if all its ∧-gates are decomposable and all its ∨-gates are deterministic
- \rightarrow To obtain the probability, replace ∧-gates by \times , ∨-gates by $+$, \neg -gates by $1 - x$, and evaluate. In other words, use the following rules:
	- \rightarrow Independence: $Pr(A \wedge B) = Pr(A) \times Pr(B)$ when A, B are independent events
	- \rightarrow Negation: Pr($\neg A$) = 1 Pr(A)
	- \rightarrow Disjoint Events: $Pr(A \vee B) = Pr(A) + Pr(B)$ for A, B disjoint events $7/22$

Intensional-Extensional (open) problem for d-Ds

For every safe UCQ q , can we compute in PTIME its provenance on a database D as a deterministic and decomposable circuit?

Intensional-Extensional (open) problem for d-Ds

For every safe UCQ q , can we compute in PTIME its provenance on a database D as a deterministic and decomposable circuit?

In other words, can we replace the inclusion–exclusion rule by the disjunction rule?

Intensional-Extensional (open) problem for d-Ds

For every safe UCQ q , can we compute in PTIME its provenance on a database D as a deterministic and decomposable circuit?

In other words, can we replace the inclusion–exclusion rule by the disjunction rule?

 \rightarrow This approach is more modular than Dalvi and Suciu's original algorithm for safe UCQs, and it would allow us to do more than probabilistic evaluation: enumerate the satisfying states of the data, compute the satisfying state of the data that is most probable, update the tuples' probabilities, etc.

[Solving the problem for a specific](#page-33-0) [class of UCQs](#page-33-0)

- Focus on a class of UCQs, denoted H (defined next slide)
- It had been conjectured that for some safe queries $q \in \mathcal{H}$, the provenance of q cannot be computed in PTIME as d-Ds
	- \rightarrow because these are the simplest queries for which Dalvi and Suciu's algorithm uses **inclusion–exclusion**
	- \rightarrow because this conjecture had been proven for more restricted formalisms of knowledge compilation (d-SDNNFs, dec-DNNFs)

Main result

For every (fixed) safe query $q \in \mathcal{H}$, being given as input a database D, we can compute in PTIME a d-D that represents $Prov(q, D)$.

The H queries

• Let $k \geq 1$ and R, S_1, \ldots, S_k, T be pairwise distinct relational predicates, with R and T unary and S_i binary. Define the queries $h_{k,i}$ for $0 \leq i \leq k$:
The H queries

• Let $k \ge 1$ and R, S_1, \ldots, S_k, T be pairwise distinct relational predicates, with R and T unary and S_i binary. Define the queries $h_{k,i}$ for $0 \leq i \leq k$:

\n- $$
h_{k,0} \stackrel{\text{def}}{=} \exists x \exists y \ R(x) \land S_1(x, y);
$$
\n- $h_{k,i} \stackrel{\text{def}}{=} \exists x \exists y \ S_i(x, y) \land S_{i+1}(x, y)$ for $1 \leq i < k$;
\n- $h_{k,k} \stackrel{\text{def}}{=} \exists x \exists y \ S_k(x, y) \land T(y).$
\n

The H queries

• Let $k \geq 1$ and R, S_1, \ldots, S_k, T be pairwise distinct relational predicates, with R and T unary and S_i binary. Define the queries $h_{k,i}$ for $0 \leq i \leq k$:

\n- $$
h_{k,0} \stackrel{\text{def}}{=} \exists x \exists y \ R(x) \land S_1(x, y);
$$
\n- $h_{k,i} \stackrel{\text{def}}{=} \exists x \exists y \ S_i(x, y) \land S_{i+1}(x, y)$ for $1 \leq i < k$;
\n- $h_{k,k} \stackrel{\text{def}}{=} \exists x \exists y \ S_k(x, y) \land T(y).$
\n

 \bullet $\mathcal{H}_k \stackrel{\rm def}{=}$ the set of UCQs that can be formed from the queries $h_{k,i}$, i.e., positive Boolean combinations of those queries

$$
\bullet\ \mathcal{H} \stackrel{\mathrm{def}}{=} \bigcup_{k=1}^{\infty}\mathcal{H}_{k}
$$

Proof technique (1/4): representing H queries

Write $[k] \stackrel{\rm def}{=} \{0,\ldots,k\}.$ Let us represent a query $q \in \mathcal{H}_k$ as follows:

Proof technique (1/4): representing H queries

Write $[k] \stackrel{\rm def}{=} \{0,\ldots,k\}.$ Let us represent a query $q \in \mathcal{H}_k$ as follows:

> • the (Hasse diagram of) Boolean lattice of $2^{[k]}$

Proof technique $(1/4)$: representing $\mathcal H$ queries

Write $[k] \stackrel{\rm def}{=} \{0,\ldots,k\}.$ Let us represent a query $q \in \mathcal{H}_k$ as follows:

> • the (Hasse diagram of) Boolean lattice of $2^{[k]}$

• each node $v \subseteq [k]$ of the graph represents a subquery $q_v \stackrel{\text{def}}{=}$

 $(\bigwedge_{\ell\in\mathsf{v}}h_{k,\ell})\wedge(\bigwedge_{\ell\in[k]\setminus\mathsf{v}}\neg h_{k,\ell}).$ (Note that q_v is not a UCQ)

Proof technique $(1/4)$: representing $\mathcal H$ queries

Write $[k] \stackrel{\rm def}{=} \{0,\ldots,k\}.$ Let us represent a query $q \in \mathcal{H}_k$ as follows:

- the (Hasse diagram of) Boolean lattice of $2^{[k]}$
- each node $v \subseteq [k]$ of the graph represents a subquery $q_v \stackrel{\text{def}}{=}$

 $(\bigwedge_{\ell\in\mathsf{v}}h_{k,\ell})\wedge(\bigwedge_{\ell\in[k]\setminus\mathsf{v}}\neg h_{k,\ell}).$ (Note that q_v is not a UCQ)

• (in particular, every database D satisfies exactly one subquery q_v)

Proof technique $(1/4)$: representing H queries

Write $[k] \stackrel{\rm def}{=} \{0,\ldots,k\}.$ Let us represent a query $q \in \mathcal{H}_k$ as follows:

- the (Hasse diagram of) Boolean lattice of $2^{[k]}$
- each node $v \subseteq [k]$ of the graph represents a subquery $q_v \stackrel{\text{def}}{=}$
	- $(\bigwedge_{\ell\in\mathsf{v}}h_{k,\ell})\wedge(\bigwedge_{\ell\in[k]\setminus\mathsf{v}}\neg h_{k,\ell}).$ (Note that q_v is not a UCQ)
- (in particular, every database D satisfies exactly one subquery q_v)
- some nodes are colored, and $q =$ the disjunction of the subqueries q_v that are represented by the colored nodes v

Proof technique (2/4): basic queries

Proposition (Fink & Olteanu [\[TODS'16\]](#page-90-0))

For any adjacent nodes v, v' of the graph, being given as input a database D, we can compute in PTIME a d-D representing $\text{Prov}(q_v \lor q_{v'}, D).$

Proof technique (2/4): basic queries

Proposition (Fink & Olteanu [\[TODS'16\]](#page-90-0))

For any adjacent nodes v, v' of the graph, being given as input a database D, we can compute in PTIME a d-D representing $\text{Prov}(q_v \lor q_{v'}, D).$

- Idea: starting from q, we will entirely uncolor the graph by using multiple times the following operations:
	- Uncolor two adjacent nodes that are colored
	- Color two adjacent nodes that were not colored

Proof technique (2/4): basic queries

Proposition (Fink & Olteanu [\[TODS'16\]](#page-90-0))

For any adjacent nodes v, v' of the graph, being given as input a database D, we can compute in PTIME a d-D representing $\text{Prov}(q_v \lor q_{v'}, D).$

- Idea: starting from q, we will entirely uncolor the graph by using multiple times the following operations:
	- Uncolor two adjacent nodes that are colored
	- Color two adjacent nodes that were not colored
- \rightarrow Simultaneously, we build a deterministic and decomposable circuit for the provenance of q

Uncoloring:

Uncoloring:

↓

 $Prov(q, D) =$

Uncoloring:

↓

 $Prov(q, D) =$

Then continue with q'

Coloring: (Guy Van den Broeck's trick)

 $Prov(q, D) =$

Proposition

Proposition

[The non-cancelling intersections](#page-69-0) [conjecture](#page-69-0)

Ongoing work with Antoine Amarilli, Louis Jachiet and Dan Suciu

Intersection lattices, Möbius function and Inclusion-Exclusion

• Let $\mathcal{F} = \{S_1, \ldots, S_n\}$ be a finite family of finite sets, pairwise incomparable

 \rightarrow Example: $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}\$
• Let $\mathcal{F} = \{S_1, \ldots, S_n\}$ be a finite family of finite sets, pairwise incomparable

 \rightarrow Example: $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}\$

• Let $\mathbb{L}_{\mathcal{F}}$ be its intersection lattice:

• Let $\mathcal{F} = \{S_1, \ldots, S_n\}$ be a finite family of finite sets, pairwise incomparable

 \rightarrow Example: $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}\$

• Let $\mathbb{L}_{\mathcal{F}}$ be its intersection lattice:

• Let $\mu_{\mathcal{F}} : \mathbb{L}_{\mathcal{F}} \to \mathbb{Z}$ be the Möbius function defined by

• Let $\mathcal{F} = \{S_1, \ldots, S_n\}$ be a finite family of finite sets, pairwise incomparable

 \rightarrow Example: $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}\$

• Let $\mathbb{L}_{\mathcal{F}}$ be its intersection lattice:

• Let $\mu_{\mathcal{F}} : \mathbb{L}_{\mathcal{F}} \to \mathbb{Z}$ be the Möbius function defined by

$$
\bullet\;\;\mu_{\mathcal{F}}(\top)=1
$$

• Let $\mathcal{F} = \{S_1, \ldots, S_n\}$ be a finite family of finite sets, pairwise incomparable

 \rightarrow Example: $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}\$

• Let $\mathbb{L}_{\mathcal{F}}$ be its intersection lattice:

- Let $\mu_{\mathcal{F}} : \mathbb{L}_{\mathcal{F}} \to \mathbb{Z}$ be the Möbius function defined by
	- \bullet $\mu_{\mathcal{F}}(\top) = 1$ • $u = (1) =$

$$
\mu_{\mathcal{F}}(t) = -\sum_{\substack{l' \in \mathbb{L}_{\mathcal{F}} \\ l' > l}} \mu_{\mathcal{F}}(l')
$$

for $l \in \mathbb{L}_{\mathcal{F}}$, $l \neq \top$

• Let $\mathcal{F} = \{S_1, \ldots, S_n\}$ be a finite family of finite sets, pairwise incomparable

 \rightarrow Example: $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}\$

• Let $\mathbb{L}_{\mathcal{F}}$ be its intersection lattice:

• Let $\mu_{\mathcal{F}} : \mathbb{L}_{\mathcal{F}} \to \mathbb{Z}$ be the Möbius function defined by

$$
\bullet \ \mu_{\mathcal{F}}(\top) = 1
$$

\n- \n
$$
\mu_{\mathcal{F}}(I) =
$$
\n
$$
-\sum_{\substack{I' \in \mathbb{L}_{\mathcal{F}} \\ I' > I}} \mu_{\mathcal{F}}(I')
$$
\n for $I \in \mathbb{L}_{\mathcal{F}}$, $I \neq \top$ \n
\n

Fact (coefficients of the Inclusion-Exclusion formula)

$$
|\bigcup_{i=1}^n S_i| = -\sum_{\substack{l \in \mathbb{L}_{\mathcal{F}} \\ l \neq \mathbb{T}}} \mu_{\mathcal{F}}(l) \times |l|
$$

• Let $\mathcal{F} = \{S_1, \ldots, S_n\}$ be a finite family of finite sets, pairwise incomparable

 \rightarrow Example: $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}\$

• Let $\mathbb{L}_{\mathcal{F}}$ be its intersection lattice:

• Let $\mu_{\mathcal{F}} : \mathbb{L}_{\mathcal{F}} \to \mathbb{Z}$ be the Möbius function defined by

$$
\bullet \ \mu_{\mathcal{F}}(\top) = 1
$$

\n- \n
$$
\mu_{\mathcal{F}}(I) =
$$
\n
$$
-\sum_{\substack{I' \in \mathbb{L}_{\mathcal{F}} \\ I' > I}} \mu_{\mathcal{F}}(I')
$$
\n for $I \in \mathbb{L}_{\mathcal{F}}$, $I \neq \top$ \n
\n

Fact (coefficients of the Inclusion-Exclusion formula)

$$
|\bigcup_{i=1}^n S_i| = -\sum_{\substack{I \in \mathbb{L}_{\mathcal{F}} \\ I \neq \mathbb{T}}} \mu_{\mathcal{F}}(I) \times |I|
$$

• Define the non-cancelling intersections of $\mathcal F$ by $NCI(\mathcal{F}) \stackrel{{\mathrm {def}}}{=} \{I \in \mathbb{L}_\mathcal{F} \mid I \neq \top \text{ and } \mu_\mathcal{F}(I) \neq 0\}$ 17/22

Non-cancelling intersections conjecture

- For two sets S, T such that $S \cap T = \emptyset$, define the disjoint union $S \cup T \stackrel{\text{def}}{=} S \cup T$
- For two sets S, T such that $T \subset S$, define the subset complement $S \stackrel{\scriptscriptstyle\bullet}{\setminus} \mathcal{T} \stackrel{\scriptscriptstyle\rm def}{=} S \setminus \mathcal{T}$

Non-cancelling intersections conjecture

- For two sets S, T such that $S \cap T = \emptyset$, define the disjoint union $S \cup T \stackrel{\text{def}}{=} S \cup T$
- For two sets S, T such that $T \subseteq S$, define the subset complement $S \stackrel{\scriptscriptstyle\bullet}{\setminus} \mathcal{T} \stackrel{\scriptscriptstyle\rm def}{=} S \setminus \mathcal{T}$
- For a set family $\mathcal T$, define $\bullet(\mathcal T)$ to be the smallest set family which contains all the sets of T and is closed under disjoint union and subset complement

Non-cancelling intersections conjecture

- For two sets S, T such that $S \cap T = \emptyset$, define the disjoint union $S \cup T \stackrel{\text{def}}{=} S \cup T$
- For two sets S, T such that $T \subset S$, define the subset complement $S \stackrel{\scriptscriptstyle\bullet}{\setminus} \mathcal{T} \stackrel{\scriptscriptstyle\rm def}{=} S \setminus \mathcal{T}$
- For a set family $\mathcal T$, define $\bullet(\mathcal T)$ to be the smallest set family which contains all the sets of T and is closed under disjoint union and subset complement

Non-cancelling intersections conjecture (NCI for short) Let $\mathcal{F} = \{S_1, \ldots, S_n\}$ be a finite family of finite sets. Then $\bigcup_{i=1}^n S_i \in \bullet(\text{NCI}(\mathcal{F})).$

 $\rightarrow \,$ We have $\bigcup_{i=1}^n S_i = \{a, b, c, d\} = ((\{a\} \stackrel{\ast}{\cup} \{b\}) \stackrel{\ast}{\cup} \{c\}) \stackrel{\ast}{\cup} \{d\}$

 $\rightarrow \,$ We have $\bigcup_{i=1}^n S_i = \{a, b, c, d\} = ((\{a\} \stackrel{\ast}{\cup} \{b\}) \stackrel{\ast}{\cup} \{c\}) \stackrel{\ast}{\cup} \{d\}$ That was easy...

Example 2

Example 2

 \rightarrow We can express $\bigcup_{i=1}^{n} S_i = \{a, b, c, d, e, f, g, h\}$ with:

20 / 22

Conclusion

- We have sketched a proof that we can build in PTIME d-Ds for the provenance of safe queries in the class $\mathcal H$
- We have stated a more general conjecture about intersection lattices: the non-cancelling intersections conjecture
- We have sketched a proof that we can build in PTIME d-Ds for the provenance of safe queries in the class $\mathcal H$
- We have stated a more general conjecture about intersection lattices: the non-cancelling intersections conjecture
	- \rightarrow Counterexample search by bruteforce: no counterexample so far...
- We have sketched a proof that we can build in PTIME d-Ds for the provenance of safe queries in the class $\mathcal H$
- We have stated a more general conjecture about intersection lattices: the non-cancelling intersections conjecture
	- \rightarrow Counterexample search by bruteforce: no counterexample so far...
	- \rightarrow We have some partial positive results: a reformulation of the conjecture that works in the Boolean lattices, and a proof for specific subcases of this reformulation

Thanks for your attention!

量 Nilesh N. Dalvi and Dan Suciu. [The dichotomy of probabilistic inference for unions of](https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf) [conjunctive queries.](https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf) Journal of the ACM, 59(6):30, 2012. 晶 Robert Fink and Dan Olteanu. [Dichotomies for queries with negation in probabilistic](https://www.cs.ox.ac.uk/people/dan.olteanu/papers/fo-tods16.pdf) [databases.](https://www.cs.ox.ac.uk/people/dan.olteanu/papers/fo-tods16.pdf) ACM Transactions on Database Systems (TODS), 41(1):4, 2016.

量

Mikaël Monet.

[Solving a special case of the intensional vs extensional](https://arxiv.org/abs/1912.11864) [conjecture in probabilistic databases.](https://arxiv.org/abs/1912.11864)

In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 149–163, 2020.