The Intensional-Extensional Problem in Probabilistic Databases

Mikaël Monet

January 16th, 2024 Representation, Provenance, and Explanations in Database Theory and Logic Dagstuhl seminar

1. Probabilistic databases

Tuple-independent probabilistic databases Provenance and knowledge compilation The Intensional-Extensional problem

- $2. \ \mbox{Solving the problem for a specific class of UCQs}$
- 3. The non-cancelling intersections conjecture

Probabilistic databases

Probabilistic databases: to represent data uncertainty
 → simplest formalism: tuple-independent database

	Likes		р
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

Probabilistic databases: to represent data uncertainty
 → simplest formalism: tuple-independent database

	Likes		р
			0.5
D' =	Alice	John	1
			0.2
	John	Bob	0.7

• Probabilistic databases: to represent data uncertainty \rightarrow simplest formalism: tuple-independent database

	Likes		р
			0.5
D' =	Alice	John	1
			0.2
	John	Bob	0.7

 $\Pr(D') = (1 - 0.5) \times 1 \times (1 - 0.2) \times 0.7$

Probabilistic databases: to represent data uncertainty
 → simplest formalism: tuple-independent database

	Likes		р
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

Probabilistic databases: to represent data uncertainty
 → simplest formalism: tuple-independent database

	Likes		р
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

$$\Pr(D \models q) = \sum_{\substack{D' \subseteq D \\ D' \models q}} \Pr(D')$$

Probabilistic databases: to represent data uncertainty
 → simplest formalism: tuple-independent database

	Likes		р
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

$$\Pr(D \models q) = \sum_{\substack{D' \subseteq D \\ D' \models q}} \Pr(D')$$
 (not efficient

Probabilistic databases: to represent data uncertainty
 → simplest formalism: tuple-independent database

	Likes		р
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

$$Pr(D \models q) = 1 - \left[(1 - 0.5)(1 - 0.2)(1 - 0.7) + 0.5(1 - 0.2)(1 - 0.7) + (1 - 0.5)(1 - 0.2)(1 - 0.7) + (1 - 0.5)(1 - 0.2)(1 - 0.7) + (1 - 0.5)(1 - 0.2)(1 - 0.7) \right]$$

Definition: problem PQE(q), for q a Boolean query

Input: a tuple-independent probabilistic database D**Output**: $Pr(D \models q)$

- Dalvi and Suciu [JACM'12] have shown a **dichotomy** on the (data) complexity of PQE(q) for unions of conjunctive queries:
 - either $PQE(q) \in \overline{PTIME}$, and q is called "safe"
 - or PQE(q) is $FP^{\#P}$ -hard, and q is called "unsafe"

- Dalvi and Suciu [JACM'12] have shown a **dichotomy** on the (data) complexity of PQE(q) for unions of conjunctive queries:
 - either $PQE(q) \in \overline{PTIME}$, and q is called "safe"
 - or PQE(q) is $FP^{\#P}$ -hard, and q is called "unsafe"
- Their algorithm for a safe query *q* essentially uses three rules:
 → Independence: Pr(A ∧ B) = Pr(A) × Pr(B) when A, B are independent events

- Dalvi and Suciu [JACM'12] have shown a **dichotomy** on the (data) complexity of PQE(q) for unions of conjunctive queries:
 - either $PQE(q) \in \overline{PTIME}$, and q is called "safe"
 - or PQE(q) is $FP^{\#P}$ -hard, and q is called "unsafe"
- Their algorithm for a safe query q essentially uses three rules:
 - → Independence: $Pr(A \land B) = Pr(A) \times Pr(B)$ when A, B are independent events
 - \rightarrow Negation: $Pr(\neg A) = 1 Pr(A)$

- Dalvi and Suciu [JACM'12] have shown a **dichotomy** on the (data) complexity of PQE(q) for unions of conjunctive queries:
 - either $PQE(q) \in \overline{PTIME}$, and q is called "safe"
 - or PQE(q) is $FP^{\#P}$ -hard, and q is called "unsafe"
- Their algorithm for a safe query q essentially uses three rules:
 - → Independence: $Pr(A \land B) = Pr(A) \times Pr(B)$ when A, B are independent events
 - \rightarrow Negation: $Pr(\neg A) = 1 Pr(A)$
 - $\rightarrow \text{ Inclusion-exclusion: } \Pr(A \lor B \lor C \lor \ldots) = \Pr(A) + \Pr(B) + \\ \ldots \Pr(A \land B) \Pr(A \land C) \ldots + \Pr(A \land B \land C) + \ldots$

Definition

The Boolean provenance Prov(q, I) of query q on database D is the Boolean function with facts of D as variables and such that...

Definition

The Boolean provenance Prov(q, I) of query q on database D is the Boolean function with facts of D as variables and such that...

Possible representations:

- Boolean formulas
- Binary Decision Diagrams (OBDDs, FBDDs, etc)
- Boolean circuits

	Likes		р
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

$$q = \exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$$

	Likes		р
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

 $Prov(q, D) = [L(A, B) \land L(B, B)]$ $\lor [L(A, B) \land L(J, B)]$ $\lor [L(B, B) \land L(J, B)]$

 $q = \exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$

Provenance: example

 $q = \exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$

Provenance: example

 $q = \exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$

We have $Pr(D \models q) = Pr(Prov(q, D) = true)$

$\Pr(D \models q) = \Pr(\Pr(q, D) = \text{true})$

 \rightarrow If we can, in PTIME, compute Prov(q, D) in a formalism from knowledge compilation that allows PTIME probability computation, we can solve PQE(q) in PTIME

$\Pr(D \models q) = \Pr(\Pr(q, D) = true)$

- \rightarrow If we can, in PTIME, compute Prov(q, D) in a formalism from knowledge compilation that allows PTIME probability computation, we can solve PQE(q) in PTIME
 - free or ordered decision diagrams (OBDDs, FBDDs)

$\Pr(D \models q) = \Pr(\Pr(q, D) = \text{true})$

- \rightarrow If we can, in PTIME, compute Prov(q, D) in a formalism from knowledge compilation that allows PTIME probability computation, we can solve PQE(q) in PTIME
 - free or ordered decision diagrams (OBDDs, FBDDs)
 - deterministic and decomposable Boolean circuits (d-Ds)

$\Pr(D \models q) = \Pr(\Pr(q, D) = \text{true})$

- \rightarrow If we can, in PTIME, compute Prov(q, D) in a formalism from knowledge compilation that allows PTIME probability computation, we can solve PQE(q) in PTIME
 - free or ordered decision diagrams (OBDDs, FBDDs)
 - deterministic and decomposable Boolean circuits (d-Ds)
 - The safe UCQs for which this is possible with OBDDs are exactly the inversion-free UCQs
- \rightarrow This talk: what about d-Ds?

What are deterministic and decomposable circuits (d-Ds)?

Let C be a Boolean circuit

 a ∧-gate g is decomposable if any two inputs gates g₁, g₂ of g depend on disjoint sets of variables

What are deterministic and decomposable circuits (d-Ds)?

Let C be a Boolean circuit

- a ∧-gate g is decomposable if any two inputs gates g₁, g₂ of g depend on disjoint sets of variables
- a ∨-gate g is deterministic if any two inputs gates g₁, g₂ of g are mutually exclusive

Let C be a Boolean circuit

- a ∧-gate g is decomposable if any two inputs gates g₁, g₂ of g depend on disjoint sets of variables
- a ∨-gate g is deterministic if any two inputs gates g₁, g₂ of g are mutually exclusive
- the circuit C is a d-D if all its ∧-gates are decomposable and all its ∨-gates are deterministic

Let C be a Boolean circuit

- a ∧-gate g is decomposable if any two inputs gates g₁, g₂ of g depend on disjoint sets of variables
- a ∨-gate g is deterministic if any two inputs gates g₁, g₂ of g are mutually exclusive
- the circuit C is a d-D if all its ∧-gates are decomposable and all its ∨-gates are deterministic
- → To obtain the probability, replace \land -gates by \times , \lor -gates by +, \neg -gates by 1 x, and evaluate. In other words, use the following rules:
 - → Independence: $Pr(A \land B) = Pr(A) \times Pr(B)$ when A, B are independent events
 - \rightarrow Negation: $Pr(\neg A) = 1 Pr(A)$
 - → Disjoint Events: $Pr(A \lor B) = Pr(A) + Pr(B)$ for A, B disjoint events

 $q = \exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$

Intensional-Extensional (open) problem for d-Ds

For every safe UCQ q, can we compute in PTIME its provenance on a database D as a deterministic and decomposable circuit?

Intensional-Extensional (open) problem for d-Ds

For every safe UCQ q, can we compute in PTIME its provenance on a database D as a deterministic and decomposable circuit?

In other words, can we replace the inclusion–exclusion rule by the disjunction rule?

Intensional-Extensional (open) problem for d-Ds For every safe UCQ *q*, can we compute in PTIME its provenance on a database *D* as a deterministic and decomposable circuit?

In other words, can we replace the inclusion-exclusion rule by the disjunction rule?

→ This approach is more modular than Dalvi and Suciu's original algorithm for safe UCQs, and it would allow us to do more than probabilistic evaluation: enumerate the satisfying states of the data, compute the satisfying state of the data that is most probable, update the tuples' probabilities, etc.

Solving the problem for a specific class of UCQs

- Focus on a class of UCQs, denoted \mathcal{H} (defined next slide)
- It had been conjectured that for some safe queries $q \in H$, the provenance of q cannot be computed in PTIME as d-Ds
 - $\rightarrow\,$ because these are the simplest queries for which Dalvi and Suciu's algorithm uses <code>inclusion-exclusion</code>
 - \rightarrow because this conjecture had been proven for more restricted formalisms of knowledge compilation (d-SDNNFs, dec-DNNFs)

Main result

For every (fixed) safe query $q \in H$, being given as input a database D, we can compute in PTIME a d-D that represents Prov(q, D).

Let k ≥ 1 and R, S₁,..., S_k, T be pairwise distinct relational predicates, with R and T unary and S_i binary. Define the queries h_{k,i} for 0 ≤ i ≤ k:

- Let k ≥ 1 and R, S₁,..., S_k, T be pairwise distinct relational predicates, with R and T unary and S_i binary. Define the queries h_{k,i} for 0 ≤ i ≤ k:
 - $h_{k,0} \stackrel{\text{def}}{=} \exists x \exists y \ R(x) \land S_1(x,y);$ • $h_{k,i} \stackrel{\text{def}}{=} \exists x \exists y \ S_i(x,y) \land S_{i+1}(x,y) \text{ for } 1 \leq i < k;$ • $h_{k,k} \stackrel{\text{def}}{=} \exists x \exists y \ S_k(x,y) \land T(y).$

Let k ≥ 1 and R, S₁,..., S_k, T be pairwise distinct relational predicates, with R and T unary and S_i binary. Define the queries h_{k,i} for 0 ≤ i ≤ k:

•
$$h_{k,0} \stackrel{\text{def}}{=} \exists x \exists y \ R(x) \land S_1(x,y);$$

• $h_{k,i} \stackrel{\text{def}}{=} \exists x \exists y \ S_i(x,y) \land S_{i+1}(x,y) \text{ for } 1 \leq i < k;$
• $h_{k,k} \stackrel{\text{def}}{=} \exists x \exists y \ S_k(x,y) \land T(y).$

• $\mathcal{H}_k \stackrel{\text{def}}{=}$ the set of UCQs that can be formed from the queries $h_{k,i}$, i.e., positive Boolean combinations of those queries

•
$$\mathcal{H} \stackrel{\mathrm{def}}{=} \bigcup_{k=1}^{\infty} \mathcal{H}_k$$

Write $[k] \stackrel{\text{def}}{=} \{0, \ldots, k\}$. Let us represent a query $q \in \mathcal{H}_k$ as follows:

Write $[k] \stackrel{\text{def}}{=} \{0, \ldots, k\}$. Let us represent a query $q \in \mathcal{H}_k$ as follows:

 the (Hasse diagram of) Boolean lattice of 2^[k]

Write $[k] \stackrel{\text{def}}{=} \{0, \ldots, k\}$. Let us represent a query $q \in \mathcal{H}_k$ as follows:

• the (Hasse diagram of) Boolean lattice of 2^[k]

 each node v ⊆ [k] of the graph represents a subquery q_v def =

 $(\bigwedge_{\ell \in v} h_{k,\ell}) \land (\bigwedge_{\ell \in [k] \setminus v} \neg h_{k,\ell}).$ (Note that q_v is not a UCQ)

Write $[k] \stackrel{\text{def}}{=} \{0, \ldots, k\}$. Let us represent a query $q \in \mathcal{H}_k$ as follows:

- the (Hasse diagram of) Boolean lattice of 2^[k]
- each node v ⊆ [k] of the graph represents a subquery q_v def =

 $(\bigwedge_{\ell \in v} h_{k,\ell}) \land (\bigwedge_{\ell \in [k] \setminus v} \neg h_{k,\ell}).$ (Note that q_v is not a UCQ)

 (in particular, every database D satisfies exactly one subquery q_v)

Write $[k] \stackrel{\text{def}}{=} \{0, \ldots, k\}$. Let us represent a query $q \in \mathcal{H}_k$ as follows:

- the (Hasse diagram of) Boolean lattice of 2^[k]
- each node v ⊆ [k] of the graph represents a subquery q_v def =

 $(\bigwedge_{\ell \in \nu} h_{k,\ell}) \land (\bigwedge_{\ell \in [k] \setminus \nu} \neg h_{k,\ell}).$ (Note that q_{ν} is not a UCQ)

- (in particular, every database D satisfies exactly one subquery q_v)
- some nodes are colored, and
 q = the disjunction of the
 subqueries q_v that are represented
 by the colored nodes v

Proof technique (2/4): basic queries

Proposition (Fink & Olteanu [TODS'16])

For any adjacent nodes v, v' of the graph, being given as input a database D, we can compute in PTIME a d-D representing $Prov(q_v \lor q_{v'}, D)$.

Proof technique (2/4): basic queries

Proposition (Fink & Olteanu [TODS'16])

For any adjacent nodes v, v' of the graph, being given as input a database D, we can compute in PTIME a d-D representing $Prov(q_v \lor q_{v'}, D)$.

- Idea: starting from q, we will entirely uncolor the graph by using multiple times the following operations:
 - Uncolor two adjacent nodes that are colored
 - Color two adjacent nodes that were not colored

Proof technique (2/4): basic queries

Proposition (Fink & Olteanu [TODS'16])

For any adjacent nodes v, v' of the graph, being given as input a database D, we can compute in PTIME a d-D representing $Prov(q_v \lor q_{v'}, D)$.

- Idea: starting from q, we will entirely uncolor the graph by using multiple times the following operations:
 - Uncolor two adjacent nodes that are colored
 - Color two adjacent nodes that were not colored
- $\rightarrow\,$ Simultaneously, we build a deterministic and decomposable circuit for the provenance of q

Uncoloring:

Uncoloring:

Uncoloring:

 $\operatorname{Prov}(q, D) =$

Then continue with q'

Coloring: (Guy Van den Broeck's trick)

$\operatorname{Prov}(q, D) =$

Proposition

Proposition

The non-cancelling intersections conjecture

Ongoing work with Antoine Amarilli, Louis Jachiet and Dan Suciu

Intersection lattices, Möbius function and Inclusion-Exclusion

• Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets, pairwise incomparable

 \rightarrow **Example:** $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}$

• Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets, pairwise incomparable

→ **Example:** $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}$

• Let $\mathbb{L}_\mathcal{F}$ be its intersection lattice:

• Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets, pairwise incomparable

 \rightarrow **Example:** $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}$

• Let $\mathbb{L}_\mathcal{F}$ be its intersection lattice:

• Let $\mu_{\mathcal{F}} : \mathbb{L}_{\mathcal{F}} \to \mathbb{Z}$ be the Möbius function defined by

• Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets, pairwise incomparable

 \rightarrow **Example:** $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}$

• Let $\mathbb{L}_\mathcal{F}$ be its intersection lattice:

• Let $\mu_{\mathcal{F}} : \mathbb{L}_{\mathcal{F}} \to \mathbb{Z}$ be the Möbius function defined by

•
$$\mu_{\mathcal{F}}(\top) = 1$$

• Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets, pairwise incomparable

 \rightarrow **Example:** $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}$

• Let $\mathbb{L}_\mathcal{F}$ be its intersection lattice:

- Let $\mu_{\mathcal{F}} : \mathbb{L}_{\mathcal{F}} \to \mathbb{Z}$ be the Möbius function defined by
 - $\mu_{\mathcal{F}}(\top) = 1$

•
$$\mu_{\mathcal{F}}(I) =$$

 $-\sum_{\substack{I' \in \mathbb{L}_{\mathcal{F}} \\ I' > I}} \mu_{\mathcal{F}}(I')$
for $I \in \mathbb{L}_{\mathcal{F}}, I \neq \exists$

• Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets, pairwise incomparable

 \rightarrow **Example:** $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}$

• Let $\mathbb{L}_\mathcal{F}$ be its intersection lattice:

• Let $\mu_{\mathcal{F}} : \mathbb{L}_{\mathcal{F}} \to \mathbb{Z}$ be the Möbius function defined by

•
$$\mu_{\mathcal{F}}(\top) = 1$$

$$\begin{array}{l} \rho \ \mu_{\mathcal{F}}(I) = \\ -\sum_{\substack{I' \in \mathbb{L}_{\mathcal{F}} \\ I' > I}} \mu_{\mathcal{F}}(I') \\ \text{for } I \in \mathbb{L}_{\mathcal{F}}, \ I \neq \top \end{array}$$

Fact (coefficients of the Inclusion-Exclusion formula)

$$|\bigcup_{i=1}^n S_i| = -\sum_{\substack{I \in \mathbb{L}_F \ I \neq \top}} \mu_F(I) \times |I|$$

• Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets, pairwise incomparable

 \rightarrow **Example:** $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}$

• Let $\mathbb{L}_\mathcal{F}$ be its intersection lattice:

• Let $\mu_{\mathcal{F}} : \mathbb{L}_{\mathcal{F}} \to \mathbb{Z}$ be the Möbius function defined by

•
$$\mu_{\mathcal{F}}(\top) = 1$$

$$\begin{array}{l} \mu_{\mathcal{F}}(I) = \\ -\sum_{\substack{I' \in \mathbb{L}_{\mathcal{F}} \\ I' > I}} \mu_{\mathcal{F}}(I') \\ \text{for } I \in \mathbb{L}_{\mathcal{F}}, I \neq \top \end{array}$$

Fact (coefficients of the Inclusion-Exclusion formula)

$$|\bigcup_{i=1}^n S_i| = -\sum_{\substack{I \in \mathbb{L}_F \ I \neq \top}} \mu_F(I) \times |I|$$

• Define the non-cancelling intersections of \mathcal{F} by $\operatorname{NCI}(\mathcal{F}) \stackrel{\text{def}}{=} \{ I \in \mathbb{L}_{\mathcal{F}} \mid I \neq \top \text{ and } \mu_{\mathcal{F}}(I) \neq 0 \}$ 17/22

Non-cancelling intersections conjecture

- For two sets S, T such that S ∩ T = Ø, define the disjoint union S ∪ T = S ∪ T
- For two sets S, T such that $T \subseteq S$, define the subset complement $S \stackrel{\bullet}{\setminus} T \stackrel{\text{def}}{=} S \setminus T$

Non-cancelling intersections conjecture

- For two sets S, T such that S ∩ T = Ø, define the disjoint union S ∪ T = S ∪ T
- For two sets S, T such that $T \subseteq S$, define the subset complement $S \stackrel{\bullet}{\setminus} T \stackrel{\text{def}}{=} S \setminus T$
- For a set family *T*, define ●(*T*) to be the smallest set family which contains all the sets of *T* and is closed under disjoint union and subset complement

Non-cancelling intersections conjecture

- For two sets S, T such that S ∩ T = Ø, define the disjoint union S ∪ T = S ∪ T
- For two sets S, T such that $T \subseteq S$, define the subset complement $S \stackrel{\bullet}{\setminus} T \stackrel{\text{def}}{=} S \setminus T$
- For a set family *T*, define ●(*T*) to be the smallest set family which contains all the sets of *T* and is closed under disjoint union and subset complement

Non-cancelling intersections conjecture (NCI for short) Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets. Then $\bigcup_{i=1}^n S_i \in \bullet(\operatorname{NCI}(\mathcal{F})).$

 \rightarrow We have $\bigcup_{i=1}^n S_i = \{a, b, c, d\} = ((\{a\} \overset{\bullet}{\cup} \{b\}) \overset{\bullet}{\cup} \{c\}) \overset{\bullet}{\cup} \{d\}$

 $\rightarrow \text{ We have } \bigcup_{i=1}^{n} S_{i} = \{a, b, c, d\} = ((\{a\} \overset{\bullet}{\cup} \{b\}) \overset{\bullet}{\cup} \{c\}) \overset{\bullet}{\cup} \{d\}$ That was easy... Example 2

Example 2

 \rightarrow We can express $\bigcup_{i=1}^{n} S_i = \{a, b, c, d, e, f, g, h\}$ with:

20 / 22

- We have sketched a proof that we can build in PTIME d-Ds for the provenance of safe queries in the class ${\cal H}$
- We have stated a more general conjecture about intersection lattices: the non-cancelling intersections conjecture

- We have sketched a proof that we can build in PTIME d-Ds for the provenance of safe queries in the class ${\cal H}$
- We have stated a more general conjecture about intersection lattices: the non-cancelling intersections conjecture
 - $\rightarrow\,$ Counterexample search by bruteforce: no counterexample so far...

- We have sketched a proof that we can build in PTIME d-Ds for the provenance of safe queries in the class ${\cal H}$
- We have stated a more general conjecture about intersection lattices: the non-cancelling intersections conjecture
 - $\rightarrow\,$ Counterexample search by bruteforce: no counterexample so far...
 - $\rightarrow\,$ We have some partial positive results: a reformulation of the conjecture that works in the Boolean lattices, and a proof for specific subcases of this reformulation

Thanks for your attention!

Nilesh N. Dalvi and Dan Suciu. The dichotomy of probabilistic inference for unions of conjunctive queries. Journal of the ACM, 59(6):30, 2012. Robert Fink and Dan Olteanu. Dichotomies for queries with negation in probabilistic databases. ACM Transactions on Database Systems (TODS), 41(1):4, 2016.

Mikaël Monet.

Solving a special case of the intensional vs extensional conjecture in probabilistic databases.

In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 149–163, 2020.