Connecting Width and Structure
in Knowledge Compilation

Antoine Amarilli’, Mikaél Monet™3, Pierre Senellart™*3
October 24th, 2018 (results from ICDT 2018 paper)

1LTCI, Telecom ParisTech, Université Paris-Saclay; Paris, France
2Ecole normale supérieure, PSL University; Paris, France

3Inria; Paris, France

What is Knowledge Compilation?

e You have a task
— Boolean SAT (is there a satisfying assignment?)

1/18

What is Knowledge Compilation?

¢ You have a task

— Boolean SAT (is there a satisfying assignment?)
— #SAT (model counting) (how many satisfying assignments?)

1/18

What is Knowledge Compilation?

¢ You have a task

— Boolean SAT (is there a satisfying assignment?)
— #SAT (model counting) (how many satisfying assignments?)
— probabilistic evaluation

1/18

What is Knowledge Compilation?

e You have a task
— Boolean SAT (is there a satisfying assignment?)
— #SAT (model counting) (how many satisfying assignments?)
— probabilistic evaluation
— enumeration

1/18

What is Knowledge Compilation?

e You have a task
— Boolean SAT (is there a satisfying assignment?)
— #SAT (model counting) (how many satisfying assignments?)
— probabilistic evaluation
— enumeration

 Idea: compile the input into a format that is designed to solve
efficiently your task

1/18

Why would I do that?

» Without knowledge compilation

Algo. 1
Input class C; ——— > Result

2/18

Why would I do that?

» Without knowledge compilation

Algo. 1
Input class C; ——— > Result

Algo. 2
Input class C; —— > Result

2/18

Why would I do that?

» Without knowledge compilation

Algo. 1
Input class C; ——— > Result

Algo. 2
Input class C; —— > Result

Algo. 3
Input class C; ——— Result

2/18

Why would I do that?

» Without knowledge compilation

Algo. 1
Input class C; ——— > Result

Algo. 2
Input class C; —— > Result

Algo. 3
Input class C; ——— Result

e With knowledge compilation:

2/18

Why would I do that?

» Without knowledge compilation

Algo. 1
Input class C; ——— > Result

Algo. 2
Input class C; —— > Result

Algo. 3
Input class C; ——— Result

e With knowledge compilation:

Input class C,

Compilation target Generic algo.
Input class C, for your task —— > Result

Input class C5

2/18

Why would I do that?

» Without knowledge compilation

Algo. 1
Input class C; ——— > Result

Algo. 2
Input class C; —— > Result

Algo. 3
Input class C; ——— Result

e With knowledge compilation:

Input class ¢, M)
Compilation target Generic algo.

Input class C, for your task —— > Result

Input class C5

2/18

Why would I do that?

» Without knowledge compilation

Algo. 1
Input class C; ——— > Result

Algo. 2
Input class C; —— > Result

Algo. 3
Input class C; ——— Result

e With knowledge compilation:

Input class ¢, ~4Algo. ¢/

Algo. 2~ Compilation target ~Generic algo.

for your task Result

Input class C,

Input class C5

2/18

Why would I do that?

» Without knowledge compilation

Algo. 1
Input class C; ——— > Result

Algo. 2
Input class C; —— > Result

Algo. 3
Input class C; ——— Result

e With knowledge compilation:

Input class ¢, ~4Algo. ¢/

Algo. 2~ Compilation target ~Generic algo.

Input class G; for your task

W
Input class C5

Result

2/18

Why would I do that?

» Without knowledge compilation

Algo. 1
Input class C; ——— > Result

Algo. 2
Input class C; —— > Result

Algo. 3
Input class C; ——— Result

» With knowledge compilation: modularity!

Input class ¢, ~4Algo. ¢/

Algo. 2~ Compilation target ~Generic algo.

Input class G; for your task

W
Input class C5

Result

2/18

Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

3/18

Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Truth table

3/18

Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Truth table Evaluation

3/18

Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Truth table O(1) Evaluation

3/18

Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Truth table O(1) Evaluation

SAT

3/18

Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Truth table O(1) Evaluation

o(n) SAT

3/18

Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result
Truth table O(1) Evaluation
0o(n) SAT

HSAT

3/18

Studying the compilation targets

¢ Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input » Crarget > Result
Truth table O(1) Evaluation
o(n) SAT

3/18

Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result
DNF Evaluation
SAT
HSAT

3/18

Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result
DNF O(n) Evaluation
SAT
HSAT

3/18

Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result
DNF O(n) Evaluation
o(n) SAT

HSAT

3/18

Studying the compilation targets

e Tradeoffs between:
— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result
DNF O(n) Evaluation
0(n) SAT

#P-hard #SAT

3/18

Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result
Boolean circuit Evaluation
SAT
HSAT

3/18

Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Boolean circuit O(n) Evaluation
SAT

HSAT

3/18

Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Boolean circuit O(n) Evaluation
NP-hard SAT

HSAT

3/18

Studying the compilation targets

e Tradeoffs between:
— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Boolean circuit O(n) Evaluation
NP-hard SAT

#P-hard #SAT

3/18

Studying the compilation targets

e Tradeoffs between:
— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Boolean circuit O(n) Evaluation
NP-hard SAT

#P-hard #SAT

— When can we convert from one target to another?

3/18

Studying the compilation targets

e Tradeoffs between:
— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Boolean circuit O(n) Evaluation
NP-hard SAT

#P-hard #SAT

— When can we convert from one target to another?
e We are interested in #SAT and probability evaluation

3/18

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

4/18

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:
« Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.

4/18

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

« Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
— message passing algorithm for #SAT and probabilistic evaluation

4/18

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

« Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
— message passing algorithm for #SAT and probabilistic evaluation
- Links with Bayesian networks

4/18

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

« Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.

— message passing algorithm for #SAT and probabilistic evaluation
- Links with Bayesian networks

Semantics-based:

 Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)

4/18

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

« Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.

— message passing algorithm for #SAT and probabilistic evaluation
- Links with Bayesian networks

Semantics-based:

 Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)

— #SAT and probabilistic evaluation are easy because these classes
have strong semantic constraints

4/18

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

« Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.

— message passing algorithm for #SAT and probabilistic evaluation
- Links with Bayesian networks

Semantics-based:

 Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
— #SAT and probabilistic evaluation are easy because these classes
have strong semantic constraints
- Used to understand #SAT solvers

4/18

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

« Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.

— message passing algorithm for #SAT and probabilistic evaluation
- Links with Bayesian networks

Semantics-based:

 Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
— #SAT and probabilistic evaluation are easy because these classes
have strong semantic constraints
- Used to understand #SAT solvers

Question: what are the links beetween the two?

4/18

- O(|ep| x exp(R
DNF/CNF ¢ of pathwidth < k (el (k) % OBDD |(not us)

5/18

- O(|ep| x exp(R
DNF/CNF ¢ of pathwidth < k (el (k) % OBDD |(not us)

e + matching lower bound

5/18

- O(|ep| x exp(R
DNF/CNF ¢ of pathwidth < k (el (k) % OBDD |(not us)

e + matching lower bound

Then

O(I€] x exp(R))
. | Circuit C of treewidth < k » d-SDNNF

5/18

- O(|ep| x exp(R
DNF/CNF ¢ of pathwidth < k (el (k) % OBDD |(not us)

e + matching lower bound

Then

O(|C| x exp(R
. | Circuit C of treewidth < R (1] ())>d5DNNF

e +~ matching lower bound

5/18

Pathwidth and OBDDs

Ordered Binary Decision Diagrams (OBDDs)

» DAG with sink nodes {T, L} and internal
nodes labeled by variables

7/18

Ordered Binary Decision Diagrams (OBDDs)

» DAG with sink nodes {T, L} and internal
nodes labeled by variables

e Semantics: follow the path of an assignment
to get the value of the Boolean function 0 1

7/18

Ordered Binary Decision Diagrams (OBDDs)

» DAG with sink nodes {T, L} and internal
nodes labeled by variables
e Semantics: follow the path of an assignment
to get the value of the Boolean function 0 1
e There is a total order on the variables
v = X; X5 X3 X, such that each root—to—sink
path is compatible with v

7/18

Ordered Binary Decision Diagrams (OBDDs)

» DAG with sink nodes {T, L} and internal
nodes labeled by variables

e Semantics: follow the path of an assignment
to get the value of the Boolean function 0 \

e There is a total order on the variables X
v = X; X5 X3 X, such that each root-to-sink o 2
path is compatible with v

e Compute probability bottom-up

7/18

Ordered Binary Decision Diagrams (OBDDs)

» DAG with sink nodes {T, L} and internal
nodes labeled by variables

e Semantics: follow the path of an assignment
to get the value of the Boolean function 0 \

» There is a total order on the variables X,
v = X; X5 X3 X, such that each root-to-sink o
path is compatible with v

e Compute probability bottom-up

Prr(e) = m(Xz) x Prz(e)
+(1—7(Xz)) x Prr(e)

7/18

Ordered Binary Decision Diagrams (OBDDs)

» DAG with sink nodes {T, L} and internal
nodes labeled by variables

e Semantics: follow the path of an assignment

to get the value of the Boolean function 0 1

e There is a total order on the variables \X2
v = X; X5 X3 X, such that each root-to-sink o y
path is compatible with v X5 0

e Compute probability bottom-up
Pry(e) = m(X5) x Pry(e)
+(1—7(Xz)) x Prr(e)

e Width of the OBDD ~ largest number of
nodes that are labeled by the same variable

7/18

Bounded pathwidth CNFs/DNFs

 Pathwidth of a DNF/CNF: that of its Gaifman graph
 Arity: size of the largest clause

* Degree: maximal number of clauses to which a variable belongs

8/18

Pathwidth and OBDDs: Upper and lower bounds

Upper bound:

Theorem (Bova & Slivovsky, 2017)

Let o be a CNF or DNF of pathwidth k. We can compile into an OBDD
of width 2kt2 (hence of size < nb_vars x 2k+2)

9/18

Pathwidth and OBDDs: Upper and lower bounds

Upper bound:

Theorem (Bova & Slivovsky, 2017)

Let o be a CNF or DNF of pathwidth k. We can compile into an OBDD
of width 2kt2 (hence of size < nb_vars x 2k+2)

Lower bound:

Theorem (Our contribution)
Let ¢ be a monotone CNF or DNF of pathwidth k, and let a := arity(y)

kR
and d := degree(y). Then any OBDD for ¢ has width > ﬂmJ

9/18

Pathwidth and OBDDs: Upper and lower bounds

Upper bound:

Theorem (Bova & Slivovsky, 2017)

Let o be a CNF or DNF of pathwidth k. We can compile into an OBDD
of width 2kt2 (hence of size < nb_vars x 2k+2)

Lower bound:

Theorem (Our contribution)
Let ¢ be a monotone CNF or DNF of pathwidth k, and let a := arity(y)

kR
and d := degree(y). Then any OBDD for ¢ has width > ﬂmJ

e This is a generic lower bound

9/18

Pathwidth and OBDDs: Upper and lower bounds

Upper bound:

Theorem (Bova & Slivovsky, 2017)

Let o be a CNF or DNF of pathwidth k. We can compile into an OBDD
of width 2kt2 (hence of size < nb_vars x 2k+2)

Lower bound:

Theorem (Our contribution)
Let ¢ be a monotone CNF or DNF of pathwidth k, and let a := arity(y)

kR
and d := degree(y). Then any OBDD for ¢ has width > ﬂmJ

e This is a generic lower bound

e For monotone DNF/CNF ¢ of constant arity and degree, the
smallest width of an OBDD for ¢ is 2©(Pathwidth())

9/18

Treewidth and d-SDNNFs

Bounded treewidth Boolean circuits

Bounded treewidth Boolean circuits

)
())
Treewidth of C = that of the underlying
° °>0 graph
()
© @
00

Bounded treewidth Boolean circuits

)
())
Treewidth of C = that of the underlying
° °>0 graph
()
© @
00

We can do message passing:

Theorem (Lauritzen & Spielgelhalter, 1988)
Fix k € N. Given a Boolean circuit C of treewidth < k, we can compute
its probability in time O(f(R) x |C|), where f is singly exponential

11/18

12/18

» Negation Normal Form: negations
only applied to the leaves

» Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

12/18

» Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— SAT can be solved efficiently

12/18

» Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— SAT can be solved efficiently

e Deterministic: inputs of v-gates are
mutually exclusive

12/18

» Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— SAT can be solved efficiently

e Deterministic: inputs of v-gates are
mutually exclusive
— HSAT and probability evaluation

12/18

» Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— SAT can be solved efficiently

e Deterministic: inputs of v-gates are
mutually exclusive

— HSAT and probability evaluation

 Structured: there is a vtree that
structures the A-gates

12/18

» Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— SAT can be solved efficiently

e Deterministic: inputs of v-gates are
mutually exclusive

— HSAT and probability evaluation

 Structured: there is a vtree that
structures the A-gates

— Enumeration

12/18

Treewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)

Let C be a Boolean circuit on m variables of treewidth < k.
There exists a d-SDNNF equivalent to C of size O(m x g(R)),
where g is doubly exponential

13/18

Treewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)

Let C be a Boolean circuit on m variables of treewidth < k.
There exists a d-SDNNF equivalent to C of size O(m x g(R)),
where g is doubly exponential

Drawbacks: non constructive

13/18

Treewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)

Let C be a Boolean circuit on m variables of treewidth < k.
There exists a d-SDNNF equivalent to C of size O(m x g(R)),
where g is doubly exponential

Drawbacks: non constructive

Theorem (Our contribution)
Let C be a Boolean circuit of treewidth < k.

We can compute a d-SDNNF equivalent to C in time O(|C| x f(R)),
where f is singly exponential

13/18

Treewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)

Let C be a Boolean circuit on m variables of treewidth < k.
There exists a d-SDNNF equivalent to C of size O(m x g(R)),
where g is doubly exponential

Drawbacks: non constructive

Theorem (Our contribution)

Let C be a Boolean circuit of treewidth < k.

We can compute a d-SDNNF equivalent to C in time O(|C| x f(R)),
where f is singly exponential

Applications: recapturing message passing, and enumeration of
satisfying valuations

13/18

Construction sketch

14/18

Construction sketch

14/18

Construction sketch

i
©

®,
(V)
X] () 3
:
&

14/18

Construction sketch

14/18

Construction sketch

14/18

@
(v
()

(9

< N
~

=
[®]
-
(]
—
7]
c
R
)
(8]
=
e
fre)
(2]
<
(=}
(9

14/18

N

=
[®]
-
(]
—
7]
c
R
)
(8]
=
e
fre)
(2]
<
(=}
(9

14/18

>
9 @»@

S
IIQ @
S
&)

3
®

©
(v
()

(9

=
[®]
-
(]
—
7]
c
R
)
(8]
=
e
fre)
(2]
<
(=}
(9

~

14/18

=
[®]
-
(]
—
7]
c
R
)
(8]
=
e
fre)
(2]
<
(=}
(9

)
&

Q)
(V)

[

<
<
<
<
<

=
[®]
-
(]
—
7]
c
R
)
(8]
=
e
fre)
(2]
<
(=}
(9

OO

©)

®
L&, O

AVAVAVAWA
2

3
®

@
(v
()

&)

[

=
[®]
-
(]
—
7]
c
R
)
(8]
=
e
fre)
(2]
<
(=}
(9

Q)
(V)

=
[®]
-
(]
—
7]
c
R
)
(8]
=
e
fre)
(2]
<
(=}
(9

OO

©)

i
®
L&, O

AYAVAYAWA
2

=
[®]
-
(]
—
7]
c
R
)
(8]
=
e
fre)
(2]
<
(=}
(9

Q)
(V)

=
[®]
-
(]
—
7]
c
R
)
(8]
=
e
fre)
(2]
<
(=}
(9

=
[®]
-
(]
—
7]
c
R
)
(8]
=
e
fre)
(2]
<
(=}
(9

=
[®]
-
(]
—
7]
c
R
)
(8]
=
e
fre)
(2]
<
(=}
(9

Treewidth and d-SDNNFs: Lower bound

Theorem

Let ¢ be a monotone DNF of treewidth F, let a := arity(y¢) and

kR
d := degree(yp). Then any d-SDNNF for ¢ has size > 2L3xa3xd2J —1

15/18

Treewidth and d-SDNNFs: Lower bound

Theorem

Let ¢ be a monotone DNF of treewidth F, let a := arity(y¢) and

kR
d := degree(yp). Then any d-SDNNF for ¢ has size > 2L3xa3xd2J —1

e For CNFs, the bound even works for (non-deterministic) SDNNF

15/18

Treewidth and d-SDNNFs: Lower bound

Theorem

Let ¢ be a monotone DNF of treewidth F, let a := arity(y¢) and

kR
d := degree(yp). Then any d-SDNNF for ¢ has size > 2L3xa3xd2J —1

e For CNFs, the bound even works for (non-deterministic) SDNNF

e Again, the bound is generic: it applies to any monotone DNF/CNF

15/18

Proof Sketch for CNFs (1/2)

Use the connection made in [Bova, Capelli & Mengel, 2016] between
the notion of combinatorial rectangle in communication complexity
and SDNNFs.

Definition

A (X,Y)-rectangle is a Boolean function R : 2X“Y — {0, 1} that can be
written as Ry A Ry, for some Boolean functions Ry : 2X — {0,1} and
Ry : 2V — {0,1}. A (X, Y)-rectangle cover of a function f : 2*“¥ — {0, 1}
is aset {Rq,---,Rn} of (X,Y)-rectangles such that f = \/I_, R;.

16/18

Proof Sketch for CNFs (1/2)

Use the connection made in [Bova, Capelli & Mengel, 2016] between
the notion of combinatorial rectangle in communication complexity
and SDNNFs.

Definition

A (X,Y)-rectangle is a Boolean function R : 2X“Y — {0, 1} that can be
written as Ry A Ry, for some Boolean functions Ry : 2X — {0,1} and
Ry : 2V — {0,1}. A (X, Y)-rectangle cover of a function f : 2*“¥ — {0, 1}
is aset {Rq,---,Rn} of (X,Y)-rectangles such that f = \/I_, R;.

Theorem (Bova, Capelli & Mengel, 2016)

Let C be an SDNNF computing a function ¢ on variables V, structured
by av-tree T. Let n € T, and let (X, Y) be the partition of V that n
induces. Then ¢ has a (X, Y)-rectangle cover of size at most |C|.

16/18

Proof Sketch for CNFs (2/2)

A CNF having no small rectangle cover:

Theorem (Sherstov, 2014)

Let X = {X1,...,xn} and Y = {ya,...,¥n} be two disjoint sets of
variables. Then any (X, Y)-rectangle cover of the Boolean function
SCOV(X,Y) :== AiL, X; V y; has size > 2".

17/18

Proof Sketch for CNFs (2/2)

A CNF having no small rectangle cover:

Theorem (Sherstov, 2014)

Let X = {X1,...,xn} and Y = {ya,...,¥n} be two disjoint sets of
variables. Then any (X, Y)-rectangle cover of the Boolean function
SCOV(X,Y) :== AiL, X; V y; has size > 2".

We show that we can find SCOV : (X, Y) within any CNF of
x a3 xd?
treewidth > k. ’

17/18

Proof Sketch for CNFs (2/2)

A CNF having no small rectangle cover:

Theorem (Sherstov, 2014)

Let X = {X1,...,xn} and Y = {ya,...,¥n} be two disjoint sets of
variables. Then any (X, Y)-rectangle cover of the Boolean function
SCOV(X,Y) :== AiL, X; V y; has size > 2".

We show that we can find SCOV : (X, Y) within any CNF of
x a3 xd?
treewidth > k. ’

— Rephrase treewidth as treesplitwidth, a new measure capturing
the ‘performance’ of a v-tree

17/18

Conclusion

» Strong connections between width- and semantics-based
restrictions in knowledge compilation:

18/18

Conclusion

e Strong connections between width- and semantics-based
restrictions in knowledge compilation:

— Recapture message passing on bounded treewidth circuits by
compiling them to d-SDNNF

18/18

Conclusion

e Strong connections between width- and semantics-based
restrictions in knowledge compilation:
— Recapture message passing on bounded treewidth circuits by
compiling them to d-SDNNF
— Compilation is singly exponential in the treewidth of the circuit
and cannot be avoided

18/18

Conclusion

e Strong connections between width- and semantics-based
restrictions in knowledge compilation:
— Recapture message passing on bounded treewidth circuits by

compiling them to d-SDNNF
— Compilation is singly exponential in the treewidth of the circuit

and cannot be avoided
— The width of an OBDD and the pathwidth of a DNF/CNF are within

a constant of each other

18/18

Conclusion

e Strong connections between width- and semantics-based
restrictions in knowledge compilation:
— Recapture message passing on bounded treewidth circuits by

compiling them to d-SDNNF
— Compilation is singly exponential in the treewidth of the circuit

and cannot be avoided
— The width of an OBDD and the pathwidth of a DNF/CNF are within

a constant of each other

e Future work:
— Get rid of arity and degree assumptions?
— Notion of width for d-SDNNFs?
— Lower bound for d-DNNFs?

Thanks for your attention!

18/18

