Connecting Width and Structure in Knowledge Compilation

Antoine Amarilli¹, **Mikaël Monet**^{1,3}, Pierre Senellart^{1,2,3} October 24th, 2018 (results from ICDT 2018 paper)

¹LTCI, Télécom ParisTech, Université Paris-Saclay; Paris, France

²École normale supérieure, PSL University; Paris, France

³Inria; Paris, France

- You have a task
 - \rightarrow Boolean SAT (is there a satisfying assignment?)

- You have a task
 - → Boolean SAT (is there a satisfying assignment?)
 - → #SAT (model counting) (how many satisfying assignments?)

- You have a task
 - → Boolean SAT (is there a satisfying assignment?)
 - → #SAT (model counting) (how many satisfying assignments?)
 - ightarrow probabilistic evaluation

- You have a task
 - → Boolean SAT (is there a satisfying assignment?)
 - → #SAT (model counting) (how many satisfying assignments?)
 - \rightarrow probabilistic evaluation
 - → enumeration

- You have a task
 - → Boolean SAT (is there a satisfying assignment?)
 - → #SAT (model counting) (how many satisfying assignments?)
 - \rightarrow probabilistic evaluation
 - → enumeration
- Idea: compile the input into a format that is designed to solve efficiently your task

• Without knowledge compilation

Input class
$$C_1 \xrightarrow{}$$
 Algo. 1 Result

• Without knowledge compilation

$$\begin{array}{c} \text{Input class } \mathcal{C}_1 & \xrightarrow{\quad \text{Algo. 1} \quad \quad } \text{Result} \\ \text{Input class } \mathcal{C}_2 & \xrightarrow{\quad \text{Algo. 2} \quad \quad } \text{Result} \end{array}$$

• Without knowledge compilation

$$\begin{array}{c} \text{Input class } \mathcal{C}_1 & \xrightarrow{\qquad } \text{Result} \\ \text{Input class } \mathcal{C}_2 & \xrightarrow{\qquad } \text{Result} \\ \text{Input class } \mathcal{C}_3 & \xrightarrow{\qquad } \text{Result} \\ & & & & & & & \\ \end{array}$$

• Without knowledge compilation

$$\begin{array}{c} \text{Input class } \mathcal{C}_1 & \xrightarrow{\quad \text{Algo. 1} \quad \quad } \text{Result} \\ \text{Input class } \mathcal{C}_2 & \xrightarrow{\quad \text{Algo. 3} \quad } \text{Result} \\ \text{Input class } \mathcal{C}_3 & \xrightarrow{\quad \text{...} \quad } \text{Result} \end{array}$$

With knowledge compilation:

• Without knowledge compilation

$$\begin{array}{c} \text{Input class } \mathcal{C}_1 & \xrightarrow{\qquad \qquad } \text{Result} \\ \text{Input class } \mathcal{C}_2 & \xrightarrow{\qquad \qquad } \text{Result} \\ \text{Input class } \mathcal{C}_3 & \xrightarrow{\qquad \qquad } \text{Result} \end{array}$$

• With knowledge compilation:

Input class \mathcal{C}_1

Input class \mathcal{C}_2

Compilation target for your task

Generic algo.

→ Result

Input class \mathcal{C}_3

2/18

• Without knowledge compilation

Input class
$$C_1$$
 $\xrightarrow{\text{Algo. 1}}$ Result Input class C_2 $\xrightarrow{\text{Algo. 2}}$ Result Input class C_3 $\xrightarrow{\text{Result}}$ Result

• With knowledge compilation:

Input class
$$C_1$$
 $Algo. 1'$ Compilation target for your task C_2 $Compilation target for your task $C_2$$$$$$$

Input class \mathcal{C}_3

2/18

• Without knowledge compilation

$$\begin{array}{c} \text{Input class } \mathcal{C}_1 & \xrightarrow{\qquad \qquad } \text{Result} \\ \text{Input class } \mathcal{C}_2 & \xrightarrow{\qquad \qquad } \text{Result} \\ \text{Input class } \mathcal{C}_3 & \xrightarrow{\qquad \qquad } \text{Result} \end{array}$$

• With knowledge compilation:

Input class
$$C_1$$
 $\xrightarrow{Algo. \ 1'}$ Compilation target C_2 C_2 C_3 C_4 C_4 C_5 C_6 C_7 C_7

Input class \mathcal{C}_3

Without knowledge compilation

$$\begin{array}{c} \text{Input class } \mathcal{C}_1 & \xrightarrow{\qquad \qquad } \text{Result} \\ \text{Input class } \mathcal{C}_2 & \xrightarrow{\qquad \qquad } \text{Result} \\ \text{Input class } \mathcal{C}_3 & \xrightarrow{\qquad \qquad } \text{Result} \end{array}$$

• With knowledge compilation:

Input class
$$C_1$$
 $\xrightarrow{Algo. \ 1'}$ Compilation target for your task

Input class C_3 $\xrightarrow{Algo. \ 3'}$ Result

2/18

Without knowledge compilation

$$\begin{array}{c} \text{Input class } \mathcal{C}_1 & \xrightarrow{\qquad \qquad } \text{Result} \\ \text{Input class } \mathcal{C}_2 & \xrightarrow{\qquad \qquad } \text{Result} \\ \text{Input class } \mathcal{C}_3 & \xrightarrow{\qquad \qquad } \text{Result} \end{array}$$

• With knowledge compilation: modularity!

Input class
$$C_1$$
 $\xrightarrow{Algo. \ 1'}$ Compilation target for your task

Input class C_3 $\xrightarrow{Algo. \ 3'}$ Result

2/18

- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task

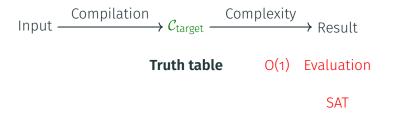
- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - \rightarrow Complexity of solving the task

Truth table

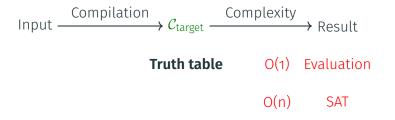
- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task

- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task

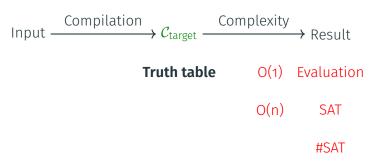
- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task



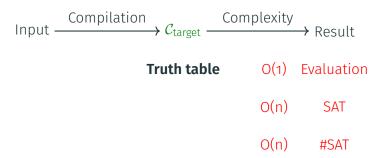
- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task



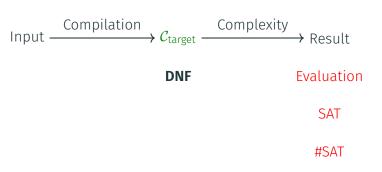
- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task



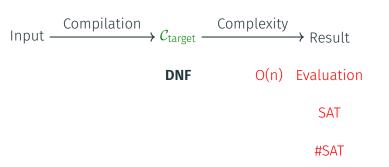
- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task



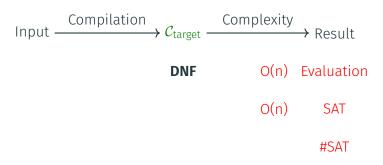
- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task



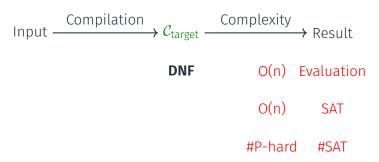
- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task



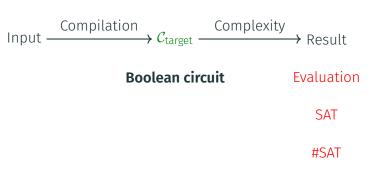
- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task



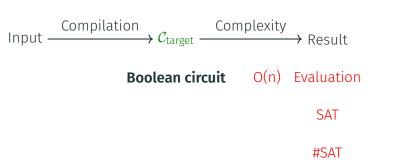
- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task



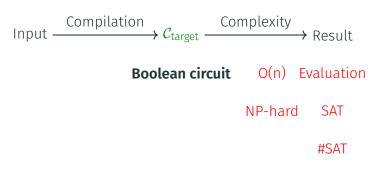
- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task



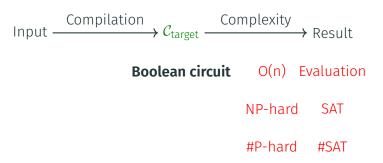
- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task



- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task



- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task

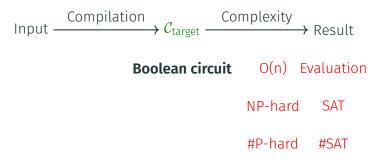


- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task

$$\begin{array}{c} \text{Input} & \xrightarrow{\text{Compilation}} \mathcal{C}_{\text{target}} & \xrightarrow{\text{Complexity}} \text{Result} \\ \\ & \text{\textbf{Boolean circuit}} & \text{O(n) Evaluation} \\ \\ & \text{NP-hard SAT} \\ \\ & \text{\#P-hard \#SAT} \end{array}$$

→ When can we convert from one target to another?

- Tradeoffs between:
 - → Complexity of compilation (conciseness of the compilation target)
 - → Complexity of solving the task



- → When can we convert from one target to another?
 - We are interested in #SAT and probability evaluation

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on compilation targets:

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on compilation targets:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.

Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on compilation targets:

Width-based:

- Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
 - ightarrow message passing algorithm for #SAT and probabilistic evaluation

For #SAT and probabilistic evaluation, two main restrictions on compilation targets:

Width-based:

- Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
 - → message passing algorithm for #SAT and probabilistic evaluation
 - Links with Bayesian networks

For #SAT and probabilistic evaluation, two main restrictions on compilation targets:

Width-based:

- Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
 - ightarrow message passing algorithm for #SAT and probabilistic evaluation
 - · Links with Bayesian networks

Semantics-based:

 Ordered Binary Decision Diagrams (OBDDs)/ Deterministic Structured Decomposable Negation Normal Forms (d-SDNNFs)

For #SAT and probabilistic evaluation, two main restrictions on compilation targets:

Width-based:

- Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
 - ightarrow message passing algorithm for #SAT and probabilistic evaluation
 - · Links with Bayesian networks

Semantics-based:

- Ordered Binary Decision Diagrams (OBDDs)/ Deterministic Structured Decomposable Negation Normal Forms (d-SDNNFs)
 - \rightarrow #SAT and probabilistic evaluation are easy because these classes have strong semantic constraints

For #SAT and probabilistic evaluation, two main restrictions on compilation targets:

Width-based:

- Bounded **pathwidth/treewidth** Boolean circuits, CNFs, DNFs, etc.
 - ightarrow message passing algorithm for #SAT and probabilistic evaluation
 - · Links with Bayesian networks

Semantics-based:

- Ordered Binary Decision Diagrams (OBDDs)/ Deterministic Structured Decomposable Negation Normal Forms (d-SDNNFs)
 - \rightarrow #SAT and probabilistic evaluation are easy because these classes have strong semantic constraints
 - Used to understand #SAT solvers

For #SAT and probabilistic evaluation, two main restrictions on compilation targets:

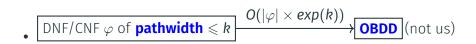
Width-based:

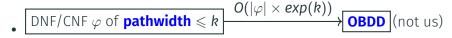
- Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
 - ightarrow message passing algorithm for #SAT and probabilistic evaluation
 - Links with Bayesian networks

Semantics-based:

- Ordered Binary Decision Diagrams (OBDDs)/ Deterministic Structured Decomposable Negation Normal Forms (d-SDNNFs)
 - ightarrow #SAT and probabilistic evaluation are easy because these classes have strong semantic constraints
 - · Used to understand #SAT solvers

Question: what are the links beetween the two?





• + matching lower bound

- $\bullet \qquad \boxed{ \mathsf{DNF/CNF} \ \varphi \ \mathsf{of} \ \mathsf{pathwidth} \leqslant k } \qquad \boxed{ O(|\varphi| \times \mathsf{exp}(k)) } \qquad \mathsf{OBDD} \ \mathsf{(not us)}$
- + matching lower bound

Then

• Circuit C of treewidth $\leqslant R$ $O(|C| \times \exp(R))$ d-SDNNF

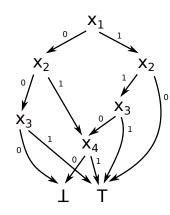
- DNF/CNF φ of **pathwidth** $\leqslant k$ O($|\varphi| \times exp(k)$) OBDD (not us)
- + matching lower bound

Then

- Circuit C of treewidth $\leqslant k$ d-SDNNF
- + \simeq matching lower bound

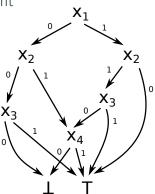
Pathwidth and OBDDs

 DAG with sink nodes {⊤, ⊥} and internal nodes labeled by variables



 DAG with sink nodes {⊤, ⊥} and internal nodes labeled by variables

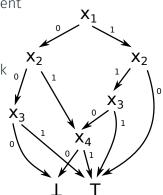
• Semantics: follow the path of an assignment to get the value of the Boolean function



 DAG with sink nodes {⊤, ⊥} and internal nodes labeled by variables

• Semantics: follow the path of an assignment to get the value of the Boolean function

• There is a **total order** on the variables $\mathbf{v} = X_1 X_2 X_3 X_4$ such that each root-to-sink path is compatible with \mathbf{v}

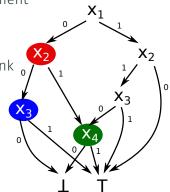


 DAG with sink nodes {⊤, ⊥} and internal nodes labeled by variables

• Semantics: follow the path of an assignment to get the value of the Boolean function

There is a total order on the variables
 v = X₁ X₂ X₃ X₄ such that each root-to-sink path is compatible with v

• Compute probability bottom-up



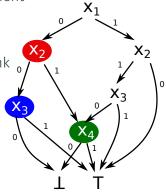
 DAG with sink nodes {⊤, ⊥} and internal nodes labeled by variables

• Semantics: follow the path of an assignment to get the value of the Boolean function

There is a total order on the variables
 V = X₁ X₂ X₃ X₄ such that each root-to-sink path is compatible with V

• Compute probability bottom-up

$$\Pr_{\pi}(\bullet) = \pi(X_2) \times \Pr_{\pi}(\bullet) + (1 - \pi(X_2)) \times \Pr_{\pi}(\bullet)$$



 DAG with sink nodes {⊤, ⊥} and internal nodes labeled by variables

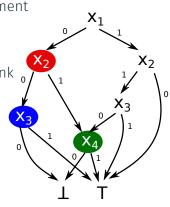
• Semantics: follow the path of an assignment to get the value of the Boolean function

There is a total order on the variables
 V = X₁ X₂ X₃ X₄ such that each root-to-sink path is compatible with V

• Compute probability bottom-up

$$\Pr_{\pi}(\bullet) = \pi(X_2) \times \Pr_{\pi}(\bullet) + (1 - \pi(X_2)) \times \Pr_{\pi}(\bullet)$$

 Width of the OBDD ≃ largest number of nodes that are labeled by the same variable



Bounded pathwidth CNFs/DNFs

- Pathwidth of a DNF/CNF: that of its Gaifman graph
- Arity: size of the largest clause
- Degree: maximal number of clauses to which a variable belongs

Upper bound:

Theorem (Bova & Slivovsky, 2017)

Let φ be a CNF or DNF of **pathwidth** k. We can compile φ into an **OBDD** of width 2^{k+2} (hence of size \leqslant nb_vars \times 2^{k+2})

Upper bound:

Theorem (Bova & Slivovsky, 2017)

Let φ be a CNF or DNF of **pathwidth** k. We can compile φ into an **OBDD** of width 2^{k+2} (hence of size \leqslant nb_vars \times 2^{k+2})

Lower bound:

Theorem (Our contribution)

Let φ be a **monotone** CNF or DNF of **pathwidth** k, and let $a := \operatorname{arity}(\varphi)$ and $d := \operatorname{degree}(\varphi)$. Then any **OBDD** for φ has width $\geqslant 2^{\left\lfloor \frac{k}{33 \times d^2} \right\rfloor}$

Upper bound:

Theorem (Bova & Slivovsky, 2017)

Let φ be a CNF or DNF of **pathwidth** k. We can compile φ into an **OBDD** of width 2^{k+2} (hence of size \leqslant nb_vars \times 2^{k+2})

Lower bound:

Theorem (Our contribution)

Let φ be a **monotone** CNF or DNF of **pathwidth** k, and let $a := \operatorname{arity}(\varphi)$ and $d := \operatorname{degree}(\varphi)$. Then any **OBDD** for φ has width $\geqslant 2^{\left \lfloor \frac{k}{a^3 \times d^2} \right \rfloor}$

• This is a generic lower bound

Upper bound:

Theorem (Bova & Slivovsky, 2017)

Let φ be a CNF or DNF of **pathwidth** k. We can compile φ into an **OBDD** of width 2^{k+2} (hence of size \leqslant nb_vars \times 2^{k+2})

Lower bound:

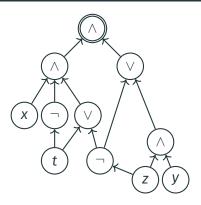
Theorem (Our contribution)

Let φ be a **monotone** CNF or DNF of **pathwidth** k, and let $a := \operatorname{arity}(\varphi)$ and $d := \operatorname{degree}(\varphi)$. Then any **OBDD** for φ has width $\geqslant 2^{\left \lfloor \frac{k}{a^3 \times d^2} \right \rfloor}$

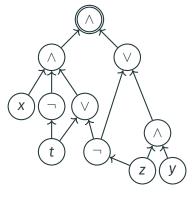
- This is a generic lower bound
- For monotone DNF/CNF φ of constant arity and degree, the smallest width of an OBDD for φ is $\mathbf{2}^{\Theta(\text{pathwidth}(\varphi))}$

Treewidth and d-SDNNFs

Bounded treewidth Boolean circuits

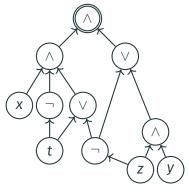


Bounded treewidth Boolean circuits



Treewidth of *C* = that of the underlying graph

Bounded treewidth Boolean circuits

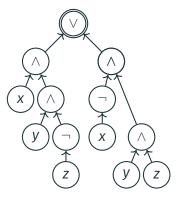


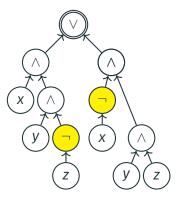
Treewidth of *C* = that of the underlying graph

We can do message passing:

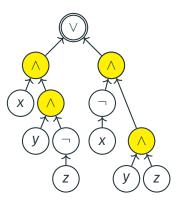
Theorem (Lauritzen & Spielgelhalter, 1988)

Fix $k \in \mathbb{N}$. Given a Boolean circuit C of treewidth $\leq k$, we can compute its probability in time $O(f(k) \times |C|)$, where f is singly exponential

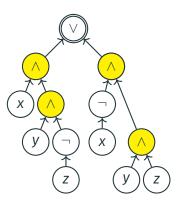




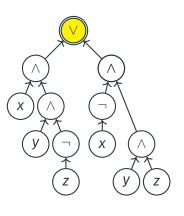
 Negation Normal Form: negations only applied to the leaves



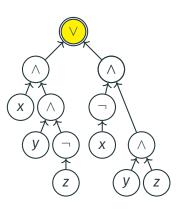
- Negation Normal Form: negations only applied to the leaves
- Decomposable: inputs of ∧-gates are independent (no variable has a path to two different inputs of the same ∧-gate)



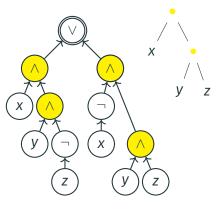
- Negation Normal Form: negations only applied to the leaves
- Decomposable: inputs of ∧-gates are independent (no variable has a path to two different inputs of the same ∧-gate)
 - → **SAT** can be solved efficiently



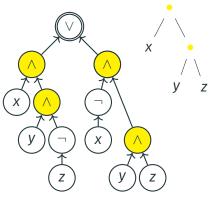
- Negation Normal Form: negations only applied to the leaves
- Decomposable: inputs of ∧-gates are independent (no variable has a path to two different inputs of the same ∧-gate)
 - \rightarrow **SAT** can be solved efficiently
- Deterministic: inputs of ∨-gates are mutually exclusive



- Negation Normal Form: negations only applied to the leaves
- Decomposable: inputs of ∧-gates are independent (no variable has a path to two different inputs of the same ∧-gate)
 - \rightarrow **SAT** can be solved efficiently
- Deterministic: inputs of ∨-gates are mutually exclusive
 - → #SAT and probability evaluation



- Negation Normal Form: negations only applied to the leaves
- Decomposable: inputs of ∧-gates are independent (no variable has a path to two different inputs of the same ∧-gate)
 - → SAT can be solved efficiently
- Deterministic: inputs of ∨-gates are mutually exclusive
 - ightarrow #SAT and probability evaluation
- **Structured**: there is a **vtree** that structures the ∧-gates



- Negation Normal Form: negations only applied to the leaves
- Decomposable: inputs of ∧-gates are independent (no variable has a path to two different inputs of the same ∧-gate)
 - → SAT can be solved efficiently
- Deterministic: inputs of ∨-gates are mutually exclusive
 - ightarrow #SAT and probability evaluation
- Structured: there is a vtree that structures the ∧-gates
 - → Enumeration

Treewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)

Let C be a Boolean circuit on m variables of treewidth $\leq k$. There exists a d-SDNNF equivalent to C of size $O(m \times g(k))$, where g is doubly exponential

Treewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)

Let C be a Boolean circuit on m variables of **treewidth** $\leq k$. **There exists** a **d-SDNNF** equivalent to C of size $O(m \times g(k))$, where g is **doubly** exponential

Drawbacks: non constructive

Treewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)

Let C be a Boolean circuit on m variables of **treewidth** $\leq k$. **There exists** a **d-SDNNF** equivalent to C of size $O(m \times g(k))$, where g is **doubly** exponential

Drawbacks: non constructive

Theorem (Our contribution)

Let C be a Boolean circuit of **treewidth** $\leq k$.

We can compute a **d-SDNNF** equivalent to C in time $O(|C| \times f(k))$, where f is **singly** exponential

Treewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)

Let C be a Boolean circuit on m variables of **treewidth** $\leq k$. **There exists** a **d-SDNNF** equivalent to C of size $O(m \times g(k))$, where g is **doubly** exponential

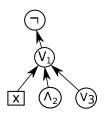
Drawbacks: non constructive

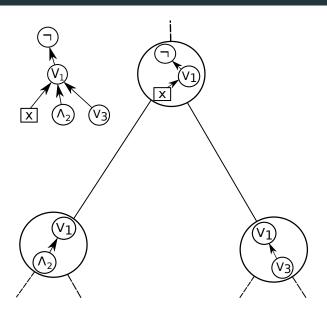
Theorem (Our contribution)

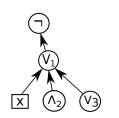
Let **C** be a Boolean circuit of **treewidth** $\leq k$.

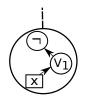
We can compute a **d-SDNNF** equivalent to C in time $O(|C| \times f(k))$, where f is **singly** exponential

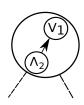
Applications: recapturing message passing, and enumeration of satisfying valuations

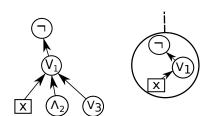


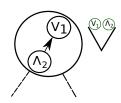


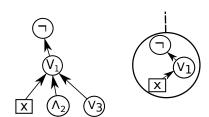


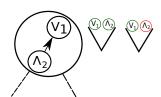


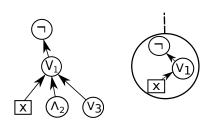


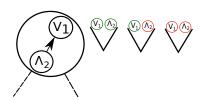


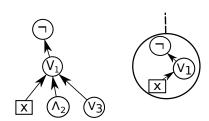


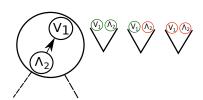


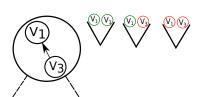


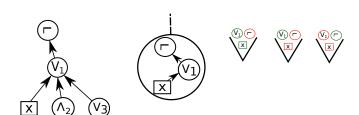


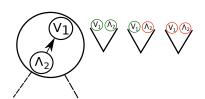


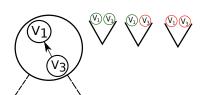


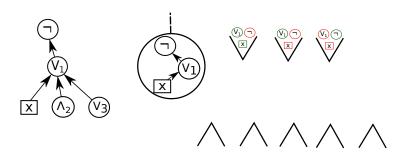


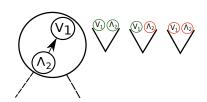


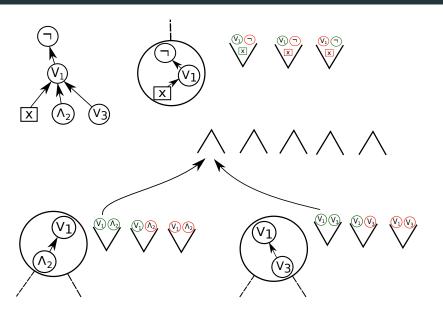


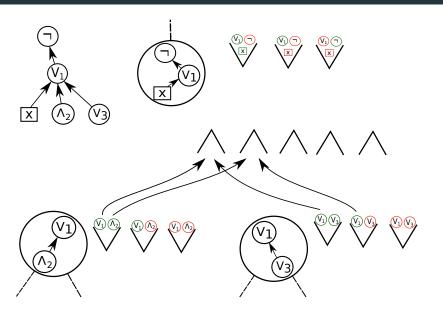


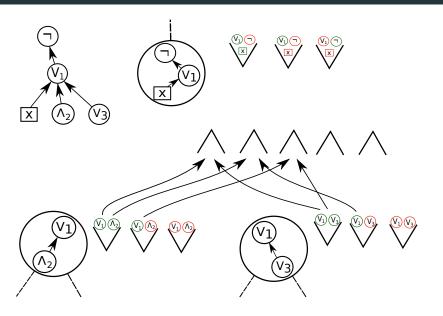


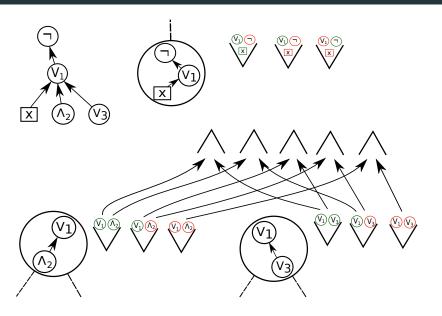


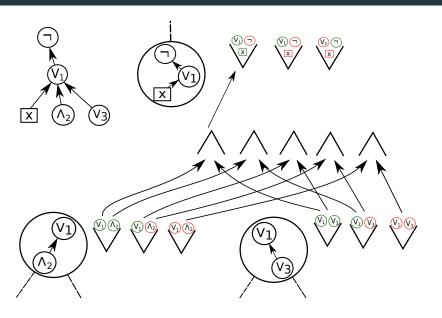


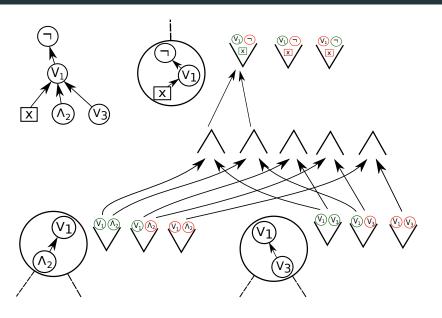


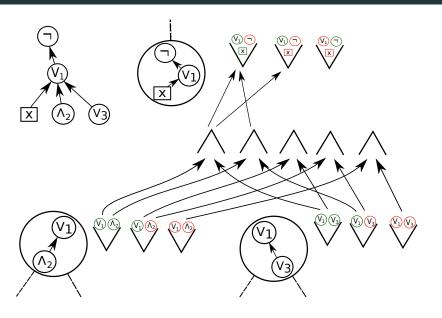


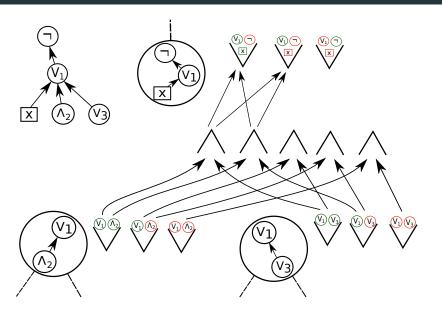


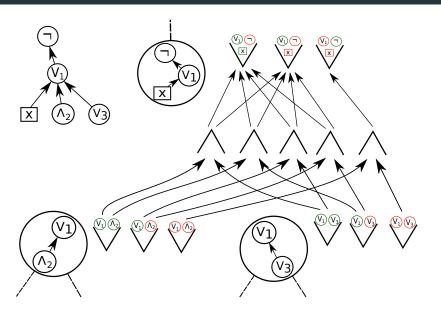












Treewidth and d-SDNNFs: Lower bound

Theorem

Let φ be a **monotone DNF** of **treewidth** k, let $a := \operatorname{arity}(\varphi)$ and $d := \operatorname{degree}(\varphi)$. Then any **d-SDNNF** for φ has $\operatorname{size} \geqslant 2^{\left\lfloor \frac{k}{3 \times a^3 \times d^2} \right\rfloor} - 1$

Treewidth and d-SDNNFs: Lower bound

Theorem

Let φ be a **monotone DNF** of **treewidth** k, let $a := \operatorname{arity}(\varphi)$ and $d := \operatorname{degree}(\varphi)$. Then any **d-SDNNF** for φ has $\operatorname{size} \geqslant 2^{\left\lfloor \frac{k}{3 \times a^3 \times d^2} \right\rfloor} - 1$

For CNFs, the bound even works for (non-deterministic) SDNNF

Treewidth and d-SDNNFs: Lower bound

Theorem

Let φ be a **monotone DNF** of **treewidth** k, let $a := \operatorname{arity}(\varphi)$ and $d := \operatorname{degree}(\varphi)$. Then any **d-SDNNF** for φ has $\operatorname{size} \geqslant 2^{\left\lfloor \frac{k}{3 \times a^3 \times d^2} \right\rfloor} - 1$

- For CNFs, the bound even works for (non-deterministic) SDNNF
- Again, the bound is generic: it applies to any monotone DNF/CNF

Proof Sketch for CNFs (1/2)

Use the connection made in [Bova, Capelli & Mengel, 2016] between the notion of **combinatorial rectangle** in **communication complexity** and **SDNNFs**.

Definition

A (X,Y)-rectangle is a Boolean function $R: 2^{X\cup Y} \to \{0,1\}$ that can be written as $R_X \wedge R_Y$, for some Boolean functions $R_X: 2^X \to \{0,1\}$ and $R_Y: 2^Y \to \{0,1\}$. A (X,Y)-rectangle cover of a function $f: 2^{X\cup Y} \to \{0,1\}$ is a set $\{R_1, \cdots, R_n\}$ of (X,Y)-rectangles such that $f \equiv \bigvee_{i=1}^n R_i$.

Proof Sketch for CNFs (1/2)

Use the connection made in [Bova, Capelli & Mengel, 2016] between the notion of **combinatorial rectangle** in **communication complexity** and **SDNNFs**.

Definition

A (X,Y)-rectangle is a Boolean function $R: 2^{X \cup Y} \to \{0,1\}$ that can be written as $R_X \wedge R_Y$, for some Boolean functions $R_X: 2^X \to \{0,1\}$ and $R_Y: 2^Y \to \{0,1\}$. A (X,Y)-rectangle cover of a function $f: 2^{X \cup Y} \to \{0,1\}$ is a set $\{R_1, \cdots, R_n\}$ of (X,Y)-rectangles such that $f \equiv \bigvee_{i=1}^n R_i$.

Theorem (Bova, Capelli & Mengel, 2016)

Let C be an SDNNF computing a function φ on variables V, structured by a v-tree T. Let $n \in T$, and let (X,Y) be the partition of V that n induces. Then φ has a (X,Y)-rectangle cover of size at most |C|.

Proof Sketch for CNFs (2/2)

A CNF having no small rectangle cover:

Theorem (Sherstov, 2014)

Let $X = \{x_1, ..., x_n\}$ and $Y = \{y_1, ..., y_n\}$ be two disjoint sets of variables. Then any (X, Y)-rectangle cover of the Boolean function $SCOV_n(X, Y) := \bigwedge_{i=1}^n x_i \vee y_i$ has $size \geqslant 2^n$.

Proof Sketch for CNFs (2/2)

A CNF having no small rectangle cover:

Theorem (Sherstov, 2014)

Let $X = \{x_1, ..., x_n\}$ and $Y = \{y_1, ..., y_n\}$ be two disjoint sets of variables. Then any (X, Y)-rectangle cover of the Boolean function $SCOV_n(X, Y) := \bigwedge_{i=1}^n x_i \lor y_i$ has $size \geqslant 2^n$.

We show that we can find $SCOV_{\frac{k}{3\times a^3\times d^2}}(X,Y)$ within any CNF of treewidth $\geqslant k$.

Proof Sketch for CNFs (2/2)

A CNF having no small rectangle cover:

Theorem (Sherstov, 2014)

Let $X = \{x_1, ..., x_n\}$ and $Y = \{y_1, ..., y_n\}$ be two disjoint sets of variables. Then any (X, Y)-rectangle cover of the Boolean function $SCOV_n(X, Y) := \bigwedge_{i=1}^n x_i \lor y_i$ has size $\ge 2^n$.

We show that we can find $SCOV_{\frac{k}{3\times a^3\times d^2}}(X,Y)$ within any CNF of treewidth $\geqslant k$.

→ Rephrase treewidth as **treesplitwidth**, a new measure capturing the 'performance' of a v-tree

• Strong connections between width- and semantics-based restrictions in knowledge compilation:

- Strong connections between width- and semantics-based restrictions in knowledge compilation:
 - → Recapture message passing on bounded treewidth circuits by compiling them to d-SDNNF

- Strong connections between width- and semantics-based restrictions in knowledge compilation:
 - → Recapture message passing on bounded treewidth circuits by compiling them to d-SDNNF
 - → Compilation is singly exponential in the **treewidth** of the circuit and cannot be avoided

- Strong connections between width- and semantics-based restrictions in knowledge compilation:
 - → Recapture message passing on bounded treewidth circuits by compiling them to d-SDNNF
 - → Compilation is singly exponential in the **treewidth** of the circuit and cannot be avoided
 - → The width of an **OBDD** and the **pathwidth** of a DNF/CNF are within a constant of each other

- Strong connections between width- and semantics-based restrictions in knowledge compilation:
 - → Recapture message passing on bounded treewidth circuits by compiling them to d-SDNNF
 - → Compilation is singly exponential in the **treewidth** of the circuit and cannot be avoided
 - → The width of an **OBDD** and the **pathwidth** of a DNF/CNF are within a constant of each other
- Future work:
 - → Get rid of arity and degree assumptions?
 - → Notion of width for d-SDNNFs?
 - → Lower bound for d-DNNEs?

Thanks for your attention!