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One minute summary (1/2)

SHAP-score in explainable Al: a notion used to explain the

decisions of Al models. Let:

e M bea (example: a classifier used by a bank to decide
when clients can be given a loan)

e ¢ bean (example: a client)

e xa (example: "has_stable job")

— The SHAP-score SHAP(M, e, x) represents the influence of the
feature value e(x) on the output M(e)

1/14



One minute summary (2/2)

We focus on binary classifiers M : {0,1}" — {0,1} (features are
binary, and the output is yes/no)

Main result

The SHAP-score SHAP(M, e, x) can be computed in polynomial
time when the model M is given as a

These classifiers are studied in the field of knowledge compilation
and generalize binary decision trees, Binary Decision Diagrams
(OBDDs, FBDDs), d-DNNFs, etc.
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Shapley values and SHAP-score

Knowledge compilation: deterministic and decomposable Boolean
circuits

Results and proof sketch
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Shapley values (1/2)

Notion from . Let X be a set of players
and G : 2X > R be a game on X. We wish to assign to every
player p € X a contribution sx (G, p). Some reasonnable axioms:
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and G : 2X > R be a game on X. We wish to assign to every
player p € X a contribution sx (G, p). Some reasonnable axioms:

1. Symmetry: For every game G on X and players p1,ps € X, if
we have G(Su{pi}) =G(Su{p2}) for every S c X,
then sx (G, p1) = sx (G, p2)

2. Null player: A player p is null if G(Su {x}) = G(S) for
every S € X. For every null player we have sx(G,x) =0

3. Linearity: For every a,b e R, games G1,G> on X and player p
we have sx(aGi + bGo, p) = a-sx(G1,p) + b-sx(Ga,p)

4. Efficiency: For every game G on X we

have 3 pex sx (9, p) = G(X) - G(2)
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Shapley values (2/2)

Theorem [Shapley, 1953]
There is a unique function sx(-,-) that satisfies all four axioms.

Shapleyx (0.p) % 2 BEXLBIZD G50 (o)) - gs))
ScX~{p} X!

Has found many applications in computer science.
Next slide: the SHAP-score for XAl
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SHAP-score for explainable Al

Let X be a set of features, e an entity (that has a value e(x) for
every feature x € X), M a model (that assigns a value to each
entity), D a probability distribution over the set of entities, and x a

feature.

6/14



SHAP-score for explainable Al

Let X be a set of features, e an entity (that has a value e(x) for
every feature x € X), M a model (that assigns a value to each
entity), D a probability distribution over the set of entities, and x a

feature.
The SHAPp (M, e, x) is the Shapley value of x in the

following game function G:

G(S) ' Eep[M(e') | € (y) = e(y) for all y € 5]

6/14



SHAP-score for explainable Al

Let X be a set of features, e an entity (that has a value e(x) for
every feature x € X), M a model (that assigns a value to each
entity), D a probability distribution over the set of entities, and x a

feature.
The SHAPp (M, e, x) is the Shapley value of x in the

following game function G:
G(S) C Ee.p[M(e) | € (y) =e(y) for all y € S]

In other words,

ISP(X] =151 -1)
IX]!

SHAPp(M,e,x) & %

ScX~{x}

(6(Su{x})-G(5))
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When is it tractable?

Question: For which kind of models/probability distributions can
we compute it efficiently?
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When is it tractable?

Question: For which kind of models/probability distributions can
we compute it efficiently?

Theorem [Lundberg et al., 2020]
The SHAP-score can be computed in polynomial time for decision
trees

— We generalize this result to more powerful classes of models,
from the field of
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Knowledge compilation:
deterministic and decomposable
Boolean circuits




Knowledge compilation

. a field of Al that studies various

formalisms to represent Boolean functions...

— examples: truth tables, Boolean formulas in DNF/CNF,
Boolean circuits, binary decision diagrams (OBDDs), binary
decision trees, etc.
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Knowledge compilation: a field of Al that studies various

formalisms to represent Boolean functions...

— examples: truth tables, Boolean formulas in DNF/CNF,
Boolean circuits, binary decision diagrams (OBDDs), binary
decision trees, etc.

. and the tasks that these allow to solve efficiently

— examples: satisfiability in O(n) for truth tables or DNFs but
NP-c for CNFs, model counting in O(n) for OBDDs
but #P-hard for DNFs, etc.

Deterministic and decomposable Boolean circuits: the less
restricted formalism of knowledge compilation that allows tractable

model counting
8/14
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Deterministic and decomposable Boolean circuits

(also called “tractable Boolean circuits”)

e Deterministic: inputs of v-gates are
mutually exclusive

e Decomposable: inputs of A-gates
are independent (no variable has a
path to two different inputs of the
same A-gate)

— model counting or even probability evaluation can be solved in
linear time
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Results and proof sketch




e Set X of binary features; so an entity e is a function from X
to {0,1}

e A deterministic and decomposable circuit M

e An entity e and a feature x € X

e We assume that the distribution D is such that each
feature y € X has an py of being 1
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e Set X of binary features; so an entity e is a function from X
to {0,1}

e A deterministic and decomposable circuit M

e An entity e and a feature x € X

e We assume that the distribution D is such that each
feature y € X has an py of being 1

Main result

Given as input M, e, x and p, for every y € X, we can compute
the SHAP-score SHAPp (M, e, x) in time O(|M]-|X|?)

Secondary result (easy)
For any class C of models and under the uniform distribution,
model counting for C reduces to the problem of computing

SHAP-scores for C
10/14



Proof sketch of main result (1/3)

Recall that SHAPp (M, e, x) is defined as

ISIT(IX| =S| -
oy X

D e p[M(e) | €(y) = e(y) for all y € S U {x}]

~Ee.p[M(e') | €'(y) = e(y) for all y € S])
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Proof sketch of main result (1/3)

Recall that SHAPp (M, e, x) is defined as

> BRXEBIED g, oimee) €y) = ety) forall y e Su {x)]
ScX~{x} |X|
~Ee.p[M(e') | €'(y) = e(y) for all y € S])
Lemma

Computing SHAP-score can be reduced in polynomial time to the
following problem.

INPUT: binary features X, entity e, deterministic and
decomposable circuit M, integer k.

OUTPUT: ZS‘CX Ee.p[M(e") | €/ (y) =e(y) for all y € S]
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Proof sketch of main result (2/3)

Goal: compute ¥ scx Eerop[M(e') [€'(y) =e(y) for all y € S].
IS|=k
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Proof sketch of main result (2/3)

Goal: compute ¥ scx Eerop[M(e') [€'(y) =e(y) for all y € S].
IS|=k

e Step 1: smooth the circuit. A Boolean circuit is smooth if for
every V-gate g, every input gate of g sees the same set of
variables. We can smooth M in O(|M|-|X|?)

e Step 2: for every gate g of the circuit
and £ € {0,...,|var(g)|}, define the value

of €S Eep[M,(¢)) | €(y) =e(y) forall y € S]
Scvar(g)
|SI=¢

and compute the values aé by bottom-up induction on the
circuit

12/14



Proof sketch of main result (3/3)

def
Compute aﬁ, = Zsﬁ\;r(gg) Ee.plg(e') | €'(y) =e(y) for all y € S]
for every gate g and integer £ € {0, ..., |var(g)|}

e g is a variable gate with variable y. Then ag = py
and aé =e(y)

e g is an OR gate with inputs g1,g>. Then aﬁ, = 0‘21 +a§2

e gis an AND gate with inputs g1, g.
¢ 0 E
Then Qg = Lt1e{0,...,var(g1)[} Vg1 * Vg

226{07“'7‘Var(g2)‘}
fl+fz=f
e g is a —-gate with input g;. Then a ('Var(g)‘) O‘gl

— We can compute all the values aﬁ, in time O(|M|- |X[?)
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Conclusion

e We prove that the
for deterministic and decomposable Boolean circuits
under product distributions
— this generalizes a result of [Lundberg et al., 2020]
e We show that computing SHAP-scores is always as hard as the
model counting problem
— computing SHAP-score is actually PTIME-equivalent to the
problem of computing expectations! Check out the [AAA'21
paper by Van den Broeck, Lykov, Schleich, and Suciu] :)
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