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What

• Matching in a graph: set of edges that do not intersect

→ Can we count them?

We know:

• counting matchings is #P-hard in general, even in very
restricted settings (planar, 3-regular, bipartite. . . )

• counting matchings is in polynomial time over graphs of
bounded treewidth

Ô⇒ Is there another criterion than bounded treewidth that allows
matchings to be counted efficiently?

No!∗

∗
subject to defining the problem in a slighlty more general way and assuming a certain “treewidth-constructibility” requirement; see next slide for Proper Usage.
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Our result

Theorem
Let G be an arbitrary family of graphs which has unbounded
treewidth. Then the problem, given a graph G = (V ,E) of G, of
computing the number of matchings of G , is intractable.
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graph G = (V ,E) of G and rational probabilities values π(e) for
every edge of G , of computing the number of matchings of G the
probability of a matching in G , is intractable.

• probability of a matching in G : probability of drawing a
matching when we select each edge independently with
probability π(e)

• treewidth-constructible: given k ∈ N as input, we can construct
in polynomial time a graph of G whose treewidth is ≥ k
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Proof sketch 1/4: Extracting a topological minor

We reduce from counting matchings on planar graphs of maximum
degree 3, which is #P-hard. Let H be such a graph.

• Step 1. Using treewidth constructibility of G and the
polynomial grid-minor extraction algorithm of [Chekuri and
Chuzhoy, 2016], construct a graph G ∈ G such that H is a
topological minor of G

• Step 2. Assign probability zero to all non-interesting edges

H
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Proof sketch 2/4: How to recover the matchings?

• Understand the relationship between matchings of those two
graphs
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Proof sketch 2/4: How to recover the matchings?

• a selection function of H = (V ,E) is a partial function µ that
maps every vertex to at most one incident edge

H

Fact

We have that #Matching(H) = ∑τ∈{0,...,∣E ∣}3
τ1=0

∣Sτ ∣.

• for i ∈ {0,1,2}, an edge e ∈ E has type i with respect to µ if
exactly i of its endpoints select it;

• for τ = (τ0, τ1, τ2) ∈ {0, . . . , ∣E ∣}3, define Sτ to be the set of
selection functions µ such that for i ∈ {0,1,2}, exactly τi

edges of H are of type i with respect to µ.
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Proof sketch 3/4: Polynomial interpolation

• Step 3. Somehow, construct polynomially many probabilistic
graphs (G , π1), (G , π2), (G , π3), . . . and use polynomial
interpolation to recover all the ∣Sτ ∣ values

→ Using techniques from [Dalvi and Suciu, 2012], this works
when all edges of H are subdivided the same number of times.

But we can have different subdivision lengths!

H G ∈ G

?

?

?

?

?

?

?

?

?

?
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Proof sketch 4/4: A technical challenge

“Emulate” long paths with probability 1/2 with short paths:
Find p,q, r , s ∈ [0;1] such that the probability of a matching in

f (y)
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1
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1
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1
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1
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1
2

1
2 on all edges 1

Equals the probability of a matching in

1

p q r s

1

6
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Ô⇒ This is possible when i is even and ≥ 4
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Closed form expressions for p(i),q(i), r(i), s(i)

Let T = 1/2i and Fk be the (i + k)-th Fibonacci number. Then let:

p(i) = (A +Ξ +Θ +
√

Σ)/P

q(i) = (Ξ −Θ +
√

Σ)/Q

r(i) = (Ξ −Θ −
√

Σ)/Q

s(i) = (A +Ξ +Θ −
√

Σ)/P
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Conclusion

Theorem
Let G be an arbitrary family of graphs which is treewidth
constructible. Then the problem, given a graph G = (V ,E) of G
and rational probabilities values π(e) for every edge of G , of
computing the probability of a matching in G , is intractable.

• also holds for edge covers (and most likely also for independent
sets and vertex covers, when probabilities are on the nodes)

• but the result is false for perfect matchings! These can be
counted on planar graphs by the FKT algorithm
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Conclusion

Open: allow only probabilities in {0,1/2}. In other words:

Open problem
Let G be an arbitrary family of graphs which is treewidth
constructible and which is closed under taking subgraphs. Then
the problem, given a graph G of G, of computing the number of
matchings in G , is intractable.

Thanks for your attention!
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