Weighted Counting of Matchings in
Unbounded-Treewidth Graph Families

Antoine Amarilli, Mikaél Monet

MFCS 2022, Vienna, August 23rd 2022 TELEIC)E”%

) R HH
&z’z&la/- Q: IP PARIS



Joint work with Antoine Amarilli

https://arxiv.org/abs/2205.00851

1/11


https://arxiv.org/abs/2205.00851

° in a graph: set of edges that do not intersect

2/11



° in a graph: set of edges that do not intersect

OK

2/11



° in a graph: set of edges that do not intersect

OK

2/11



° in a graph: set of edges that do not intersect

[ ] NOT OK

2/11



° in a graph: set of edges that do not intersect

— Can we count them?

2/11



° in a graph: set of edges that do not intersect

— Can we count them?
We know:

e counting matchings is #P-hard in general, even in very
restricted settings ( , , o)

2/11



° in a graph: set of edges that do not intersect

— Can we count them?

We know:

e counting matchings is #P-hard in general, even in very
restricted settings ( , , o)

e counting matchings is in polynomial time over graphs of
bounded treewidth

2/11



° in a graph: set of edges that do not intersect

— Can we count them?

We know:

e counting matchings is #P-hard in general, even in very
restricted settings ( , , o)

e counting matchings is in polynomial time over graphs of
bounded treewidth

—— s there another criterion than bounded treewidth that allows
matchings to be counted efficiently?

2/11



° in a graph: set of edges that do not intersect

— Can we count them?

We know:
e counting matchings is #P-hard in general, even in very
restricted settings ( , , o)

e counting matchings is in polynomial time over graphs of
bounded treewidth

—— s there another criterion than bounded treewidth that allows
matchings to be counted efficiently? No!*

*
subject to defining the problem in a slighity more general way and assuming a certain “treewidth-construct

nt; see next slide for Proper Usage.
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Our result

Theorem

Let G be an arbitrary family of graphs which has unbounded
treewidth. Then the problem, given a graph G = (V,E) of G, of
computing the number of matchings of G, is intractable.
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Our result
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Let G be an arbitrary family of graphs which hastrbetnded
treewidth is treewidth-constructible. Then the problem, given a
graph G = (V,E) of G and rational probabilities values 7(e) for

every edge of G, of computing the-rumberof-matehingseof-G the

probability of a matching in G, is intractable.

e probability of a matching in G: probability of drawing a
matching when we select each edge independently with
probability 7(e)

e treewidth-constructible: given k € N as input, we can construct
in polynomial time a graph of G whose treewidth is > k
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Proof sketch 3/4: Polynomial interpolation

e Step 3. Somehow, construct polynomially many probabilistic
graphs (G, m1),(G,m2),(G,m3),... and use polynomial
interpolation to recover all the |S;| values

— Using techniques from [Dalvi and Suciu, 2012], this works

when all edges of H are subdivided the same number of times.
But we can have different subdivision lengths!
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1
2
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p(i) q(i) r(i) s(i)
o o o o o

Equals the probability of a matching in

1
5 on all edges

i edges
(p(7), a(i), r(i), s(i)) = 7

= This is possible when i is even and >4
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Open problem

Let G be an arbitrary family of graphs which is treewidth
constructible and which is closed under taking subgraphs. Then
the problem, given a graph G of G, of computing the number of
matchings in G, is intractable.

Thanks for your attention!
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