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*
subject to defining the problem in a slighity more general way and assuming c

nt; see next slide for Proper Usage

2/7



Our result

Theorem

Let G be an arbitrary family of graphs which has unbounded
treewidth. Then the problem, given a graph G = (V,E) of G, of
computing the number of matchings of G, is intractable.
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Our result

Theorem

Let G be an arbitrary family of graphs which hastrbetnded
treewidth is treewidth-constructible. Then the problem, given a
graph G = (V,E) of G and rational probabilities values 7(e) for
every edge of G, of computing the-rumber-of-matehingsef-G the

probability of a matchings in G, is intractable.

e probability of a matching in G: probability of drawing a
matching when we select each edge independently with
probability 7(e)

e treewidth-constructible: given k € N as input, we can construct
in polynomial time a graph of G whose treewidth is > k
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Proof sketch

We reduce from counting matchings on planar graphs of maximum
degree 3, which is #P-hard. Let H be such a graph.

e Step 1. Using treewidth constructibility of G and the
polynomial grid-minor extraction algorithm of [Chekuri and
Chuzhoy, 2016], construct a graph G € G such that H is a
topological minor of G

e Step 2. Assign probability zero to all non-interesting edges

Geg .

-
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e Step 3. Somehow, use polynomial interpolation
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Technical challenge

“Emulate” long paths with probability 1/2 with short paths:
Find p,q,r,s €[0; 1] such that the probability of a matching in
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1
5 on all edges

i edges

(p(i),q(i),r(i),s(i)) =7 Thisis possible when i is even and > 4
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Conclusion

Theorem

Let G be an arbitrary family of graphs which is treewidth
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and rational probabilities values 7(e) for every edge of G, of
computing the probability of a matchings in G, is intractable.



Conclusion

Theorem

Let G be an arbitrary family of graphs which is treewidth
constructible. Then the problem, given a graph G = (V,E) of G
and rational probabilities values 7(e) for every edge of G, of
computing the probability of a matchings in G, is intractable.

e also holds for edge covers (and most likely also for independent
sets and vertex covers, when probabilities are on the nodes)

— open: allow only probabilities in {0,1/2}

Thanks for your attention!
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