Connecting Width and Structure
in Knowledge Compilation

Antoine Amarilli’, Mikaél Monet"3, Pierre Senellart*3
March 28th, 2018

1LTCI, Telecom ParisTech, Université Paris-Saclay; Paris, France
2Ecole normale supérieure, PSL Reasearch University; Paris, France

3Inria Paris; Paris, France



What is Knowledge Compilation?

e You have a task
— Boolean SAT (is there a satisfying assignment?)

1/20



What is Knowledge Compilation?

¢ You have a task

— Boolean SAT (is there a satisfying assignment?)
— #SAT (model counting) (how many satisfying assignments?)

1/20



What is Knowledge Compilation?

e You have a task
— Boolean SAT (is there a satisfying assignment?)
— #SAT (model counting) (how many satisfying assignments?)
— probabilistic evaluation

1/20



What is Knowledge Compilation?

e You have a task
— Boolean SAT (is there a satisfying assignment?)
— #SAT (model counting) (how many satisfying assignments?)
— probabilistic evaluation
— enumeration

1/20



What is Knowledge Compilation?

* You have a task
— Boolean SAT (is there a satisfying assignment?)
— #SAT (model counting) (how many satisfying assignments?)
— probabilistic evaluation
— enumeration
 Idea: compile the input into a format that is designed to solve

efficiently your task

1/20



Why would I do that?

e Without knowledge compilation

lgo. 1
Input class C; g—) Result

2/20



Why would I do that?

e Without knowledge compilation

lgo. 1
Input class C; ———— Result

Algo. 2
Input class C; ——  Result

2/20



Why would I do that?

e Without knowledge compilation

lgo. 1

Input class C; ———— Result
Algo. 2

Input class C; ——  Result

Algo. 3
Input class C; ———— Result

2/20



Why would I do that?

e Without knowledge compilation

lgo. 1
Input class C; ———— Result

Algo. 2
Input class C; ——  Result

Algo. 3
Input class C; ———— Result

e With knowledge compilation:

2/20



Why would I do that?

e Without knowledge compilation

lgo. 1
Input class C; ———— Result

Algo. 2
Input class C; ——  Result

Algo. 3
Input class C; ———— Result

e With knowledge compilation:

Input class C;

Compilation target Generic algo.
Input class C, for your task ——— > Result

Input class C5

2/20



Why would I do that?

e Without knowledge compilation

lgo. 1
Input class C; ———— Result

Algo. 2
Input class C; ——  Result

Algo. 3
Input class C; ———— Result

e With knowledge compilation:

Input class ¢; <Algo. 4/
\ Compilation target Generic algo.

Input class C, for your task ——— > Result

Input class C5

2/20



Why would I do that?

e Without knowledge compilation

lgo. 1
Input class C; ———— Result

Algo. 2
Input class C; ——  Result

Algo. 3
Input class C; ———— Result

e With knowledge compilation:

Input class ¢; -Algo. ¢/

Algo. 2~ Compilation target Generic algo.

Input class C, for your task ——— > Result

Input class C5

2/20



Why would I do that?

e Without knowledge compilation

lgo. 1
Input class C; ———— Result

Algo. 2
Input class C; ——  Result

Algo. 3
Input class C; ———— Result

e With knowledge compilation:

Input class ¢; -Algo. ¢/

Algo. 2~ Compilation target Generic algo.

nput class C; for your task

W
Input class C5

Result

2/20



Why would I do that?

e Without knowledge compilation

lgo. 1
Input class C; g—) Result

Algo. 2
Input class C; ——  Result

Algo. 3
Input class C; ———— Result

» With knowledge compilation: modularity!

Input class ¢; -Algo. ¢/

Algo. 2~ Compilation target Generic algo.

nput class C; for your task

W
Input class C5

Result

2/20



Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

3/20



Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Truth table

3/20



Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Truth table Evaluation

3/20



Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Truth table O(1) Evaluation

3/20



Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Truth table O(1) Evaluation

SAT

3/20



Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Truth table O(1) Evaluation

o(n) SAT

3/20



Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result
Truth table O(1) Evaluation
0o(n) SAT

HSAT

3/20



Studying the compilation targets

¢ Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Ctarget » Result
Truth table 0O(1) Evaluation
o(n) SAT

3/20



Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

DNF Evaluation

SAT

HSAT

3/20



Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

DNF O(n) Evaluation
SAT

HSAT

3/20



Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result
DNF O(n) Evaluation
o(n) SAT

HSAT

3/20



Studying the compilation targets

e Tradeoffs between:
— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget » Result
DNF O(n) Evaluation
0(n) SAT

#P hard  #SAT

3/20



Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Boolean circuit Evaluation

SAT

HSAT

3/20



Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Boolean circuit  O(n) Evaluation
SAT

HSAT

3/20



Studying the compilation targets

e Tradeoffs between:

— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget > Result

Boolean circuit  O(n) Evaluation
NP hard SAT

HSAT

3/20



Studying the compilation targets

e Tradeoffs between:
— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget » Result

Boolean circuit  O(n) Evaluation
NP hard SAT

#P hard  #SAT

3/20



Studying the compilation targets

e Tradeoffs between:
— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget » Result

Boolean circuit  O(n) Evaluation
NP hard SAT

#P hard  #SAT

— When can we convert from one target to another?

3/20



Studying the compilation targets

e Tradeoffs between:
— Complexity of compilation (conciseness of the compilation target)
— Complexity of solving the task

Compilation Complexity
Input > Crarget » Result

Boolean circuit  O(n) Evaluation
NP hard SAT

#P hard  #SAT

— When can we convert from one target to another?
« We are interested by #SAT and probability evaluation

3/20



Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

4/20



Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:
e Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.

4/20



Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

e Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
— message passing algorithm for #SAT and probabilistic evaluation

4/20



Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

e Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
— message passing algorithm for #SAT and probabilistic evaluation
- Links with Bayesian networks

4/20



Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

e Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.

— message passing algorithm for #SAT and probabilistic evaluation
- Links with Bayesian networks

Semantics-based:

 Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)

4/20



Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

e Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.

— message passing algorithm for #SAT and probabilistic evaluation
- Links with Bayesian networks

Semantics-based:

 Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)

— #SAT and probabilistic evaluation are easy because these classes
have strong semantic constraints

4/20



Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

e Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.

— message passing algorithm for #SAT and probabilistic evaluation
- Links with Bayesian networks

Semantics-based:

 Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
— #SAT and probabilistic evaluation are easy because these classes
have strong semantic constraints
- Used to understand #SAT solvers

4/20



Target classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

e Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.

— message passing algorithm for #SAT and probabilistic evaluation
- Links with Bayesian networks

Semantics-based:

 Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
— #SAT and probabilistic evaluation are easy because these classes
have strong semantic constraints
- Used to understand #SAT solvers

Question: what are the links beetween the two?

4/20



O(|C| x exp(k))
. | Circuit C of treewidth <R > d-SDNNF

5/20



O(|C| x exp(k))
. | Circuit C of treewidth <R > d-SDNNF

e +~ matching lower bound

5/20



O(|C| x exp(k))
. | Circuit C of treewidth <R > d-SDNNF

e +~ matching lower bound

Then

- O(|eo| x exp(R))
DNF/CNF ¢ of pathwidth < k il  OBDD |(not us)

5/20



O(|C| x exp(k))
. | Circuit C of treewidth <R > d-SDNNF

e +~ matching lower bound

Then

- O(|p| x exp(R
DNF/CNF ¢ of pathwidth < k il )  OBDD |(not us)

e + matching lower bound

5/20



O(|C| x exp(R
. | Circuit C of treewidth <R (1] (%) > d-SDNNF

e +~ matching lower bound

Then

- O(|p| x exp(R
DNF/CNF ¢ of pathwidth < k il )  OBDD |(not us)

e + matching lower bound
Then

» Application to provenance and probabilistic databases

5/20



Treewidth and d-SDNNFs



Bounded treewidth Boolean circuits



Bounded treewidth Boolean circuits

)
() )
Treewidth of C = that of the underlying
° °>0 graph
()
© @
00



Bounded treewidth Boolean circuits

)
() )
Treewidth of C = that of the underlying
° °>0 graph
()
© @
00

We can do message passing:

Theorem (Lauritzen & Spielgelhalter, 1988)
Fix k € N. Given a Boolean circuit C of treewidth < k, we can compute
its probability in time O(f(R) x |C|), where f is singly exponential

7/20



8/20



» Negation Normal Form: negations
only applied to the leaves

8/20



» Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

8/20



» Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— SAT can be solved efficiently

8/20



» Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— SAT can be solved efficiently

e Deterministic: inputs of v-gates are
mutually exclusive

8/20



» Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— SAT can be solved efficiently

e Deterministic: inputs of v-gates are
mutually exclusive
— HSAT and probability evaluation

8/20



» Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— SAT can be solved efficiently

e Deterministic: inputs of v-gates are
mutually exclusive

— HSAT and probability evaluation

22  Structured: there is a vtree that
structures the A-gates

8/20



» Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— SAT can be solved efficiently

e Deterministic: inputs of v-gates are
mutually exclusive

— HSAT and probability evaluation

 Structured: there is a vtree that
structures the A-gates

— Enumeration

8/20



Treewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)

Let C be a Boolean circuit on m variables of treewidth < k.
There exists a d-SDNNF equivalent to C of size O(m x g(R)),
where g is doubly exponential

9/20



Treewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)

Let C be a Boolean circuit on m variables of treewidth < k.
There exists a d-SDNNF equivalent to C of size O(m x g(R)),
where g is doubly exponential

Drawbacks: non constructive

9/20



Treewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)

Let C be a Boolean circuit on m variables of treewidth < k.
There exists a d-SDNNF equivalent to C of size O(m x g(R)),
where g is doubly exponential

Drawbacks: non constructive

Theorem (This paper)
Let C be a Boolean circuit of treewidth < k.

We can compute a d-SDNNF equivalent to C in time O(|C| x f(R)),
where f is singly exponential

9/20



Treewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)

Let C be a Boolean circuit on m variables of treewidth < k.
There exists a d-SDNNF equivalent to C of size O(m x g(R)),
where g is doubly exponential

Drawbacks: non constructive

Theorem (This paper)

Let C be a Boolean circuit of treewidth < k.

We can compute a d-SDNNF equivalent to C in time O(|C| x f(R)),
where f is singly exponential

Applications: recapturing message passing, and enumeration of
satisfying valuations

9/20



Construction sketch

10/20



Construction sketch

10/20



Construction sketch

10/20



Construction sketch

10/20



Construction sketch

N,
-
\\
P

10/20



Construction sketch

N,
-
\\
P

10/20



=
[®]
)
(]
—=
(7]
c
R
)
(8]
=
—
fra]
(2]
c
(=)
(9



=
[®]
)
(]
—=
(7]
c
R
)
(8]
=
—
fra]
(2]
c
(=)
(9



=
[®]
)
(]
—=
(7]
c
R
)
(8]
=
—
fra]
(2]
c
(=)
(9

AWAVAVANWAN



=
[®]
)
(]
—=
(7]
c
R
)
(8]
=
—
fra]
(2]
c
(=)
(9



=
[®]
)
(]
—=
(7]
c
R
)
(8]
=
—
fra]
(2]
c
(=)
(9

AVAVAVAWA
2



=
[®]
)
(]
—=
(7]
c
R
)
(8]
=
—
fra]
(2]
c
(=)
(9



=
[®]
)
(]
—=
(7]
c
R
)
(8]
=
—
fra]
(2]
c
(=)
(9



=
[®]
)
(]
—=
(7]
c
R
)
(8]
=
—
fra]
(2]
c
(=)
(9















Treewidth and d-SDNNFs: Lower bound

» Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

11/20



Treewidth and d-SDNNFs: Lower bound

» Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

» Treewidth of a DNF/CNF: that of its Gaifman graph

11/20



Treewidth and d-SDNNFs: Lower bound

» Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

» Treewidth of a DNF/CNF: that of its Gaifman graph

 Arity: size of the largest clause

11/20



Treewidth and d-SDNNFs: Lower bound

Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

Treewidth of a DNF/CNF: that of its Gaifman graph

Arity: size of the largest clause

e Degree: maximal number of clauses to which a variable belongs

11/20



Treewidth and d-SDNNFs: Lower bound

Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

Treewidth of a DNF/CNF: that of its Gaifman graph

Arity: size of the largest clause

e Degree: maximal number of clauses to which a variable belongs

Theorem
Let ¢ be a monotone DNF of treewidth k, let a := arity(¢) and

R
d := degree(p). Then any d-SDNNF for ¢ has size > 2{3xa3xd2J —1

11/20



Treewidth and d-SDNNFs: Lower bound

Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

Treewidth of a DNF/CNF: that of its Gaifman graph

Arity: size of the largest clause

e Degree: maximal number of clauses to which a variable belongs

Theorem
Let ¢ be a monotone DNF of treewidth k, let a := arity(¢) and

R
d := degree(p). Then any d-SDNNF for ¢ has size > 2{3xa3xd2J —1

e For CNFs, the bound even works for (non-deterministic) SDNNF

11/20



Treewidth and d-SDNNFs: Lower bound

Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

Treewidth of a DNF/CNF: that of its Gaifman graph

Arity: size of the largest clause

e Degree: maximal number of clauses to which a variable belongs

Theorem
Let ¢ be a monotone DNF of treewidth k, let a := arity(¢) and

R
d := degree(p). Then any d-SDNNF for ¢ has size > 2{3xa3xd2J —1

e For CNFs, the bound even works for (non-deterministic) SDNNF

e The bound is generic: it applies to any monotone DNF/CNF

11/20



Pathwidth and OBDDs



Ordered Binary Decision Diagrams (OBDDs)

» DAG with sink nodes {T, L} and internal
nodes labeled by variables

13/20



Ordered Binary Decision Diagrams (OBDDs)

» DAG with sink nodes {T, L} and internal
nodes labeled by variables

e Semantics: follow the path of an assignment

to get the value of the Boolean function / \

J_ T

13/20



Ordered Binary Decision Diagrams (OBDDs)

» DAG with sink nodes {T, L} and internal
nodes labeled by variables

e Semantics: follow the path of an assignment

to get the value of the Boolean function / \

e There is a total order on the variables
v = X; X5 X3 X, such that each root-to- Smk
path is compatible with v

J_ T

13/20



Ordered Binary Decision Diagrams (OBDDs)

» DAG with sink nodes {T, L} and internal
nodes labeled by variables

e Semantics: follow the path of an assignment
to get the value of the Boolean function 0 1

e There is a total order on the variables \Xz
v = X; X; X3 X, such that each root-to-sink
path is compatible with v

e Compute probability bottom-up

13/20



Ordered Binary Decision Diagrams (OBDDs)

» DAG with sink nodes {T, L} and internal
nodes labeled by variables

e Semantics: follow the path of an assignment
to get the value of the Boolean function 0 \

e There is a total order on the variables X
v = X; X; X3 X, such that each root-to-sink 2
path is compatible with v

e Compute probability bottom-up
Prr(e) = m(X3) x Prz(e)
+(1 —7m(X3)) x Prz(e)

13/20



Ordered Binary Decision Diagrams (OBDDs)

» DAG with sink nodes {T, L} and internal
nodes labeled by variables

e Semantics: follow the path of an assignment

to get the value of the Boolean function 0 1

e There is a total order on the variables \Xz
v = X; X; X3 X, such that each root-to-sink ;/
path is compatible with v Xs 0

e Compute probability bottom-up
Prr(e) = m(X3) x Prz(e)
+(1 —7m(X3)) x Prz(e)

o Width of the OBDD ~ largest number of
nodes that are labeled by the same variable

13/20



Pathwidth and OBDDs: Upper and lower bounds

Upper bound:

Theorem (Bova & Slivovsky, 2017)

Let ¢ be a CNF or DNF of pathwidth k. We can compile  into an OBDD
of width 2kt2 (hence of size < nb_vars x 2k+2)

14/20



Pathwidth and OBDDs: Upper and lower bounds

Upper bound:

Theorem (Bova & Slivovsky, 2017)

Let ¢ be a CNF or DNF of pathwidth k. We can compile  into an OBDD
of width 2kt2 (hence of size < nb_vars x 2k+2)

Lower bound:

Theorem (This paper)
Let ¢ be a monotone CNF or DNF of pathwidth k, and let a := arity(y)

kR
and d := degree(y). Then any OBDD for ¢ has width > ﬂmJ

14/20



Pathwidth and OBDDs: Upper and lower bounds

Upper bound:

Theorem (Bova & Slivovsky, 2017)

Let ¢ be a CNF or DNF of pathwidth k. We can compile  into an OBDD
of width 2kt2 (hence of size < nb_vars x 2k+2)

Lower bound:

Theorem (This paper)
Let ¢ be a monotone CNF or DNF of pathwidth k, and let a := arity(y)

kR
and d := degree(y). Then any OBDD for ¢ has width > ﬂmJ

» Again, this is a generic lower bound!

14/20



Pathwidth and OBDDs: Upper and lower bounds

Upper bound:

Theorem (Bova & Slivovsky, 2017)

Let ¢ be a CNF or DNF of pathwidth k. We can compile  into an OBDD
of width 2kt2 (hence of size < nb_vars x 2k+2)

Lower bound:

Theorem (This paper)
Let ¢ be a monotone CNF or DNF of pathwidth k, and let a := arity(y)

kR
and d := degree(y). Then any OBDD for ¢ has width > ﬂmJ

» Again, this is a generic lower bound!

e For monotone DNF/CNF ¢ of constant arity and degree, the
smallest width of an OBDD for ¢ is 2®(Pathwidin(e)

14/20



Application to provenance



Provenance: definition

Definition

The provenance Prov(q, ) of query g on relational instance I is the
Boolean function with facts of | as variables and such that for any
valuation v : I — {0,1}, Prov(q, /) evaluates to T under v iff

{Fellv(F)=1}Fq

16/20



Example: Provenance

Ixyz (R(x,y) AS(y,2)) vV (S(x,y) AR(y,2))

R

0o N0 o
o 9O 0

Q 9
o o

17/20



Example: Provenance

Ixyz (R(x,y) AS(y,2)) vV (S(x,y) AR(y,2))

/\
\/

R

0o N0 o
o 9O 0

Q 9
o o

17/20



Example: Provenance

Ixyz (R(x,y) AS(y,2)) vV (S(x,y) AR(y,2))

17/20



Example: Provenance

Ixyz (R(x,y) AS(y,2)) vV (S(x,y) AR(y,2))

Prov(q, 1) = [S(a, b) A (R(b, ) V R(c, a))]

17/20



Example: Provenance

Ixyz (R(x,y) AS(y,2)) vV (S(x,y) AR(y,2))

17/20



Example: Provenance

Ixyz (R(x,y) AS(y,2)) vV (S(x,y) AR(y,2))

\Y

/ /

\ ,b)
N
R(c,a) R(b,c) R(c,d)

17/20



Treewidth of instances

* We can compute a lineage whose treewidth is exponential in the
treewidth of the database

18/20



Treewidth of instances

* We can compute a lineage whose treewidth is exponential in the
treewidth of the database

e Conversely, there are queries for which the lineage as a DNF has
same treewidth as the instance

18/20



Treewidth of instances

* We can compute a lineage whose treewidth is exponential in the
treewidth of the database

e Conversely, there are queries for which the lineage as a DNF has
same treewidth as the instance

* Hence, there are queries for which d-SDNNF representations of
the lineage have size exponential in the treewidth of the
database!

18/20



Intricate queries

Theorem (This paper)

There is a constant d € N such that the following is true. Let o be an
arity-2 signature, and Q a connected UCQ7 which is intricate on o.
For any instance | on o of treewidth k, any d-SDNNF representing the
lineage of Q on I has size 22k

19/20



Conclusion

 Strong connections between width- and semantics-based
restrictions in knowledge compilation:

20/20



Conclusion

 Strong connections between width- and semantics-based
restrictions in knowledge compilation:

— Recapture message passing on bounded treewidth circuits by
compiling them to d-SDNNF

20/20



Conclusion

 Strong connections between width- and semantics-based
restrictions in knowledge compilation:
— Recapture message passing on bounded treewidth circuits by
compiling them to d-SDNNF
— Compilation is singly exponential in the treewidth of the circuit
and cannot be avoided

20/20



Conclusion

 Strong connections between width- and semantics-based
restrictions in knowledge compilation:
— Recapture message passing on bounded treewidth circuits by

compiling them to d-SDNNF
— Compilation is singly exponential in the treewidth of the circuit

and cannot be avoided
— The width of an OBDD and the pathwidth of a DNF/CNF are within

a constant of each other

20/20



Conclusion

 Strong connections between width- and semantics-based
restrictions in knowledge compilation:
— Recapture message passing on bounded treewidth circuits by

compiling them to d-SDNNF
— Compilation is singly exponential in the treewidth of the circuit

and cannot be avoided
— The width of an OBDD and the pathwidth of a DNF/CNF are within

a constant of each other

e Future work:
— Get rid of arity and degree assumptions?
— Notion of width for d-SDNNFs?
— Lower bound for d-DNNFs?

Thanks for your attention!

20/20



