
Dr
af
tConnecting Width and Structure

in Knowledge Compilation

Antoine Amarilli1, Mikaël Monet1,3, Pierre Senellart2,3

March 28th, 2018
1LTCI, Télécom ParisTech, Université Paris-Saclay; Paris, France

2École normale supérieure, PSL Reasearch University; Paris, France

3Inria Paris; Paris, France

Dr
af
tWhat is Knowledge Compilation?

• You have a task
→ Boolean SAT (is there a satisfying assignment?)

→ #SAT (model counting) (how many satisfying assignments?)
→ probabilistic evaluation
→ enumeration

• Idea: compile the input into a format that is designed to solve
efficiently your task

1/20

Dr
af
tWhat is Knowledge Compilation?

• You have a task
→ Boolean SAT (is there a satisfying assignment?)
→ #SAT (model counting) (how many satisfying assignments?)

→ probabilistic evaluation
→ enumeration

• Idea: compile the input into a format that is designed to solve
efficiently your task

1/20

Dr
af
tWhat is Knowledge Compilation?

• You have a task
→ Boolean SAT (is there a satisfying assignment?)
→ #SAT (model counting) (how many satisfying assignments?)
→ probabilistic evaluation

→ enumeration

• Idea: compile the input into a format that is designed to solve
efficiently your task

1/20

Dr
af
tWhat is Knowledge Compilation?

• You have a task
→ Boolean SAT (is there a satisfying assignment?)
→ #SAT (model counting) (how many satisfying assignments?)
→ probabilistic evaluation
→ enumeration

• Idea: compile the input into a format that is designed to solve
efficiently your task

1/20

Dr
af
tWhat is Knowledge Compilation?

• You have a task
→ Boolean SAT (is there a satisfying assignment?)
→ #SAT (model counting) (how many satisfying assignments?)
→ probabilistic evaluation
→ enumeration

• Idea: compile the input into a format that is designed to solve
efficiently your task

1/20

Dr
af
tWhy would I do that?

• Without knowledge compilation
Input class C1 Result

Algo. 1

Input class C2 Result
Algo. 2

Input class C3 Result
Algo. 3

...

• With knowledge compilation:

modularity!

Input class C1

Input class C2

Input class C3

Compilation target
for your task Result

Generic algo.

Algo. 1 ′

Algo. 2′

Algo. 3
′

2/20

Dr
af
tWhy would I do that?

• Without knowledge compilation
Input class C1 Result

Algo. 1

Input class C2 Result
Algo. 2

Input class C3 Result
Algo. 3

...

• With knowledge compilation:

modularity!

Input class C1

Input class C2

Input class C3

Compilation target
for your task Result

Generic algo.

Algo. 1 ′

Algo. 2′

Algo. 3
′

2/20

Dr
af
tWhy would I do that?

• Without knowledge compilation
Input class C1 Result

Algo. 1

Input class C2 Result
Algo. 2

Input class C3 Result
Algo. 3

...

• With knowledge compilation:

modularity!

Input class C1

Input class C2

Input class C3

Compilation target
for your task Result

Generic algo.

Algo. 1 ′

Algo. 2′

Algo. 3
′

2/20

Dr
af
tWhy would I do that?

• Without knowledge compilation
Input class C1 Result

Algo. 1

Input class C2 Result
Algo. 2

Input class C3 Result
Algo. 3

...

• With knowledge compilation:

modularity!

Input class C1

Input class C2

Input class C3

Compilation target
for your task Result

Generic algo.

Algo. 1 ′

Algo. 2′

Algo. 3
′

2/20

Dr
af
tWhy would I do that?

• Without knowledge compilation
Input class C1 Result

Algo. 1

Input class C2 Result
Algo. 2

Input class C3 Result
Algo. 3

...

• With knowledge compilation:

modularity!

Input class C1

Input class C2

Input class C3

Compilation target
for your task Result

Generic algo.

Algo. 1 ′

Algo. 2′

Algo. 3
′

2/20

Dr
af
tWhy would I do that?

• Without knowledge compilation
Input class C1 Result

Algo. 1

Input class C2 Result
Algo. 2

Input class C3 Result
Algo. 3

...

• With knowledge compilation:

modularity!

Input class C1

Input class C2

Input class C3

Compilation target
for your task Result

Generic algo.

Algo. 1 ′

Algo. 2′

Algo. 3
′

2/20

Dr
af
tWhy would I do that?

• Without knowledge compilation
Input class C1 Result

Algo. 1

Input class C2 Result
Algo. 2

Input class C3 Result
Algo. 3

...

• With knowledge compilation:

modularity!

Input class C1

Input class C2

Input class C3

Compilation target
for your task Result

Generic algo.

Algo. 1 ′

Algo. 2′

Algo. 3
′

2/20

Dr
af
tWhy would I do that?

• Without knowledge compilation
Input class C1 Result

Algo. 1

Input class C2 Result
Algo. 2

Input class C3 Result
Algo. 3

...

• With knowledge compilation:

modularity!

Input class C1

Input class C2

Input class C3

Compilation target
for your task Result

Generic algo.

Algo. 1 ′

Algo. 2′

Algo. 3
′

2/20

Dr
af
tWhy would I do that?

• Without knowledge compilation
Input class C1 Result

Algo. 1

Input class C2 Result
Algo. 2

Input class C3 Result
Algo. 3

...

• With knowledge compilation: modularity!
Input class C1

Input class C2

Input class C3

Compilation target
for your task Result

Generic algo.

Algo. 1 ′

Algo. 2′

Algo. 3
′

2/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

Truth table

Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

Truth table Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

Truth table O(1) Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

Truth table O(1) Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

Truth table O(1)

O(n)

Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

Truth table O(1)

O(n)

Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

Truth table O(1)

O(n)

O(n)

Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

DNF Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

DNF O(n) Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

DNF O(n)

O(n)

Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

DNF O(n)

O(n)

#P hard

Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

Boolean circuit Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

Boolean circuit O(n) Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

Boolean circuit O(n)

NP hard

Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

Boolean circuit O(n)

NP hard

#P hard

Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

Boolean circuit O(n)

NP hard

#P hard

Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation

3/20

Dr
af
tStudying the compilation targets

• Tradeoffs between:
→ Complexity of compilation (conciseness of the compilation target)
→ Complexity of solving the task

Input Ctarget
Compilation

Result
Complexity

Boolean circuit O(n)

NP hard

#P hard

Evaluation

SAT

#SAT

→ When can we convert from one target to another?

• We are interested by #SAT and probability evaluation
3/20

Dr
af
tTarget classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
→ message passing algorithm for #SAT and probabilistic evaluation
• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
→ #SAT and probabilistic evaluation are easy because these classes

have strong semantic constraints
• Used to understand #SAT solvers

Question: what are the links beetween the two?

4/20

Dr
af
tTarget classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.

→ message passing algorithm for #SAT and probabilistic evaluation
• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
→ #SAT and probabilistic evaluation are easy because these classes

have strong semantic constraints
• Used to understand #SAT solvers

Question: what are the links beetween the two?

4/20

Dr
af
tTarget classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
→ message passing algorithm for #SAT and probabilistic evaluation

• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
→ #SAT and probabilistic evaluation are easy because these classes

have strong semantic constraints
• Used to understand #SAT solvers

Question: what are the links beetween the two?

4/20

Dr
af
tTarget classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
→ message passing algorithm for #SAT and probabilistic evaluation
• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
→ #SAT and probabilistic evaluation are easy because these classes

have strong semantic constraints
• Used to understand #SAT solvers

Question: what are the links beetween the two?

4/20

Dr
af
tTarget classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
→ message passing algorithm for #SAT and probabilistic evaluation
• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)

→ #SAT and probabilistic evaluation are easy because these classes
have strong semantic constraints

• Used to understand #SAT solvers

Question: what are the links beetween the two?

4/20

Dr
af
tTarget classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
→ message passing algorithm for #SAT and probabilistic evaluation
• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
→ #SAT and probabilistic evaluation are easy because these classes

have strong semantic constraints

• Used to understand #SAT solvers

Question: what are the links beetween the two?

4/20

Dr
af
tTarget classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
→ message passing algorithm for #SAT and probabilistic evaluation
• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
→ #SAT and probabilistic evaluation are easy because these classes

have strong semantic constraints
• Used to understand #SAT solvers

Question: what are the links beetween the two?

4/20

Dr
af
tTarget classes in knowledge compilation

For #SAT and probabilistic evaluation, two main restrictions on
compilation targets:

Width-based:

• Bounded pathwidth/treewidth Boolean circuits, CNFs, DNFs, etc.
→ message passing algorithm for #SAT and probabilistic evaluation
• Links with Bayesian networks

Semantics-based:

• Ordered Binary Decision Diagrams (OBDDs)/ Deterministic
Structured Decomposable Negation Normal Forms (d-SDNNFs)
→ #SAT and probabilistic evaluation are easy because these classes

have strong semantic constraints
• Used to understand #SAT solvers

Question: what are the links beetween the two?
4/20

Dr
af
tPlan

• Circuit C of treewidth 6 k d-SDNNF
O(|C| × exp(k))

• + ' matching lower bound
Then

• (not us)DNF/CNF ϕ of pathwidth 6 k OBDD
O(|ϕ| × exp(k))

• + matching lower bound
Then

• Application to provenance and probabilistic databases

5/20

Dr
af
tPlan

• Circuit C of treewidth 6 k d-SDNNF
O(|C| × exp(k))

• + ' matching lower bound

Then

• (not us)DNF/CNF ϕ of pathwidth 6 k OBDD
O(|ϕ| × exp(k))

• + matching lower bound
Then

• Application to provenance and probabilistic databases

5/20

Dr
af
tPlan

• Circuit C of treewidth 6 k d-SDNNF
O(|C| × exp(k))

• + ' matching lower bound
Then

• (not us)DNF/CNF ϕ of pathwidth 6 k OBDD
O(|ϕ| × exp(k))

• + matching lower bound
Then

• Application to provenance and probabilistic databases

5/20

Dr
af
tPlan

• Circuit C of treewidth 6 k d-SDNNF
O(|C| × exp(k))

• + ' matching lower bound
Then

• (not us)DNF/CNF ϕ of pathwidth 6 k OBDD
O(|ϕ| × exp(k))

• + matching lower bound

Then

• Application to provenance and probabilistic databases

5/20

Dr
af
tPlan

• Circuit C of treewidth 6 k d-SDNNF
O(|C| × exp(k))

• + ' matching lower bound
Then

• (not us)DNF/CNF ϕ of pathwidth 6 k OBDD
O(|ϕ| × exp(k))

• + matching lower bound
Then

• Application to provenance and probabilistic databases
5/20

Dr
af
t

Treewidth and d-SDNNFs

6/20

Dr
af
tBounded treewidth Boolean circuits

∧

∧

x ¬ ∨

t ¬

∨

∧

z y

Treewidth of C = that of the underlying
graph

We can do message passing:

Theorem (Lauritzen & Spielgelhalter, 1988)
Fix k ∈ N. Given a Boolean circuit C of treewidth 6 k, we can compute
its probability in time O(f (k)× |C|), where f is singly exponential

7/20

Dr
af
tBounded treewidth Boolean circuits

∧

∧

x ¬ ∨

t ¬

∨

∧

z y

Treewidth of C = that of the underlying
graph

We can do message passing:

Theorem (Lauritzen & Spielgelhalter, 1988)
Fix k ∈ N. Given a Boolean circuit C of treewidth 6 k, we can compute
its probability in time O(f (k)× |C|), where f is singly exponential

7/20

Dr
af
tBounded treewidth Boolean circuits

∧

∧

x ¬ ∨

t ¬

∨

∧

z y

Treewidth of C = that of the underlying
graph

We can do message passing:

Theorem (Lauritzen & Spielgelhalter, 1988)
Fix k ∈ N. Given a Boolean circuit C of treewidth 6 k, we can compute
its probability in time O(f (k)× |C|), where f is singly exponential

7/20

Dr
af
td-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two different inputs of the same
∧-gate)
→ SAT can be solved efficiently

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ #SAT and probability evaluation

• Structured: there is a vtree that
structures the ∧-gates
→ Enumeration

8/20

Dr
af
td-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two different inputs of the same
∧-gate)
→ SAT can be solved efficiently

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ #SAT and probability evaluation

• Structured: there is a vtree that
structures the ∧-gates
→ Enumeration

8/20

Dr
af
td-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two different inputs of the same
∧-gate)

→ SAT can be solved efficiently

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ #SAT and probability evaluation

• Structured: there is a vtree that
structures the ∧-gates
→ Enumeration

8/20

Dr
af
td-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two different inputs of the same
∧-gate)
→ SAT can be solved efficiently

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ #SAT and probability evaluation

• Structured: there is a vtree that
structures the ∧-gates
→ Enumeration

8/20

Dr
af
td-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two different inputs of the same
∧-gate)
→ SAT can be solved efficiently

• Deterministic: inputs of ∨-gates are
mutually exclusive

→ #SAT and probability evaluation

• Structured: there is a vtree that
structures the ∧-gates
→ Enumeration

8/20

Dr
af
td-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two different inputs of the same
∧-gate)
→ SAT can be solved efficiently

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ #SAT and probability evaluation

• Structured: there is a vtree that
structures the ∧-gates
→ Enumeration

8/20

Dr
af
td-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two different inputs of the same
∧-gate)
→ SAT can be solved efficiently

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ #SAT and probability evaluation

• Structured: there is a vtree that
structures the ∧-gates

→ Enumeration

8/20

Dr
af
td-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two different inputs of the same
∧-gate)
→ SAT can be solved efficiently

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ #SAT and probability evaluation

• Structured: there is a vtree that
structures the ∧-gates
→ Enumeration

8/20

Dr
af
tTreewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)
Let C be a Boolean circuit on m variables of treewidth 6 k.
There exists a d-SDNNF equivalent to C of size O(m× g(k)),
where g is doubly exponential

Drawbacks: non constructive

Theorem (This paper)
Let C be a Boolean circuit of treewidth 6 k.
We can compute a d-SDNNF equivalent to C in time O(|C| × f (k)),
where f is singly exponential

Applications: recapturing message passing, and enumeration of
satisfying valuations

9/20

Dr
af
tTreewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)
Let C be a Boolean circuit on m variables of treewidth 6 k.
There exists a d-SDNNF equivalent to C of size O(m× g(k)),
where g is doubly exponential

Drawbacks: non constructive

Theorem (This paper)
Let C be a Boolean circuit of treewidth 6 k.
We can compute a d-SDNNF equivalent to C in time O(|C| × f (k)),
where f is singly exponential

Applications: recapturing message passing, and enumeration of
satisfying valuations

9/20

Dr
af
tTreewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)
Let C be a Boolean circuit on m variables of treewidth 6 k.
There exists a d-SDNNF equivalent to C of size O(m× g(k)),
where g is doubly exponential

Drawbacks: non constructive

Theorem (This paper)
Let C be a Boolean circuit of treewidth 6 k.
We can compute a d-SDNNF equivalent to C in time O(|C| × f (k)),
where f is singly exponential

Applications: recapturing message passing, and enumeration of
satisfying valuations

9/20

Dr
af
tTreewidth and d-SDNNFs: Upper bound

Theorem (Bova & Szeider, 2017)
Let C be a Boolean circuit on m variables of treewidth 6 k.
There exists a d-SDNNF equivalent to C of size O(m× g(k)),
where g is doubly exponential

Drawbacks: non constructive

Theorem (This paper)
Let C be a Boolean circuit of treewidth 6 k.
We can compute a d-SDNNF equivalent to C in time O(|C| × f (k)),
where f is singly exponential

Applications: recapturing message passing, and enumeration of
satisfying valuations

9/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tConstruction sketch

10/20

Dr
af
tTreewidth and d-SDNNFs: Lower bound

• Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

• Treewidth of a DNF/CNF: that of its Gaifman graph
• Arity: size of the largest clause
• Degree: maximal number of clauses to which a variable belongs

Theorem
Let ϕ be a monotone DNF of treewidth k, let a := arity(ϕ) and

d := degree(ϕ). Then any d-SDNNF for ϕ has size > 2
⌊

k
3×a3×d2

⌋
− 1

• For CNFs, the bound even works for (non-deterministic) SDNNF
• The bound is generic: it applies to any monotone DNF/CNF

11/20

Dr
af
tTreewidth and d-SDNNFs: Lower bound

• Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

• Treewidth of a DNF/CNF: that of its Gaifman graph

• Arity: size of the largest clause
• Degree: maximal number of clauses to which a variable belongs

Theorem
Let ϕ be a monotone DNF of treewidth k, let a := arity(ϕ) and

d := degree(ϕ). Then any d-SDNNF for ϕ has size > 2
⌊

k
3×a3×d2

⌋
− 1

• For CNFs, the bound even works for (non-deterministic) SDNNF
• The bound is generic: it applies to any monotone DNF/CNF

11/20

Dr
af
tTreewidth and d-SDNNFs: Lower bound

• Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

• Treewidth of a DNF/CNF: that of its Gaifman graph
• Arity: size of the largest clause

• Degree: maximal number of clauses to which a variable belongs
Theorem
Let ϕ be a monotone DNF of treewidth k, let a := arity(ϕ) and

d := degree(ϕ). Then any d-SDNNF for ϕ has size > 2
⌊

k
3×a3×d2

⌋
− 1

• For CNFs, the bound even works for (non-deterministic) SDNNF
• The bound is generic: it applies to any monotone DNF/CNF

11/20

Dr
af
tTreewidth and d-SDNNFs: Lower bound

• Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

• Treewidth of a DNF/CNF: that of its Gaifman graph
• Arity: size of the largest clause
• Degree: maximal number of clauses to which a variable belongs

Theorem
Let ϕ be a monotone DNF of treewidth k, let a := arity(ϕ) and

d := degree(ϕ). Then any d-SDNNF for ϕ has size > 2
⌊

k
3×a3×d2

⌋
− 1

• For CNFs, the bound even works for (non-deterministic) SDNNF
• The bound is generic: it applies to any monotone DNF/CNF

11/20

Dr
af
tTreewidth and d-SDNNFs: Lower bound

• Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

• Treewidth of a DNF/CNF: that of its Gaifman graph
• Arity: size of the largest clause
• Degree: maximal number of clauses to which a variable belongs

Theorem
Let ϕ be a monotone DNF of treewidth k, let a := arity(ϕ) and

d := degree(ϕ). Then any d-SDNNF for ϕ has size > 2
⌊

k
3×a3×d2

⌋
− 1

• For CNFs, the bound even works for (non-deterministic) SDNNF
• The bound is generic: it applies to any monotone DNF/CNF

11/20

Dr
af
tTreewidth and d-SDNNFs: Lower bound

• Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

• Treewidth of a DNF/CNF: that of its Gaifman graph
• Arity: size of the largest clause
• Degree: maximal number of clauses to which a variable belongs

Theorem
Let ϕ be a monotone DNF of treewidth k, let a := arity(ϕ) and

d := degree(ϕ). Then any d-SDNNF for ϕ has size > 2
⌊

k
3×a3×d2

⌋
− 1

• For CNFs, the bound even works for (non-deterministic) SDNNF

• The bound is generic: it applies to any monotone DNF/CNF

11/20

Dr
af
tTreewidth and d-SDNNFs: Lower bound

• Already applies to very restricted Boolean circuits: monotone
DNFs and CNFs

• Treewidth of a DNF/CNF: that of its Gaifman graph
• Arity: size of the largest clause
• Degree: maximal number of clauses to which a variable belongs

Theorem
Let ϕ be a monotone DNF of treewidth k, let a := arity(ϕ) and

d := degree(ϕ). Then any d-SDNNF for ϕ has size > 2
⌊

k
3×a3×d2

⌋
− 1

• For CNFs, the bound even works for (non-deterministic) SDNNF
• The bound is generic: it applies to any monotone DNF/CNF

11/20

Dr
af
t

Pathwidth and OBDDs

12/20

Dr
af
tOrdered Binary Decision Diagrams (OBDDs)

• DAG with sink nodes {>,⊥} and internal
nodes labeled by variables

• Semantics: follow the path of an assignment
to get the value of the Boolean function

• There is a total order on the variables
v = X1 X2 X3 X4 such that each root-to-sink
path is compatible with v

• Compute probability bottom-up
Prπ(•) = π(X3)× Prπ(•)
+(1− π(X3))× Prπ(•)

• Width of the OBDD ' largest number of
nodes that are labeled by the same variable

13/20

Dr
af
tOrdered Binary Decision Diagrams (OBDDs)

• DAG with sink nodes {>,⊥} and internal
nodes labeled by variables

• Semantics: follow the path of an assignment
to get the value of the Boolean function

• There is a total order on the variables
v = X1 X2 X3 X4 such that each root-to-sink
path is compatible with v

• Compute probability bottom-up
Prπ(•) = π(X3)× Prπ(•)
+(1− π(X3))× Prπ(•)

• Width of the OBDD ' largest number of
nodes that are labeled by the same variable

13/20

Dr
af
tOrdered Binary Decision Diagrams (OBDDs)

• DAG with sink nodes {>,⊥} and internal
nodes labeled by variables

• Semantics: follow the path of an assignment
to get the value of the Boolean function

• There is a total order on the variables
v = X1 X2 X3 X4 such that each root-to-sink
path is compatible with v

• Compute probability bottom-up
Prπ(•) = π(X3)× Prπ(•)
+(1− π(X3))× Prπ(•)

• Width of the OBDD ' largest number of
nodes that are labeled by the same variable

13/20

Dr
af
tOrdered Binary Decision Diagrams (OBDDs)

• DAG with sink nodes {>,⊥} and internal
nodes labeled by variables

• Semantics: follow the path of an assignment
to get the value of the Boolean function

• There is a total order on the variables
v = X1 X2 X3 X4 such that each root-to-sink
path is compatible with v

• Compute probability bottom-up

Prπ(•) = π(X3)× Prπ(•)
+(1− π(X3))× Prπ(•)

• Width of the OBDD ' largest number of
nodes that are labeled by the same variable

13/20

Dr
af
tOrdered Binary Decision Diagrams (OBDDs)

• DAG with sink nodes {>,⊥} and internal
nodes labeled by variables

• Semantics: follow the path of an assignment
to get the value of the Boolean function

• There is a total order on the variables
v = X1 X2 X3 X4 such that each root-to-sink
path is compatible with v

• Compute probability bottom-up
Prπ(•) = π(X3)× Prπ(•)
+(1− π(X3))× Prπ(•)

• Width of the OBDD ' largest number of
nodes that are labeled by the same variable

13/20

Dr
af
tOrdered Binary Decision Diagrams (OBDDs)

• DAG with sink nodes {>,⊥} and internal
nodes labeled by variables

• Semantics: follow the path of an assignment
to get the value of the Boolean function

• There is a total order on the variables
v = X1 X2 X3 X4 such that each root-to-sink
path is compatible with v

• Compute probability bottom-up
Prπ(•) = π(X3)× Prπ(•)
+(1− π(X3))× Prπ(•)

• Width of the OBDD ' largest number of
nodes that are labeled by the same variable

13/20

Dr
af
tPathwidth and OBDDs: Upper and lower bounds

Upper bound:

Theorem (Bova & Slivovsky, 2017)
Let ϕ be a CNF or DNF of pathwidth k. We can compile ϕ into an OBDD
of width 2k+2 (hence of size 6 nb_vars× 2k+2)

Lower bound:

Theorem (This paper)
Let ϕ be a monotone CNF or DNF of pathwidth k, and let a := arity(ϕ)

and d := degree(ϕ). Then any OBDD for ϕ has width > 2
⌊

k
a3×d2

⌋

• Again, this is a generic lower bound!
• For monotone DNF/CNF ϕ of constant arity and degree, the
smallest width of an OBDD for ϕ is 2Θ(pathwidth(ϕ))

14/20

Dr
af
tPathwidth and OBDDs: Upper and lower bounds

Upper bound:

Theorem (Bova & Slivovsky, 2017)
Let ϕ be a CNF or DNF of pathwidth k. We can compile ϕ into an OBDD
of width 2k+2 (hence of size 6 nb_vars× 2k+2)

Lower bound:

Theorem (This paper)
Let ϕ be a monotone CNF or DNF of pathwidth k, and let a := arity(ϕ)

and d := degree(ϕ). Then any OBDD for ϕ has width > 2
⌊

k
a3×d2

⌋

• Again, this is a generic lower bound!
• For monotone DNF/CNF ϕ of constant arity and degree, the
smallest width of an OBDD for ϕ is 2Θ(pathwidth(ϕ))

14/20

Dr
af
tPathwidth and OBDDs: Upper and lower bounds

Upper bound:

Theorem (Bova & Slivovsky, 2017)
Let ϕ be a CNF or DNF of pathwidth k. We can compile ϕ into an OBDD
of width 2k+2 (hence of size 6 nb_vars× 2k+2)

Lower bound:

Theorem (This paper)
Let ϕ be a monotone CNF or DNF of pathwidth k, and let a := arity(ϕ)

and d := degree(ϕ). Then any OBDD for ϕ has width > 2
⌊

k
a3×d2

⌋

• Again, this is a generic lower bound!

• For monotone DNF/CNF ϕ of constant arity and degree, the
smallest width of an OBDD for ϕ is 2Θ(pathwidth(ϕ))

14/20

Dr
af
tPathwidth and OBDDs: Upper and lower bounds

Upper bound:

Theorem (Bova & Slivovsky, 2017)
Let ϕ be a CNF or DNF of pathwidth k. We can compile ϕ into an OBDD
of width 2k+2 (hence of size 6 nb_vars× 2k+2)

Lower bound:

Theorem (This paper)
Let ϕ be a monotone CNF or DNF of pathwidth k, and let a := arity(ϕ)

and d := degree(ϕ). Then any OBDD for ϕ has width > 2
⌊

k
a3×d2

⌋

• Again, this is a generic lower bound!
• For monotone DNF/CNF ϕ of constant arity and degree, the
smallest width of an OBDD for ϕ is 2Θ(pathwidth(ϕ))

14/20

Dr
af
t

Application to provenance

15/20

Dr
af
tProvenance: definition

Definition
The provenance Prov(q, I) of query q on relational instance I is the
Boolean function with facts of I as variables and such that for any
valuation ν : I→ {0, 1}, Prov(q, I) evaluates to > under ν iff
{F ∈ I|ν(F) = 1} |= q

16/20

Dr
af
tExample: Provenance

∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

R

b c
c a
c d

S

a b
d b

Prov(q, I) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]
∨ [S(d,b) ∧ (R(b, c) ∨ R(c,d))]

17/20

Dr
af
tExample: Provenance

∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

R

b c
c a
c d

S

a b
d b

b

d

c

a

S

R
R

S

R

Prov(q, I) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]
∨ [S(d,b) ∧ (R(b, c) ∨ R(c,d))]

17/20

Dr
af
tExample: Provenance

∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

b

d

c

a

S

R
R

S

R

R(b, c)R(c,a) R(c,d)

∨ ∨S(a,b) S(d,b)

∧ ∧

∨

Prov(q, I) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]
∨ [S(d,b) ∧ (R(b, c) ∨ R(c,d))]

17/20

Dr
af
tExample: Provenance

∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

b

d

c

a

S

R
R

S

R

R(b, c)R(c,a) R(c,d)

∨ ∨S(a,b) S(d,b)

∧ ∧

∨

Prov(q, I) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]

∨ [S(d,b) ∧ (R(b, c) ∨ R(c,d))]

17/20

Dr
af
tExample: Provenance

∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

b

d

c

a

S

R
R

S

R

R(b, c)R(c,a) R(c,d)

∨ ∨S(a,b) S(d,b)

∧ ∧

∨

Prov(q, I) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]
∨ [S(d,b) ∧ (R(b, c) ∨ R(c,d))]

17/20

Dr
af
tExample: Provenance

∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

b

d

c

a

S

R
R

S

R

R(b, c)R(c,a) R(c,d)

∨ ∨S(a,b) S(d,b)

∧ ∧

∨

Prov(q, I) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]
∨ [S(d,b) ∧ (R(b, c) ∨ R(c,d))]

17/20

Dr
af
tTreewidth of instances

• We can compute a lineage whose treewidth is exponential in the
treewidth of the database

• Conversely, there are queries for which the lineage as a DNF has
same treewidth as the instance

• Hence, there are queries for which d-SDNNF representations of
the lineage have size exponential in the treewidth of the
database!

18/20

Dr
af
tTreewidth of instances

• We can compute a lineage whose treewidth is exponential in the
treewidth of the database

• Conversely, there are queries for which the lineage as a DNF has
same treewidth as the instance

• Hence, there are queries for which d-SDNNF representations of
the lineage have size exponential in the treewidth of the
database!

18/20

Dr
af
tTreewidth of instances

• We can compute a lineage whose treewidth is exponential in the
treewidth of the database

• Conversely, there are queries for which the lineage as a DNF has
same treewidth as the instance

• Hence, there are queries for which d-SDNNF representations of
the lineage have size exponential in the treewidth of the
database!

18/20

Dr
af
tIntricate queries

Theorem (This paper)
There is a constant d ∈ N such that the following is true. Let σ be an
arity-2 signature, and Q a connected UCQ6= which is intricate on σ.
For any instance I on σ of treewidth k, any d-SDNNF representing the
lineage of Q on I has size 2Ω(k1/d)

19/20

Dr
af
tConclusion

• Strong connections between width- and semantics-based
restrictions in knowledge compilation:

→ Recapture message passing on bounded treewidth circuits by
compiling them to d-SDNNF

→ Compilation is singly exponential in the treewidth of the circuit
and cannot be avoided

→ The width of an OBDD and the pathwidth of a DNF/CNF are within
a constant of each other

• Future work:
→ Get rid of arity and degree assumptions?
→ Notion of width for d-SDNNFs?
→ Lower bound for d-DNNFs?

Thanks for your attention!

20/20

Dr
af
tConclusion

• Strong connections between width- and semantics-based
restrictions in knowledge compilation:
→ Recapture message passing on bounded treewidth circuits by

compiling them to d-SDNNF

→ Compilation is singly exponential in the treewidth of the circuit
and cannot be avoided

→ The width of an OBDD and the pathwidth of a DNF/CNF are within
a constant of each other

• Future work:
→ Get rid of arity and degree assumptions?
→ Notion of width for d-SDNNFs?
→ Lower bound for d-DNNFs?

Thanks for your attention!

20/20

Dr
af
tConclusion

• Strong connections between width- and semantics-based
restrictions in knowledge compilation:
→ Recapture message passing on bounded treewidth circuits by

compiling them to d-SDNNF
→ Compilation is singly exponential in the treewidth of the circuit

and cannot be avoided

→ The width of an OBDD and the pathwidth of a DNF/CNF are within
a constant of each other

• Future work:
→ Get rid of arity and degree assumptions?
→ Notion of width for d-SDNNFs?
→ Lower bound for d-DNNFs?

Thanks for your attention!

20/20

Dr
af
tConclusion

• Strong connections between width- and semantics-based
restrictions in knowledge compilation:
→ Recapture message passing on bounded treewidth circuits by

compiling them to d-SDNNF
→ Compilation is singly exponential in the treewidth of the circuit

and cannot be avoided
→ The width of an OBDD and the pathwidth of a DNF/CNF are within

a constant of each other

• Future work:
→ Get rid of arity and degree assumptions?
→ Notion of width for d-SDNNFs?
→ Lower bound for d-DNNFs?

Thanks for your attention!

20/20

Dr
af
tConclusion

• Strong connections between width- and semantics-based
restrictions in knowledge compilation:
→ Recapture message passing on bounded treewidth circuits by

compiling them to d-SDNNF
→ Compilation is singly exponential in the treewidth of the circuit

and cannot be avoided
→ The width of an OBDD and the pathwidth of a DNF/CNF are within

a constant of each other

• Future work:
→ Get rid of arity and degree assumptions?
→ Notion of width for d-SDNNFs?
→ Lower bound for d-DNNFs?

Thanks for your attention!

20/20

