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Tuple-independent databases (TID)

» Probabilistic databases: model uncertainty about data

« Simplest model: tuple-independent databases (TID)

- Arelational database |
- A probability valuation = mapping each fact of I to [0,1]

* Semantics of a TID (I, 7): a probability distribution on I’ C I:

- Each fact F € I is either present or absent with probability 7(F)
- Assume independence across facts
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Probabilistic query evaluation (PQE)

Let us fix:
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3/21



Probabilistic query evaluation (PQE)

Let us fix:

 Relational signature o
« A Boolean query g (e.g., CQ, FO, Datalog...)

 Class Z of relational instances on o (e.g., acyclic, treelike)

Probabilistic query evaluation PQE(q, Z):

e INPUT: an instance | € Z and a probability valuation =
* OUTPUT: the probability that (/, ) satisfies q

3/21



Probabilistic query evaluation (PQE)

Let us fix:

 Relational signature o
« A Boolean query g (e.g., CQ, FO, Datalog...)

 Class Z of relational instances on o (e.g., acyclic, treelike)

Probabilistic query evaluation PQE(q, Z):

e INPUT: an instance | € Z and a probability valuation =
* OUTPUT: the probability that (/, ) satisfies q

= Pre(l=0) = 2 e, j=q Pr= ()
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Complexity results

« Existing dichotomy result on queries [Dalvi & Suciu, 2012]

- Ty is all instances
- There is a class & C UCQs of safe queries
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Intensional Method: through Provenance

Definition

The provenance Prov(q,I) of query g on instance [ is the Boolean
function with facts of I as variables and such that for any valuation
v:|—{0,1}, Prov(q,l) evaluates to TRUE under v iff

{FellF) =1} q
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Definition

The provenance Prov(q,I) of query g on instance [ is the Boolean
function with facts of I as variables and such that for any valuation
v:|—{0,1}, Prov(q,l) evaluates to TRUE under v iff

{FellF) =1} q

Possible representations:

« Boolean formulas (with the tuples as variables)

e Boolean circuits

Then Pr.(I = q) = Prz(Prov(q,l) =T)
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Prov(q, 1) = [S(a, b) A (R(b, ) V R(c, a))]
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— Computing the probability of a Boolean formula ¢ (or circuit C)
over variables X is #P-hard!
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— Computing the probability of a Boolean formula ¢ (or circuit C)
over variables X is #P-hard!
* HSAT: take m(x) = 3 for each variable x € X.
Then #p = 2K x Pr (¢ = T)
— Which restrictions on ¢ or C make it possible?
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Knowledge Compilation to the Rescue

. . Complexity? . .
« Class of circuits ¢ 2P, nice representations Crarget

* Ciarget Should allow tractable... probability computation

» Upper/lower complexity bounds

Trade off between consiseness of C and Crarget and complexity
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Principal classes of compilation targets
considered in knowledge compilation




Free Binary Decision Diagrams (FBDDs)
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and internal nodes labeled by
variables
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Free Binary Decision Diagrams (FBDDs)

» DAG with sink nodes {T, L}
and internal nodes labeled by
variables

e Each variable node has a o
and a 1-outgoing edge

e Each root-to-sink path
inspects each variable at
most once

e Compute probability
bottom-up

Prr(e) = m(X3) x Prz(e)
+(1 = 7(X3)) x Pry(e)
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Ordered Binary Decision Diagrams (OBDDs)

e |tisa FBDD ‘y \

e There is a total order on the

variables s.t. every
root-to-sink path is
compatible with this order

e Tractable closure under
Boolean operations, assuming

the orders are the same
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Example: what is this?

* NNF

* DNNF @
o d-DNNF @
» d-SDNNF

(Circuit courtesy of Antoine Amarilli)



Application to Probabilistic Databases
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Complexity results

« Existing dichotomy result on queries [Dalvi & Suciu, 2012]
- Ty is all instances
- There is a class & C UCQs of safe queries
— g€ 8 = PQE(q,Zyy) is PTIME
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- Fix R € N. Z;, = all instances of treewidth < k
- g € MSO
— PQE(q, Z¢) has linear time complexity [Amarilli, Bourhis, &
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— There is an FO query Gnarg for which PQE(qharg, Z) is #P-hard on
any unbounded-treewidth graph family Z (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]
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On All Instances

e T, is all instances
* There is a class ZF C UCQs of inversion free queries

— q € IF <= we can compute in PTIME Prov(q, /) as an OBDD
(hence in particular ZF C safe UCQs)

Open Characterisation for FBDDs? (we know ZF C??? C safe UCQs)

Open Can we tractably compute the provenance of safe UCQs as
d-DNNFs?

17/21



On Bounded Treewidth Instances

e Fix k € N. Z,, = all instances of treewidth < Rk
* Fix g € MSO

18/21



On Bounded Treewidth Instances

e Fix k € N. Z,, = all instances of treewidth < Rk
* Fix g € MSO

Theorem (Amarilli, Bourhis, & Senellart, 2015)
Given | € Iy, we can compute in linear time a Boolean circuit Cq

capturing Prov(q, I). Moreover Cq has bounded treewidth (i.e, f(|q|,R)
for some function f)

18/21



On Bounded Treewidth Instances

e Fix Rk € N. Z, = all instances of treewidth < k
* Fix g € MSO

Theorem (Amarilli, Bourhis, & Senellart, 2015)
Given | € Iy, we can compute in linear time a Boolean circuit Cq

capturing Prov(q, I). Moreover Cq has bounded treewidth (i.e, f(|q|,R)
for some function f)

e Nice, how do | compute the probability?
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Re-explaining Message-Passing

Theorem (Lauritzen, & Spielgelhalter, 1988)
Fix k € NN. Given a Boolean circuit C of treewidth < k, we can compute
its probability in time O(f(R) x |C|), where f is singly exponential
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Re-explaining Message-Passing

Theorem (Lauritzen, & Spielgelhalter, 1988)
Fix k € NN. Given a Boolean circuit C of treewidth < k, we can compute
its probability in time O(f(R) x |C|), where f is singly exponential

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
Fix k € NN. Given a Boolean circuit C of treewidth k, we can compute
in linear time a d-SDNNF equivalent to C (hence its probability) in
time O(f(R) x |C|), where f is singly exponential

linear time

¢ Bounded treewidth circuits —————— d-SDNNFs

« Consequences for enumeration
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Lower Bounds

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)

Let ¢ be a monotone DNF, let a := arity(y) and d := degree(y). Then
tw(p) J

any d-SDNNF for ¢ has size > ﬂm 1
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Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)

Let ¢ be a monotone DNF, let a := arity(y) and d := degree(y). Then
tw(p) J

any d-SDNNF for ¢ has size > ﬂm 1

— Consequence for probabilistic databases:

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
There is a constant d € N such that the following is true. Let o be an
arity-2 signature, and Q a connected UCQ7 which is intricate on o.

For any instance | on o, any d-SDNNF representing the lineage of Q
on I has size 2Utw()"/)
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Conclusion

» Knowledge Compilation as a tool for probabilistic databases and
provenance computation

e Upper bounds in KC = uppers bounds for PQE

e Lower bounds in KC = limits of the intensional approach of
PQE

Thanks for your attention!
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