Knowledge Compilation for Probabilistic Databases

Mikaél Monet'?
November 3rd, 2017

TLTCI, Telécom ParisTech, Université Paris-Saclay; Paris, France

2Inria Paris; Paris, France

Tuple-independent databases (TID)

» Probabilistic databases: model uncertainty about data

« Simplest model: tuple-independent databases (TID)

- Arelational database |
- A probability valuation = mapping each fact of I to [0,1]

* Semantics of a TID (I, 7): a probability distribution on I’ C I:

- Each fact F € I is either present or absent with probability 7(F)
- Assume independence across facts

1/21

Example: TID

S Q9
o Q wn
Ul

2/21

Example: TID

S Q9
o Q wn
Ul

This TID (I, 7) represents the following probability distribution:

2/21

Example: TID

S Q9
o Q wn
Ul

This TID (I, 7) represents the following probability distribution:

5X .2
S

2/21

Example: TID

S Q9
o Q wn
Ul

This TID (I, 7) represents the following probability distribution:

5 X .2 5x(1-.2)
S S

2/21

Example: TID

S Q9
o Q wn
Ul

This TID (I, 7) represents the following probability distribution:

5% .2 5x(1—.2) (1—.5)x .2
S S S

2/21

Example: TID

S Q9
o Q wn
Ul

This TID (I, 7) represents the following probability distribution:

5% .2 5x(1—.2) (1—.5)x .2 (1—.5)x(1—-.2)
S S S S

2/21

Probabilistic query evaluation (PQE)

Let us fix:

 Relational signature o
« A Boolean query g (e.g., CQ, FO, Datalog...)

 Class Z of relational instances on o (e.g., acyclic, treelike)

3/21

Probabilistic query evaluation (PQE)

Let us fix:

 Relational signature o
« A Boolean query g (e.g., CQ, FO, Datalog...)

 Class Z of relational instances on o (e.g., acyclic, treelike)

Probabilistic query evaluation PQE(q, Z):

e INPUT: an instance | € Z and a probability valuation =
* OUTPUT: the probability that (/,) satisfies q

3/21

Probabilistic query evaluation (PQE)

Let us fix:

 Relational signature o
« A Boolean query g (e.g., CQ, FO, Datalog...)

 Class Z of relational instances on o (e.g., acyclic, treelike)

Probabilistic query evaluation PQE(q, Z):

e INPUT: an instance | € Z and a probability valuation =
* OUTPUT: the probability that (/,) satisfies q

= Pre(l=0) = 2 e, j=q Pr= ()

3/21

= T 5 A= ySkyaxFy

S 9o
o 9 | wn

4]21

S
|]= —— g=13

a a 5 4 Xy S(X,Y) AX#Y
b c

5 X .2

S

a

b

v

4]21

S
|= ——————— g=1
a a 5 4 XY S(X,y) AX#Y
b c
5 X .2
S
a
b
7
Prr(l=q)=.5x.2

4/21

S
= —— =4
a a 5 d=xysky)ax#Ey
b ¢
5x.2 5% (1—.2)
S S
a a a
b
v

4/21

S
| = =4
T q q=3XyS(XY)AXx#Y
b ¢
5x .2 5x(1—.2) (1—.5)x .2
S S S
a a a
b b o
v 2 v
Prr(l=q)=.5x.2

4/21

S
= —————— =4
a a 5 d=xysky)ax#Ey
b ¢
5x .2 5x(1—-.2) (1—.5)x .2
S S S
a a a
b b o
v 2 v

Prr(ll=q)=.5x .24+ (1—.5) x .2

4/21

S
=~ - q=3xyS(X.Y)AX#Y
b ¢
5x .2 5x(1—-.2) (1—.5)x .2 (1—.5)x(1-.2)
S S S S
a a a
b b o
v 2 v 2

Prr(ll=q)=.5x .24+ (1—.5) x .2

4/21

Complexity results

« Existing dichotomy result on queries [Dalvi & Suciu, 2012]

- Ty is all instances
- There is a class & C UCQs of safe queries

5/21

Complexity results

« Existing dichotomy result on queries [Dalvi & Suciu, 2012]

- Ty is all instances
- There is a class & C UCQs of safe queries
— geS = PQE(q,Z) is PTIME

5/21

Complexity results

« Existing dichotomy result on queries [Dalvi & Suciu, 2012]
- Ty is all instances
- There is a class & C UCQs of safe queries
— qe 8 = PQE(g,Zu) is PTIME
— q € UCQs\S = PQE(q,Z,) is #P-hard

5/21

Complexity results

« Existing dichotomy result on queries [Dalvi & Suciu, 2012]

- Ty is all instances

- There is a class & C UCQs of safe queries
— qg€S = PQE(q,Zy) is PTIME
— q € UCQs\S = PQE(q,Z,) is #P-hard

 Existing dichotomy result on instances

5/21

Complexity results

« Existing dichotomy result on queries [Dalvi & Suciu, 2012]

- Ty is all instances

- There is a class & C UCQs of safe queries
— qg€S = PQE(q,Zy) is PTIME
— q € UCQs\S = PQE(q,Z,) is #P-hard

 Existing dichotomy result on instances
- Fix R € N. Z;, = all instances of treewidth < k

5/21

Complexity results

« Existing dichotomy result on queries [Dalvi & Suciu, 2012]

- Ty is all instances

- There is a class & C UCQs of safe queries
— qg€S = PQE(q,Zy) is PTIME
— q € UCQs\S = PQE(q,Z,) is #P-hard

 Existing dichotomy result on instances

- Fix R € N. Z;, = all instances of treewidth < k
- q € MSO

5/21

Complexity results

« Existing dichotomy result on queries [Dalvi & Suciu, 2012]
- Ty is all instances
- There is a class & C UCQs of safe queries
— ge€8 = PQE(q,Zyy) is PTIME
— q € UCQs\S = PQE(q,Z,) is #P-hard

 Existing dichotomy result on instances
- Fix R € N. Z;, = all instances of treewidth < k
- g € MSO
— PQE(q,Z¢) has linear time complexity [Amarilli, Bourhis, &
Senellart, 2015]

5/21

Complexity results

« Existing dichotomy result on queries [Dalvi & Suciu, 2012]
- Ty is all instances
- There is a class & C UCQs of safe queries
— ge€8 = PQE(q,Zyy) is PTIME
— q € UCQs\S = PQE(q,Z,) is #P-hard

 Existing dichotomy result on instances
- Fix R € N. Z;, = all instances of treewidth < k
- g € MSO
— PQE(q,Z¢) has linear time complexity [Amarilli, Bourhis, &
Senellart, 2015]
— There is an FO query Gnarg for which PQE(qnarg, Z) is #P-hard on
any unbounded-treewidth graph family Z (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

5/21

Intensional Method: through Provenance

Definition

The provenance Prov(q,I) of query g on instance [is the Boolean
function with facts of I as variables and such that for any valuation
v:|—{0,1}, Prov(q,l) evaluates to TRUE under v iff

{FellF) =1} q

6/21

Intensional Method: through Provenance

Definition

The provenance Prov(q,I) of query g on instance [is the Boolean
function with facts of I as variables and such that for any valuation
v:|—{0,1}, Prov(q,l) evaluates to TRUE under v iff

{FellF) =1} q

Possible representations:

« Boolean formulas (with the tuples as variables)

6/21

Intensional Method: through Provenance

Definition

The provenance Prov(q,I) of query g on instance [is the Boolean
function with facts of I as variables and such that for any valuation
v:|—{0,1}, Prov(q,l) evaluates to TRUE under v iff

{FellF) =1} q

Possible representations:

« Boolean formulas (with the tuples as variables)

e Boolean circuits

6/21

Intensional Method: through Provenance

Definition

The provenance Prov(q,I) of query g on instance [is the Boolean
function with facts of I as variables and such that for any valuation
v:|—{0,1}, Prov(q,l) evaluates to TRUE under v iff

{FellF) =1} q

Possible representations:

« Boolean formulas (with the tuples as variables)

e Boolean circuits

Then Pr.(I = q) = Prz(Prov(q,l) =T)

6/21

Example: Provenance

Ixyz (R(x,y) AS(y,2)) vV (S(x,y) AR(y,2))

R

0o N0 o
o 9O 0
-

.05

Q 9
S O | wn
~

7/21

Example: Provenance

Ixyz (R(x,y) AS(y,2)) vV (S(x,y) AR(y,2))

Q 9
S O | wn
~

7/21

Example: Provenance

Ixyz (R(x,y) AS(y,2)) vV (S(x,y) AR(y,2))

7/21

Example: Provenance

Ixyz (R(x,y) AS(y,2)) vV (S(x,y) AR(y,2))

Prov(q, 1) = [S(a, b) A (R(b,) V R(c, a))]

7/21

Example: Provenance

Ixyz (R(x,y) AS(y,2)) vV (S(x,y) AR(y,2))

7/21

Example: Provenance

Ixyz (R(x,y) AS(y,2)) vV (S(x,y) AR(y,2))

\Y

/ /

\ ,b)
N
R(c,a) R(b,c) R(c,d)

7/21

— Computing the probability of a Boolean formula ¢ (or circuit C)
over variables X is #P-hard!

8/21

— Computing the probability of a Boolean formula ¢ (or circuit C)
over variables X is #P-hard!
* HSAT: take m(x) = 3 for each variable x € X.
Then #p = 2K x Pr (¢ = T)
— Which restrictions on ¢ or C make it possible?

8/21

Knowledge Compilation to the Rescue

* Class of circuits C ——————— nice representations Crarget

9/21

Knowledge Compilation to the Rescue

* Class of circuits C ——————— nice representations Crarget

* Ciarget Should allow tractable...

9/21

Knowledge Compilation to the Rescue

* Class of circuits C ——————— nice representations Crarget

* Crarget Should allow tractable... evaluation

9/21

Knowledge Compilation to the Rescue

* Class of circuits C ——————— nice representations Crarget

* Crarget Should allow tractable... enumeration

9/21

Knowledge Compilation to the Rescue

* Class of circuits C ——————— nice representations Crarget
* Ciarget Should allow tractable... SAT

9/21

Knowledge Compilation to the Rescue

* Class of circuits C ——————— nice representations Crarget
* Crarget Should allow tractable... #SAT

9/21

Knowledge Compilation to the Rescue

* Class of circuits C ——————— nice representations Crarget

* Ciarget Should allow tractable... probability computation

9/21

Knowledge Compilation to the Rescue

. . Complexity? . .
« Class of circuits ¢ 2P, nice representations Crarget

* Ciarget Should allow tractable... probability computation
» Upper/lower complexity bounds

9/21

Knowledge Compilation to the Rescue

. . Complexity? . .
« Class of circuits ¢ 2P, nice representations Crarget

* Ciarget Should allow tractable... probability computation

» Upper/lower complexity bounds

Trade off between consiseness of C and Crarget and complexity

9/21

&

Principal classes of compilation targets
considered in knowledge compilation

Free Binary Decision Diagrams (FBDDs)

* DAG with sink nodes {T, L}
and internal nodes labeled by
variables

1/21

Free Binary Decision Diagrams (FBDDs)

» DAG with sink nodes {T, L}
and internal nodes labeled by

variables X
1
e Fach variable node hasa o 0 1
and a 1-outgoing edge x;/ \

1/21

Free Binary Decision Diagrams (FBDDs)

» DAG with sink nodes {T, L}
and internal nodes labeled by

variables X
1
e Fach variable node hasa o 0 1
and a 1-outgoing edge x;/ \

e Each root-to-sink path
inspects each variable at Xz
most once

1/21

Free Binary Decision Diagrams (FBDDs)

» DAG with sink nodes {T, L}
and internal nodes labeled by

variables X
1
» Each variable node hasao 0 1
and a 1-outgoing edge x;/ \
e Each root-to-sink path
inspects each variable at Xz

most once

e Compute probability
bottom-up

1/21

Free Binary Decision Diagrams (FBDDs)

» DAG with sink nodes {T, L}
and internal nodes labeled by
variables

e Each variable node has a o
and a 1-outgoing edge

e Each root-to-sink path
inspects each variable at
most once

e Compute probability
bottom-up

Prr(e) = m(X3) x Prz(e)
+(1 = 7(X3)) x Pry(e)

1/21

Ordered Binary Decision Diagrams (OBDDs)

e |tisa FBDD ‘y \

12/21

Ordered Binary Decision Diagrams (OBDDs)

e |tisa FBDD 0 1
e There is a total order on the

variables s.t. every

root-to-sink path is X
. . . 2

compatible with this order /

12/21

Ordered Binary Decision Diagrams (OBDDs)

X
+ Itisa FBDD - \
 There is a total order on the X3 X3
variables s.t. every 0 1 y
root-to-sink path is / X, 0
compatible with this order X5

12/21

Ordered Binary Decision Diagrams (OBDDs)

e |tisa FBDD ‘y \

e There is a total order on the

variables s.t. every
root-to-sink path is
compatible with this order

e Tractable closure under
Boolean operations, assuming

the orders are the same

12/21

Circuit classes

« Negation Normal Forms (NNFs): negations only applied to
variables

13/21

Circuit classes

« Negation Normal Forms (NNFs): negations only applied to
variables

« Decomposable NNFs (DNNFs): inputs of and-gates are
syntactically independent

13/21

Circuit classes

« Negation Normal Forms (NNFs): negations only applied to
variables

« Decomposable NNFs (DNNFs): inputs of and-gates are
syntactically independent

— SAT

13/21

Circuit classes

« Negation Normal Forms (NNFs): negations only applied to
variables

« Decomposable NNFs (DNNFs): inputs of and-gates are
syntactically independent

— SAT

« Deterministic DNNFs (d-DNNFs): inputs of or-gates are mutually
exclusive

13/21

Circuit classes

« Negation Normal Forms (NNFs): negations only applied to
variables

« Decomposable NNFs (DNNFs): inputs of and-gates are
syntactically independent

— SAT

« Deterministic DNNFs (d-DNNFs): inputs of or-gates are mutually
exclusive

— HSAT, probability computation

13/21

Circuit classes

« Negation Normal Forms (NNFs): negations only applied to
variables

« Decomposable NNFs (DNNFs): inputs of and-gates are
syntactically independent

— SAT

« Deterministic DNNFs (d-DNNFs): inputs of or-gates are mutually
exclusive

— HSAT, probability computation

e Structured DNNFs (SDNNFs, d-SDNNFs): and-gates of the circuit
are structured by a vtree

13/21

Circuit classes

« Negation Normal Forms (NNFs): negations only applied to
variables

« Decomposable NNFs (DNNFs): inputs of and-gates are
syntactically independent

— SAT

« Deterministic DNNFs (d-DNNFs): inputs of or-gates are mutually
exclusive

— HSAT, probability computation

e Structured DNNFs (SDNNFs, d-SDNNFs): and-gates of the circuit
are structured by a vtree

— Enumeration

13/21

Example: what is this?

(Circuit courtesy of Antoine Amarilli)

Example: what is this?

(Circuit courtesy of Antoine Amarilli)

Example: what is this?

* NNF

(Circuit courtesy of Antoine Amarilli)

Example: what is this?

* NNF

(Circuit courtesy of Antoine Amarilli)

Example: what is this?

(Circuit courtesy of Antoine Amarilli)

Example: what is this?

(Circuit courtesy of Antoine Amarilli)

Example: what is this?

NNF
DNNF 2 2)
d-DNNF

(Circuit courtesy of Antoine Amarilli)

Example: what is this?

NNF
DNNF 2 2)
d-DNNF

(Circuit courtesy of Antoine Amarilli)

Example: what is this?

* NNF

* DNNF @
o d-DNNF @
» d-SDNNF

(Circuit courtesy of Antoine Amarilli)

Application to Probabilistic Databases

15/21

Complexity results

« Existing dichotomy result on queries [Dalvi & Suciu, 2012]
- Ty is all instances
- There is a class & C UCQs of safe queries
— g€ 8 = PQE(q,Zyy) is PTIME
— q € UCQs\S = PQE(q,Z,) is #P-hard

 Existing dichotomy result on instances
- Fix R € N. Z;, = all instances of treewidth < k
- g € MSO
— PQE(q, Z¢) has linear time complexity [Amarilli, Bourhis, &
Senellart, 2015]
— There is an FO query Gnarg for which PQE(qharg, Z) is #P-hard on
any unbounded-treewidth graph family Z (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

16/21

On All Instances

e T, is all instances

17/21

On All Instances

e T, is all instances

e There is a class ZF C UCQs of inversion free queries

17/21

On All Instances

e T, is all instances
 There is a class ZF C UCQs of inversion free queries

— q € IF <= we can compute in PTIME Prov(q, /) as an OBDD
(hence in particular ZF C safe UCQs)

17/21

On All Instances

e T, is all instances
 There is a class ZF C UCQs of inversion free queries

— q € IF <= we can compute in PTIME Prov(q, /) as an OBDD
(hence in particular ZF C safe UCQs)

Open Characterisation for FBDDs? (we know ZF C??? C safe UCQs)

17/21

On All Instances

e T, is all instances
* There is a class ZF C UCQs of inversion free queries

— q € IF <= we can compute in PTIME Prov(q, /) as an OBDD
(hence in particular ZF C safe UCQs)

Open Characterisation for FBDDs? (we know ZF C??? C safe UCQs)

Open Can we tractably compute the provenance of safe UCQs as
d-DNNFs?

17/21

On Bounded Treewidth Instances

e Fix k € N. Z,, = all instances of treewidth < Rk
* Fix g € MSO

18/21

On Bounded Treewidth Instances

e Fix k € N. Z,, = all instances of treewidth < Rk
* Fix g € MSO

Theorem (Amarilli, Bourhis, & Senellart, 2015)
Given | € Iy, we can compute in linear time a Boolean circuit Cq

capturing Prov(q, I). Moreover Cq has bounded treewidth (i.e, f(|q|,R)
for some function f)

18/21

On Bounded Treewidth Instances

e Fix Rk € N. Z, = all instances of treewidth < k
* Fix g € MSO

Theorem (Amarilli, Bourhis, & Senellart, 2015)
Given | € Iy, we can compute in linear time a Boolean circuit Cq

capturing Prov(q, I). Moreover Cq has bounded treewidth (i.e, f(|q|,R)
for some function f)

e Nice, how do | compute the probability?

18/21

Re-explaining Message-Passing

Theorem (Lauritzen, & Spielgelhalter, 1988)
Fix k € NN. Given a Boolean circuit C of treewidth < k, we can compute
its probability in time O(f(R) x |C|), where f is singly exponential

19/21

Re-explaining Message-Passing

Theorem (Lauritzen, & Spielgelhalter, 1988)
Fix k € NN. Given a Boolean circuit C of treewidth < k, we can compute
its probability in time O(f(R) x |C|), where f is singly exponential

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)

Fix k € NN. Given a Boolean circuit C of treewidth k, we can compute
in linear time a d-SDNNF equivalent to C (hence its probability) in
time O(f(R) x |C|), where f is singly exponential

19/21

Re-explaining Message-Passing

Theorem (Lauritzen, & Spielgelhalter, 1988)
Fix k € NN. Given a Boolean circuit C of treewidth < k, we can compute
its probability in time O(f(R) x |C|), where f is singly exponential

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)

Fix k € NN. Given a Boolean circuit C of treewidth k, we can compute
in linear time a d-SDNNF equivalent to C (hence its probability) in
time O(f(R) x |C|), where f is singly exponential

« Bounded treewidth circuits "€ UMe, 4 SDNNFs

19/21

Re-explaining Message-Passing

Theorem (Lauritzen, & Spielgelhalter, 1988)
Fix k € NN. Given a Boolean circuit C of treewidth < k, we can compute
its probability in time O(f(R) x |C|), where f is singly exponential

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
Fix k € NN. Given a Boolean circuit C of treewidth k, we can compute
in linear time a d-SDNNF equivalent to C (hence its probability) in
time O(f(R) x |C|), where f is singly exponential

linear time

¢ Bounded treewidth circuits —————— d-SDNNFs

« Consequences for enumeration

19/21

Lower Bounds

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)

Let ¢ be a monotone DNF, let a := arity(y) and d := degree(y). Then
tw(p) J

any d-SDNNF for ¢ has size > ﬂm 1

20/21

Lower Bounds

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
Let ¢ be a monotone DNF, let a := arity(y) and d := degree(y). Then

tw(p) J

any d-SDNNF for ¢ has size > ﬂm 1

— Consequence for probabilistic databases:

20/21

Lower Bounds

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)

Let ¢ be a monotone DNF, let a := arity(y) and d := degree(y). Then
tw(p) J

any d-SDNNF for ¢ has size > ﬂm 1

— Consequence for probabilistic databases:

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
There is a constant d € N such that the following is true. Let o be an
arity-2 signature, and Q a connected UCQ7 which is intricate on o.

For any instance | on o, any d-SDNNF representing the lineage of Q
on I has size 2Utw()"/)

20/21

Conclusion

» Knowledge Compilation as a tool for probabilistic databases and
provenance computation

21/21

Conclusion

» Knowledge Compilation as a tool for probabilistic databases and
provenance computation

e Upper bounds in KC = uppers bounds for PQE

21/21

Conclusion

» Knowledge Compilation as a tool for probabilistic databases and
provenance computation

e Upper bounds in KC = uppers bounds for PQE

e Lower bounds in KC = limits of the intensional approach of
PQE

21/21

Conclusion

» Knowledge Compilation as a tool for probabilistic databases and
provenance computation

e Upper bounds in KC = uppers bounds for PQE

e Lower bounds in KC = limits of the intensional approach of
PQE

Thanks for your attention!

21/21

