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Dr
af
tTuple-independent databases (TID)

• Probabilistic databases: model uncertainty about data
• Simplest model: tuple-independent databases (TID)

• A relational database I
• A probability valuation π mapping each fact of I to [0, 1]

• Semantics of a TID (I, π): a probability distribution on I′ ⊆ I:
• Each fact F ∈ I is either present or absent with probability π(F)
• Assume independence across facts
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tProbabilistic query evaluation (PQE)

Let us fix:

• Relational signature σ
• A Boolean query q (e.g., CQ, FO, Datalog...)
• Class I of relational instances on σ (e.g., acyclic, treelike)

Probabilistic query evaluation PQE(q, I):

• INPUT: an instance I ∈ I and a probability valuation π
• OUTPUT: the probability that (I, π) satisfies q
→ Prπ(I |= q) =

∑
J⊆I, J|=q Prπ(J)
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tComplexity results

• Existing dichotomy result on queries [Dalvi & Suciu, 2012]
• Iall is all instances
• There is a class S ⊆ UCQs of safe queries

→ q ∈ S =⇒ PQE(q, Iall) is PTIME
→ q ∈ UCQs\S =⇒ PQE(q, Iall) is #P-hard

• Existing dichotomy result on instances
• Fix k ∈ N. Ik = all instances of treewidth 6 k
• q ∈ MSO
→ PQE(q, Ik) has linear time complexity [Amarilli, Bourhis, &

Senellart, 2015]
→ There is an FO query qhard for which PQE(qhard, I) is #P-hard on

any unbounded-treewidth graph family I (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]
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tIntensional Method: through Provenance

Definition
The provenance Prov(q, I) of query q on instance I is the Boolean
function with facts of I as variables and such that for any valuation
ν : I→ {0, 1}, Prov(q, I) evaluates to TRUE under ν iff
{F ∈ I|ν(F) = 1} |= q

Possible representations:

• Boolean formulas (with the tuples as variables)
• Boolean circuits

Then Prπ(I |= q) = Prπ(Prov(q, I) = >)
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∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

R

b c .1
c a .1
c d .05

S

a b .7
d b .7

Prov(q, I) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]
∨ [S(d,b) ∧ (R(b, c) ∨ R(c,d))]
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→ Computing the probability of a Boolean formula ϕ (or circuit C)
over variables X is #P-hard!

• #SAT: take π(x) = 1
2 for each variable x ∈ X.

Then #ϕ = 2|X| × Prπ(ϕ = >)
→ Which restrictions on ϕ or C make it possible?
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Complexity?

−−−−−−−−→ nice representations Ctarget

• Ctarget should allow tractable...

• Upper/lower complexity bounds
• Trade off between consiseness of C and Ctarget and complexity
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tFree Binary Decision Diagrams (FBDDs)

• DAG with sink nodes {>,⊥}
and internal nodes labeled by
variables

• Each variable node has a 0
and a 1-outgoing edge

• Each root-to-sink path
inspects each variable at
most once

• Compute probability
bottom-up

Prπ(•) = π(X2)× Prπ(•)
+(1− π(X2))× Prπ(•)
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• It is a FBDD

• There is a total order on the
variables s.t. every
root-to-sink path is
compatible with this order

• Tractable closure under
Boolean operations, assuming
the orders are the same
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tCircuit classes

• Negation Normal Forms (NNFs): negations only applied to
variables

• Decomposable NNFs (DNNFs): inputs of and-gates are
syntactically independent

→ SAT

• Deterministic DNNFs (d-DNNFs): inputs of or-gates are mutually
exclusive

→ #SAT, probability computation

• Structured DNNFs (SDNNFs, d-SDNNFs): and-gates of the circuit
are structured by a vtree

→ Enumeration
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• Existing dichotomy result on queries [Dalvi & Suciu, 2012]
• Iall is all instances
• There is a class S ⊆ UCQs of safe queries
→ q ∈ S =⇒ PQE(q, Iall) is PTIME
→ q ∈ UCQs\S =⇒ PQE(q, Iall) is #P-hard

• Existing dichotomy result on instances
• Fix k ∈ N. Ik = all instances of treewidth 6 k
• q ∈ MSO
→ PQE(q, Ik) has linear time complexity [Amarilli, Bourhis, &

Senellart, 2015]
→ There is an FO query qhard for which PQE(qhard, I) is #P-hard on

any unbounded-treewidth graph family I (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

16/21



Dr
af
tOn All Instances

• Iall is all instances

• There is a class IF ⊆ UCQs of inversion free queries
→ q ∈ IF ⇐⇒ we can compute in PTIME Prov(q, I) as an OBDD

(hence in particular IF ⊆ safe UCQs)
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• Fix k ∈ N. Ik = all instances of treewidth 6 k

• Fix q ∈ MSO

Theorem (Amarilli, Bourhis, & Senellart, 2015)
Given I ∈ Ik, we can compute in linear time a Boolean circuit Cq,I
capturing Prov(q, I). Moreover Cq,I has bounded treewidth (i.e., f (|q|, k)
for some function f )

• Nice, how do I compute the probability?
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Theorem (Lauritzen, & Spielgelhalter, 1988)
Fix k ∈ NN. Given a Boolean circuit C of treewidth 6 k, we can compute
its probability in time O(f (k)× |C|), where f is singly exponential

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
Fix k ∈ NN. Given a Boolean circuit C of treewidth k, we can compute
in linear time a d-SDNNF equivalent to C (hence its probability) in
time O(f (k)× |C|), where f is singly exponential

• Bounded treewidth circuits linear time−−−−−−→ d-SDNNFs

• Consequences for enumeration
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Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
Let ϕ be a monotone DNF, let a := arity(ϕ) and d := degree(ϕ). Then

any d-SDNNF for ϕ has size > 2
⌊

tw(ϕ)

3×a3×d2

⌋
− 1

→ Consequence for probabilistic databases:

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
There is a constant d ∈ N such that the following is true. Let σ be an
arity-2 signature, and Q a connected UCQ6= which is intricate on σ.
For any instance I on σ, any d-SDNNF representing the lineage of Q
on I has size 2Ω(tw(I)1/d)
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