
Dr
af
tKnowledge Compilation for Probabilistic Databases

Mikaël Monet1,2

November 3rd, 2017
1LTCI, Télécom ParisTech, Université Paris-Saclay; Paris, France

2Inria Paris; Paris, France

Dr
af
tTuple-independent databases (TID)

• Probabilistic databases: model uncertainty about data
• Simplest model: tuple-independent databases (TID)

• A relational database I
• A probability valuation π mapping each fact of I to [0, 1]

• Semantics of a TID (I, π): a probability distribution on I′ ⊆ I:
• Each fact F ∈ I is either present or absent with probability π(F)
• Assume independence across facts

1/21

Dr
af
tExample: TID

S

a a .5
b c .2

This TID (I, π) represents the following probability distribution:

.5× .2

S

a a
b c

.5× (1− .2)

S

a a

(1− .5)× .2

S

b c

(1− .5)× (1− .2)

S

2/21

Dr
af
tExample: TID

S

a a .5
b c .2

This TID (I, π) represents the following probability distribution:

.5× .2

S

a a
b c

.5× (1− .2)

S

a a

(1− .5)× .2

S

b c

(1− .5)× (1− .2)

S

2/21

Dr
af
tExample: TID

S

a a .5
b c .2

This TID (I, π) represents the following probability distribution:

.5× .2

S

a a
b c

.5× (1− .2)

S

a a

(1− .5)× .2

S

b c

(1− .5)× (1− .2)

S

2/21

Dr
af
tExample: TID

S

a a .5
b c .2

This TID (I, π) represents the following probability distribution:

.5× .2

S

a a
b c

.5× (1− .2)

S

a a

(1− .5)× .2

S

b c

(1− .5)× (1− .2)

S

2/21

Dr
af
tExample: TID

S

a a .5
b c .2

This TID (I, π) represents the following probability distribution:

.5× .2

S

a a
b c

.5× (1− .2)

S

a a

(1− .5)× .2

S

b c

(1− .5)× (1− .2)

S

2/21

Dr
af
tExample: TID

S

a a .5
b c .2

This TID (I, π) represents the following probability distribution:

.5× .2

S

a a
b c

.5× (1− .2)

S

a a

(1− .5)× .2

S

b c

(1− .5)× (1− .2)

S

2/21

Dr
af
tProbabilistic query evaluation (PQE)

Let us fix:

• Relational signature σ
• A Boolean query q (e.g., CQ, FO, Datalog...)
• Class I of relational instances on σ (e.g., acyclic, treelike)

Probabilistic query evaluation PQE(q, I):

• INPUT: an instance I ∈ I and a probability valuation π
• OUTPUT: the probability that (I, π) satisfies q
→ Prπ(I |= q) =

∑
J⊆I, J|=q Prπ(J)

3/21

Dr
af
tProbabilistic query evaluation (PQE)

Let us fix:

• Relational signature σ
• A Boolean query q (e.g., CQ, FO, Datalog...)
• Class I of relational instances on σ (e.g., acyclic, treelike)

Probabilistic query evaluation PQE(q, I):

• INPUT: an instance I ∈ I and a probability valuation π
• OUTPUT: the probability that (I, π) satisfies q

→ Prπ(I |= q) =
∑

J⊆I, J|=q Prπ(J)

3/21

Dr
af
tProbabilistic query evaluation (PQE)

Let us fix:

• Relational signature σ
• A Boolean query q (e.g., CQ, FO, Datalog...)
• Class I of relational instances on σ (e.g., acyclic, treelike)

Probabilistic query evaluation PQE(q, I):

• INPUT: an instance I ∈ I and a probability valuation π
• OUTPUT: the probability that (I, π) satisfies q
→ Prπ(I |= q) =

∑
J⊆I, J|=q Prπ(J)

3/21

Dr
af
tExample: PQE

I =
S

a a .5
b c .2

q = ∃x y S(x, y) ∧ x 6= y

.5× .2

S

a a
b c

.5× (1− .2)

S

a a

(1− .5)× .2

S

b c

(1− .5)× (1− .2)

S

Prπ(I |= q) =
4/21

Dr
af
tExample: PQE

I =
S

a a .5
b c .2

q = ∃x y S(x, y) ∧ x 6= y

.5× .2

S

a a
b c

.5× (1− .2)

S

a a

(1− .5)× .2

S

b c

(1− .5)× (1− .2)

S

Prπ(I |= q) =
4/21

Dr
af
tExample: PQE

I =
S

a a .5
b c .2

q = ∃x y S(x, y) ∧ x 6= y

.5× .2

S

a a
b c

.5× (1− .2)

S

a a

(1− .5)× .2

S

b c

(1− .5)× (1− .2)

S

Prπ(I |= q) = .5× .2
4/21

Dr
af
tExample: PQE

I =
S

a a .5
b c .2

q = ∃x y S(x, y) ∧ x 6= y

.5× .2

S

a a
b c

.5× (1− .2)

S

a a

(1− .5)× .2

S

b c

(1− .5)× (1− .2)

S

Prπ(I |= q) = .5× .2
4/21

Dr
af
tExample: PQE

I =
S

a a .5
b c .2

q = ∃x y S(x, y) ∧ x 6= y

.5× .2

S

a a
b c

.5× (1− .2)

S

a a

(1− .5)× .2

S

b c

(1− .5)× (1− .2)

S

Prπ(I |= q) = .5× .2
4/21

Dr
af
tExample: PQE

I =
S

a a .5
b c .2

q = ∃x y S(x, y) ∧ x 6= y

.5× .2

S

a a
b c

.5× (1− .2)

S

a a

(1− .5)× .2

S

b c

(1− .5)× (1− .2)

S

Prπ(I |= q) = .5× .2+ (1− .5)× .2
4/21

Dr
af
tExample: PQE

I =
S

a a .5
b c .2

q = ∃x y S(x, y) ∧ x 6= y

.5× .2

S

a a
b c

.5× (1− .2)

S

a a

(1− .5)× .2

S

b c

(1− .5)× (1− .2)

S

Prπ(I |= q) = .5× .2+ (1− .5)× .2
4/21

Dr
af
tComplexity results

• Existing dichotomy result on queries [Dalvi & Suciu, 2012]
• Iall is all instances
• There is a class S ⊆ UCQs of safe queries

→ q ∈ S =⇒ PQE(q, Iall) is PTIME
→ q ∈ UCQs\S =⇒ PQE(q, Iall) is #P-hard

• Existing dichotomy result on instances
• Fix k ∈ N. Ik = all instances of treewidth 6 k
• q ∈ MSO
→ PQE(q, Ik) has linear time complexity [Amarilli, Bourhis, &

Senellart, 2015]
→ There is an FO query qhard for which PQE(qhard, I) is #P-hard on

any unbounded-treewidth graph family I (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

5/21

Dr
af
tComplexity results

• Existing dichotomy result on queries [Dalvi & Suciu, 2012]
• Iall is all instances
• There is a class S ⊆ UCQs of safe queries
→ q ∈ S =⇒ PQE(q, Iall) is PTIME

→ q ∈ UCQs\S =⇒ PQE(q, Iall) is #P-hard

• Existing dichotomy result on instances
• Fix k ∈ N. Ik = all instances of treewidth 6 k
• q ∈ MSO
→ PQE(q, Ik) has linear time complexity [Amarilli, Bourhis, &

Senellart, 2015]
→ There is an FO query qhard for which PQE(qhard, I) is #P-hard on

any unbounded-treewidth graph family I (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

5/21

Dr
af
tComplexity results

• Existing dichotomy result on queries [Dalvi & Suciu, 2012]
• Iall is all instances
• There is a class S ⊆ UCQs of safe queries
→ q ∈ S =⇒ PQE(q, Iall) is PTIME
→ q ∈ UCQs\S =⇒ PQE(q, Iall) is #P-hard

• Existing dichotomy result on instances
• Fix k ∈ N. Ik = all instances of treewidth 6 k
• q ∈ MSO
→ PQE(q, Ik) has linear time complexity [Amarilli, Bourhis, &

Senellart, 2015]
→ There is an FO query qhard for which PQE(qhard, I) is #P-hard on

any unbounded-treewidth graph family I (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

5/21

Dr
af
tComplexity results

• Existing dichotomy result on queries [Dalvi & Suciu, 2012]
• Iall is all instances
• There is a class S ⊆ UCQs of safe queries
→ q ∈ S =⇒ PQE(q, Iall) is PTIME
→ q ∈ UCQs\S =⇒ PQE(q, Iall) is #P-hard

• Existing dichotomy result on instances

• Fix k ∈ N. Ik = all instances of treewidth 6 k
• q ∈ MSO
→ PQE(q, Ik) has linear time complexity [Amarilli, Bourhis, &

Senellart, 2015]
→ There is an FO query qhard for which PQE(qhard, I) is #P-hard on

any unbounded-treewidth graph family I (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

5/21

Dr
af
tComplexity results

• Existing dichotomy result on queries [Dalvi & Suciu, 2012]
• Iall is all instances
• There is a class S ⊆ UCQs of safe queries
→ q ∈ S =⇒ PQE(q, Iall) is PTIME
→ q ∈ UCQs\S =⇒ PQE(q, Iall) is #P-hard

• Existing dichotomy result on instances
• Fix k ∈ N. Ik = all instances of treewidth 6 k

• q ∈ MSO
→ PQE(q, Ik) has linear time complexity [Amarilli, Bourhis, &

Senellart, 2015]
→ There is an FO query qhard for which PQE(qhard, I) is #P-hard on

any unbounded-treewidth graph family I (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

5/21

Dr
af
tComplexity results

• Existing dichotomy result on queries [Dalvi & Suciu, 2012]
• Iall is all instances
• There is a class S ⊆ UCQs of safe queries
→ q ∈ S =⇒ PQE(q, Iall) is PTIME
→ q ∈ UCQs\S =⇒ PQE(q, Iall) is #P-hard

• Existing dichotomy result on instances
• Fix k ∈ N. Ik = all instances of treewidth 6 k
• q ∈ MSO

→ PQE(q, Ik) has linear time complexity [Amarilli, Bourhis, &
Senellart, 2015]

→ There is an FO query qhard for which PQE(qhard, I) is #P-hard on
any unbounded-treewidth graph family I (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

5/21

Dr
af
tComplexity results

• Existing dichotomy result on queries [Dalvi & Suciu, 2012]
• Iall is all instances
• There is a class S ⊆ UCQs of safe queries
→ q ∈ S =⇒ PQE(q, Iall) is PTIME
→ q ∈ UCQs\S =⇒ PQE(q, Iall) is #P-hard

• Existing dichotomy result on instances
• Fix k ∈ N. Ik = all instances of treewidth 6 k
• q ∈ MSO
→ PQE(q, Ik) has linear time complexity [Amarilli, Bourhis, &

Senellart, 2015]

→ There is an FO query qhard for which PQE(qhard, I) is #P-hard on
any unbounded-treewidth graph family I (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

5/21

Dr
af
tComplexity results

• Existing dichotomy result on queries [Dalvi & Suciu, 2012]
• Iall is all instances
• There is a class S ⊆ UCQs of safe queries
→ q ∈ S =⇒ PQE(q, Iall) is PTIME
→ q ∈ UCQs\S =⇒ PQE(q, Iall) is #P-hard

• Existing dichotomy result on instances
• Fix k ∈ N. Ik = all instances of treewidth 6 k
• q ∈ MSO
→ PQE(q, Ik) has linear time complexity [Amarilli, Bourhis, &

Senellart, 2015]
→ There is an FO query qhard for which PQE(qhard, I) is #P-hard on

any unbounded-treewidth graph family I (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

5/21

Dr
af
tIntensional Method: through Provenance

Definition
The provenance Prov(q, I) of query q on instance I is the Boolean
function with facts of I as variables and such that for any valuation
ν : I→ {0, 1}, Prov(q, I) evaluates to TRUE under ν iff
{F ∈ I|ν(F) = 1} |= q

Possible representations:

• Boolean formulas (with the tuples as variables)
• Boolean circuits

Then Prπ(I |= q) = Prπ(Prov(q, I) = >)

6/21

Dr
af
tIntensional Method: through Provenance

Definition
The provenance Prov(q, I) of query q on instance I is the Boolean
function with facts of I as variables and such that for any valuation
ν : I→ {0, 1}, Prov(q, I) evaluates to TRUE under ν iff
{F ∈ I|ν(F) = 1} |= q

Possible representations:

• Boolean formulas (with the tuples as variables)

• Boolean circuits
Then Prπ(I |= q) = Prπ(Prov(q, I) = >)

6/21

Dr
af
tIntensional Method: through Provenance

Definition
The provenance Prov(q, I) of query q on instance I is the Boolean
function with facts of I as variables and such that for any valuation
ν : I→ {0, 1}, Prov(q, I) evaluates to TRUE under ν iff
{F ∈ I|ν(F) = 1} |= q

Possible representations:

• Boolean formulas (with the tuples as variables)
• Boolean circuits

Then Prπ(I |= q) = Prπ(Prov(q, I) = >)

6/21

Dr
af
tIntensional Method: through Provenance

Definition
The provenance Prov(q, I) of query q on instance I is the Boolean
function with facts of I as variables and such that for any valuation
ν : I→ {0, 1}, Prov(q, I) evaluates to TRUE under ν iff
{F ∈ I|ν(F) = 1} |= q

Possible representations:

• Boolean formulas (with the tuples as variables)
• Boolean circuits

Then Prπ(I |= q) = Prπ(Prov(q, I) = >)

6/21

Dr
af
tExample: Provenance

∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

R

b c .1
c a .1
c d .05

S

a b .7
d b .7

Prov(q, I) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]
∨ [S(d,b) ∧ (R(b, c) ∨ R(c,d))]

7/21

Dr
af
tExample: Provenance

∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

R

b c .1
c a .1
c d .05

S

a b .7
d b .7

b

d

c

a

S
.7

R
.1 R

.05

S
.7

R
.1

Prov(q, I) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]
∨ [S(d,b) ∧ (R(b, c) ∨ R(c,d))]

7/21

Dr
af
tExample: Provenance

∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

b

d

c

a

S
.7

R
.1 R

.05

S
.7

R
.1

R(b, c)R(c,a) R(c,d)

∨ ∨S(a,b) S(d,b)

∧ ∧

∨

Prov(q, I) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]
∨ [S(d,b) ∧ (R(b, c) ∨ R(c,d))]

7/21

Dr
af
tExample: Provenance

∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

b

d

c

a

S
.7

R
.1 R

.05

S
.7

R
.1

R(b, c)R(c,a) R(c,d)

∨ ∨S(a,b) S(d,b)

∧ ∧

∨

Prov(q, I) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]

∨ [S(d,b) ∧ (R(b, c) ∨ R(c,d))]

7/21

Dr
af
tExample: Provenance

∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

b

d

c

a

S
.7

R
.1 R

.05

S
.7

R
.1

R(b, c)R(c,a) R(c,d)

∨ ∨S(a,b) S(d,b)

∧ ∧

∨

Prov(q, I) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]
∨ [S(d,b) ∧ (R(b, c) ∨ R(c,d))]

7/21

Dr
af
tExample: Provenance

∃x y z (R(x, y) ∧ S(y, z)) ∨ (S(x, y) ∧ R(y, z))

b

d

c

a

S
.7

R
.1 R

.05

S
.7

R
.1

R(b, c)R(c,a) R(c,d)

∨ ∨S(a,b) S(d,b)

∧ ∧

∨

Prov(q, I) = [S(a,b) ∧ (R(b, c) ∨ R(c,a))]
∨ [S(d,b) ∧ (R(b, c) ∨ R(c,d))]

7/21

Dr
af
tOoops!

→ Computing the probability of a Boolean formula ϕ (or circuit C)
over variables X is #P-hard!

• #SAT: take π(x) = 1
2 for each variable x ∈ X.

Then #ϕ = 2|X| × Prπ(ϕ = >)
→ Which restrictions on ϕ or C make it possible?

8/21

Dr
af
tOoops!

→ Computing the probability of a Boolean formula ϕ (or circuit C)
over variables X is #P-hard!

• #SAT: take π(x) = 1
2 for each variable x ∈ X.

Then #ϕ = 2|X| × Prπ(ϕ = >)
→ Which restrictions on ϕ or C make it possible?

8/21

Dr
af
tKnowledge Compilation to the Rescue

• Class of circuits C

Complexity?

−−−−−−−−→ nice representations Ctarget

• Ctarget should allow tractable...

• Upper/lower complexity bounds
• Trade off between consiseness of C and Ctarget and complexity

9/21

Dr
af
tKnowledge Compilation to the Rescue

• Class of circuits C

Complexity?

−−−−−−−−→ nice representations Ctarget

• Ctarget should allow tractable...

• Upper/lower complexity bounds
• Trade off between consiseness of C and Ctarget and complexity

9/21

Dr
af
tKnowledge Compilation to the Rescue

• Class of circuits C

Complexity?

−−−−−−−−→ nice representations Ctarget

• Ctarget should allow tractable... evaluation

• Upper/lower complexity bounds
• Trade off between consiseness of C and Ctarget and complexity

9/21

Dr
af
tKnowledge Compilation to the Rescue

• Class of circuits C

Complexity?

−−−−−−−−→ nice representations Ctarget

• Ctarget should allow tractable... enumeration

• Upper/lower complexity bounds
• Trade off between consiseness of C and Ctarget and complexity

9/21

Dr
af
tKnowledge Compilation to the Rescue

• Class of circuits C

Complexity?

−−−−−−−−→ nice representations Ctarget

• Ctarget should allow tractable... SAT

• Upper/lower complexity bounds
• Trade off between consiseness of C and Ctarget and complexity

9/21

Dr
af
tKnowledge Compilation to the Rescue

• Class of circuits C

Complexity?

−−−−−−−−→ nice representations Ctarget

• Ctarget should allow tractable... #SAT

• Upper/lower complexity bounds
• Trade off between consiseness of C and Ctarget and complexity

9/21

Dr
af
tKnowledge Compilation to the Rescue

• Class of circuits C

Complexity?

−−−−−−−−→ nice representations Ctarget

• Ctarget should allow tractable... probability computation

• Upper/lower complexity bounds
• Trade off between consiseness of C and Ctarget and complexity

9/21

Dr
af
tKnowledge Compilation to the Rescue

• Class of circuits C Complexity?−−−−−−−−→ nice representations Ctarget

• Ctarget should allow tractable... probability computation
• Upper/lower complexity bounds

• Trade off between consiseness of C and Ctarget and complexity

9/21

Dr
af
tKnowledge Compilation to the Rescue

• Class of circuits C Complexity?−−−−−−−−→ nice representations Ctarget

• Ctarget should allow tractable... probability computation
• Upper/lower complexity bounds
• Trade off between consiseness of C and Ctarget and complexity

9/21

Dr
af
t

Principal classes of compilation targets
considered in knowledge compilation

10/21

Dr
af
tFree Binary Decision Diagrams (FBDDs)

• DAG with sink nodes {>,⊥}
and internal nodes labeled by
variables

• Each variable node has a 0
and a 1-outgoing edge

• Each root-to-sink path
inspects each variable at
most once

• Compute probability
bottom-up

Prπ(•) = π(X2)× Prπ(•)
+(1− π(X2))× Prπ(•)

11/21

Dr
af
tFree Binary Decision Diagrams (FBDDs)

• DAG with sink nodes {>,⊥}
and internal nodes labeled by
variables

• Each variable node has a 0
and a 1-outgoing edge

• Each root-to-sink path
inspects each variable at
most once

• Compute probability
bottom-up

Prπ(•) = π(X2)× Prπ(•)
+(1− π(X2))× Prπ(•)

11/21

Dr
af
tFree Binary Decision Diagrams (FBDDs)

• DAG with sink nodes {>,⊥}
and internal nodes labeled by
variables

• Each variable node has a 0
and a 1-outgoing edge

• Each root-to-sink path
inspects each variable at
most once

• Compute probability
bottom-up

Prπ(•) = π(X2)× Prπ(•)
+(1− π(X2))× Prπ(•)

11/21

Dr
af
tFree Binary Decision Diagrams (FBDDs)

• DAG with sink nodes {>,⊥}
and internal nodes labeled by
variables

• Each variable node has a 0
and a 1-outgoing edge

• Each root-to-sink path
inspects each variable at
most once

• Compute probability
bottom-up

Prπ(•) = π(X2)× Prπ(•)
+(1− π(X2))× Prπ(•)

11/21

Dr
af
tFree Binary Decision Diagrams (FBDDs)

• DAG with sink nodes {>,⊥}
and internal nodes labeled by
variables

• Each variable node has a 0
and a 1-outgoing edge

• Each root-to-sink path
inspects each variable at
most once

• Compute probability
bottom-up

Prπ(•) = π(X2)× Prπ(•)
+(1− π(X2))× Prπ(•)

11/21

Dr
af
tOrdered Binary Decision Diagrams (OBDDs)

• It is a FBDD

• There is a total order on the
variables s.t. every
root-to-sink path is
compatible with this order

• Tractable closure under
Boolean operations, assuming
the orders are the same

12/21

Dr
af
tOrdered Binary Decision Diagrams (OBDDs)

• It is a FBDD
• There is a total order on the
variables s.t. every
root-to-sink path is
compatible with this order

• Tractable closure under
Boolean operations, assuming
the orders are the same

12/21

Dr
af
tOrdered Binary Decision Diagrams (OBDDs)

• It is a FBDD
• There is a total order on the
variables s.t. every
root-to-sink path is
compatible with this order

• Tractable closure under
Boolean operations, assuming
the orders are the same

12/21

Dr
af
tOrdered Binary Decision Diagrams (OBDDs)

• It is a FBDD
• There is a total order on the
variables s.t. every
root-to-sink path is
compatible with this order

• Tractable closure under
Boolean operations, assuming
the orders are the same

12/21

Dr
af
tCircuit classes

• Negation Normal Forms (NNFs): negations only applied to
variables

• Decomposable NNFs (DNNFs): inputs of and-gates are
syntactically independent

→ SAT

• Deterministic DNNFs (d-DNNFs): inputs of or-gates are mutually
exclusive

→ #SAT, probability computation

• Structured DNNFs (SDNNFs, d-SDNNFs): and-gates of the circuit
are structured by a vtree

→ Enumeration

13/21

Dr
af
tCircuit classes

• Negation Normal Forms (NNFs): negations only applied to
variables

• Decomposable NNFs (DNNFs): inputs of and-gates are
syntactically independent

→ SAT

• Deterministic DNNFs (d-DNNFs): inputs of or-gates are mutually
exclusive

→ #SAT, probability computation

• Structured DNNFs (SDNNFs, d-SDNNFs): and-gates of the circuit
are structured by a vtree

→ Enumeration

13/21

Dr
af
tCircuit classes

• Negation Normal Forms (NNFs): negations only applied to
variables

• Decomposable NNFs (DNNFs): inputs of and-gates are
syntactically independent

→ SAT

• Deterministic DNNFs (d-DNNFs): inputs of or-gates are mutually
exclusive

→ #SAT, probability computation

• Structured DNNFs (SDNNFs, d-SDNNFs): and-gates of the circuit
are structured by a vtree

→ Enumeration

13/21

Dr
af
tCircuit classes

• Negation Normal Forms (NNFs): negations only applied to
variables

• Decomposable NNFs (DNNFs): inputs of and-gates are
syntactically independent

→ SAT

• Deterministic DNNFs (d-DNNFs): inputs of or-gates are mutually
exclusive

→ #SAT, probability computation

• Structured DNNFs (SDNNFs, d-SDNNFs): and-gates of the circuit
are structured by a vtree

→ Enumeration

13/21

Dr
af
tCircuit classes

• Negation Normal Forms (NNFs): negations only applied to
variables

• Decomposable NNFs (DNNFs): inputs of and-gates are
syntactically independent

→ SAT

• Deterministic DNNFs (d-DNNFs): inputs of or-gates are mutually
exclusive

→ #SAT, probability computation

• Structured DNNFs (SDNNFs, d-SDNNFs): and-gates of the circuit
are structured by a vtree

→ Enumeration

13/21

Dr
af
tCircuit classes

• Negation Normal Forms (NNFs): negations only applied to
variables

• Decomposable NNFs (DNNFs): inputs of and-gates are
syntactically independent

→ SAT

• Deterministic DNNFs (d-DNNFs): inputs of or-gates are mutually
exclusive

→ #SAT, probability computation

• Structured DNNFs (SDNNFs, d-SDNNFs): and-gates of the circuit
are structured by a vtree

→ Enumeration

13/21

Dr
af
tCircuit classes

• Negation Normal Forms (NNFs): negations only applied to
variables

• Decomposable NNFs (DNNFs): inputs of and-gates are
syntactically independent

→ SAT

• Deterministic DNNFs (d-DNNFs): inputs of or-gates are mutually
exclusive

→ #SAT, probability computation

• Structured DNNFs (SDNNFs, d-SDNNFs): and-gates of the circuit
are structured by a vtree

→ Enumeration

13/21

Dr
af
tExample: what is this?

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x
• NNF
• DNNF
• d-DNNF
• d-SDNNF

14/21

(Circuit courtesy of Antoine Amarilli)

Dr
af
tExample: what is this?

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x
• NNF
• DNNF
• d-DNNF
• d-SDNNF

14/21

(Circuit courtesy of Antoine Amarilli)

Dr
af
tExample: what is this?

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• NNF

• DNNF
• d-DNNF
• d-SDNNF

14/21

(Circuit courtesy of Antoine Amarilli)

Dr
af
tExample: what is this?

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• NNF

• DNNF
• d-DNNF
• d-SDNNF

14/21

(Circuit courtesy of Antoine Amarilli)

Dr
af
tExample: what is this?

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• NNF
• DNNF

• d-DNNF
• d-SDNNF

14/21

(Circuit courtesy of Antoine Amarilli)

Dr
af
tExample: what is this?

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• NNF
• DNNF

• d-DNNF
• d-SDNNF

14/21

(Circuit courtesy of Antoine Amarilli)

Dr
af
tExample: what is this?

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• NNF
• DNNF
• d-DNNF

• d-SDNNF

14/21

(Circuit courtesy of Antoine Amarilli)

Dr
af
tExample: what is this?

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x
• NNF
• DNNF
• d-DNNF

• d-SDNNF

14/21

(Circuit courtesy of Antoine Amarilli)

Dr
af
tExample: what is this?

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x
• NNF
• DNNF
• d-DNNF
• d-SDNNF

14/21

(Circuit courtesy of Antoine Amarilli)

Dr
af
t

Application to Probabilistic Databases

15/21

Dr
af
tComplexity results

• Existing dichotomy result on queries [Dalvi & Suciu, 2012]
• Iall is all instances
• There is a class S ⊆ UCQs of safe queries
→ q ∈ S =⇒ PQE(q, Iall) is PTIME
→ q ∈ UCQs\S =⇒ PQE(q, Iall) is #P-hard

• Existing dichotomy result on instances
• Fix k ∈ N. Ik = all instances of treewidth 6 k
• q ∈ MSO
→ PQE(q, Ik) has linear time complexity [Amarilli, Bourhis, &

Senellart, 2015]
→ There is an FO query qhard for which PQE(qhard, I) is #P-hard on

any unbounded-treewidth graph family I (under some
assumptions) [Amarilli, Bourhis, & Senellart, 2016]

16/21

Dr
af
tOn All Instances

• Iall is all instances

• There is a class IF ⊆ UCQs of inversion free queries
→ q ∈ IF ⇐⇒ we can compute in PTIME Prov(q, I) as an OBDD

(hence in particular IF ⊆ safe UCQs)
Open Characterisation for FBDDs? (we know IF (??? (safe UCQs)
Open Can we tractably compute the provenance of safe UCQs as

d-DNNFs?

17/21

Dr
af
tOn All Instances

• Iall is all instances
• There is a class IF ⊆ UCQs of inversion free queries

→ q ∈ IF ⇐⇒ we can compute in PTIME Prov(q, I) as an OBDD
(hence in particular IF ⊆ safe UCQs)

Open Characterisation for FBDDs? (we know IF (??? (safe UCQs)
Open Can we tractably compute the provenance of safe UCQs as

d-DNNFs?

17/21

Dr
af
tOn All Instances

• Iall is all instances
• There is a class IF ⊆ UCQs of inversion free queries
→ q ∈ IF ⇐⇒ we can compute in PTIME Prov(q, I) as an OBDD

(hence in particular IF ⊆ safe UCQs)

Open Characterisation for FBDDs? (we know IF (??? (safe UCQs)
Open Can we tractably compute the provenance of safe UCQs as

d-DNNFs?

17/21

Dr
af
tOn All Instances

• Iall is all instances
• There is a class IF ⊆ UCQs of inversion free queries
→ q ∈ IF ⇐⇒ we can compute in PTIME Prov(q, I) as an OBDD

(hence in particular IF ⊆ safe UCQs)
Open Characterisation for FBDDs? (we know IF (??? (safe UCQs)

Open Can we tractably compute the provenance of safe UCQs as
d-DNNFs?

17/21

Dr
af
tOn All Instances

• Iall is all instances
• There is a class IF ⊆ UCQs of inversion free queries
→ q ∈ IF ⇐⇒ we can compute in PTIME Prov(q, I) as an OBDD

(hence in particular IF ⊆ safe UCQs)
Open Characterisation for FBDDs? (we know IF (??? (safe UCQs)
Open Can we tractably compute the provenance of safe UCQs as

d-DNNFs?

17/21

Dr
af
tOn Bounded Treewidth Instances

• Fix k ∈ N. Ik = all instances of treewidth 6 k

• Fix q ∈ MSO

Theorem (Amarilli, Bourhis, & Senellart, 2015)
Given I ∈ Ik, we can compute in linear time a Boolean circuit Cq,I
capturing Prov(q, I). Moreover Cq,I has bounded treewidth (i.e., f (|q|, k)
for some function f)

• Nice, how do I compute the probability?

18/21

Dr
af
tOn Bounded Treewidth Instances

• Fix k ∈ N. Ik = all instances of treewidth 6 k

• Fix q ∈ MSO
Theorem (Amarilli, Bourhis, & Senellart, 2015)
Given I ∈ Ik, we can compute in linear time a Boolean circuit Cq,I
capturing Prov(q, I). Moreover Cq,I has bounded treewidth (i.e., f (|q|, k)
for some function f)

• Nice, how do I compute the probability?

18/21

Dr
af
tOn Bounded Treewidth Instances

• Fix k ∈ N. Ik = all instances of treewidth 6 k

• Fix q ∈ MSO
Theorem (Amarilli, Bourhis, & Senellart, 2015)
Given I ∈ Ik, we can compute in linear time a Boolean circuit Cq,I
capturing Prov(q, I). Moreover Cq,I has bounded treewidth (i.e., f (|q|, k)
for some function f)

• Nice, how do I compute the probability?

18/21

Dr
af
tRe-explaining Message-Passing

Theorem (Lauritzen, & Spielgelhalter, 1988)
Fix k ∈ NN. Given a Boolean circuit C of treewidth 6 k, we can compute
its probability in time O(f (k)× |C|), where f is singly exponential

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
Fix k ∈ NN. Given a Boolean circuit C of treewidth k, we can compute
in linear time a d-SDNNF equivalent to C (hence its probability) in
time O(f (k)× |C|), where f is singly exponential

• Bounded treewidth circuits linear time−−−−−−→ d-SDNNFs

• Consequences for enumeration

19/21

Dr
af
tRe-explaining Message-Passing

Theorem (Lauritzen, & Spielgelhalter, 1988)
Fix k ∈ NN. Given a Boolean circuit C of treewidth 6 k, we can compute
its probability in time O(f (k)× |C|), where f is singly exponential

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
Fix k ∈ NN. Given a Boolean circuit C of treewidth k, we can compute
in linear time a d-SDNNF equivalent to C (hence its probability) in
time O(f (k)× |C|), where f is singly exponential

• Bounded treewidth circuits linear time−−−−−−→ d-SDNNFs

• Consequences for enumeration

19/21

Dr
af
tRe-explaining Message-Passing

Theorem (Lauritzen, & Spielgelhalter, 1988)
Fix k ∈ NN. Given a Boolean circuit C of treewidth 6 k, we can compute
its probability in time O(f (k)× |C|), where f is singly exponential

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
Fix k ∈ NN. Given a Boolean circuit C of treewidth k, we can compute
in linear time a d-SDNNF equivalent to C (hence its probability) in
time O(f (k)× |C|), where f is singly exponential

• Bounded treewidth circuits linear time−−−−−−→ d-SDNNFs

• Consequences for enumeration

19/21

Dr
af
tRe-explaining Message-Passing

Theorem (Lauritzen, & Spielgelhalter, 1988)
Fix k ∈ NN. Given a Boolean circuit C of treewidth 6 k, we can compute
its probability in time O(f (k)× |C|), where f is singly exponential

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
Fix k ∈ NN. Given a Boolean circuit C of treewidth k, we can compute
in linear time a d-SDNNF equivalent to C (hence its probability) in
time O(f (k)× |C|), where f is singly exponential

• Bounded treewidth circuits linear time−−−−−−→ d-SDNNFs

• Consequences for enumeration

19/21

Dr
af
tLower Bounds

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
Let ϕ be a monotone DNF, let a := arity(ϕ) and d := degree(ϕ). Then

any d-SDNNF for ϕ has size > 2
⌊

tw(ϕ)

3×a3×d2

⌋
− 1

→ Consequence for probabilistic databases:

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
There is a constant d ∈ N such that the following is true. Let σ be an
arity-2 signature, and Q a connected UCQ6= which is intricate on σ.
For any instance I on σ, any d-SDNNF representing the lineage of Q
on I has size 2Ω(tw(I)1/d)

20/21

Dr
af
tLower Bounds

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
Let ϕ be a monotone DNF, let a := arity(ϕ) and d := degree(ϕ). Then

any d-SDNNF for ϕ has size > 2
⌊

tw(ϕ)

3×a3×d2

⌋
− 1

→ Consequence for probabilistic databases:

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
There is a constant d ∈ N such that the following is true. Let σ be an
arity-2 signature, and Q a connected UCQ6= which is intricate on σ.
For any instance I on σ, any d-SDNNF representing the lineage of Q
on I has size 2Ω(tw(I)1/d)

20/21

Dr
af
tLower Bounds

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
Let ϕ be a monotone DNF, let a := arity(ϕ) and d := degree(ϕ). Then

any d-SDNNF for ϕ has size > 2
⌊

tw(ϕ)

3×a3×d2

⌋
− 1

→ Consequence for probabilistic databases:

Theorem (Amarilli, Monet, & Senellart, hopefuly 2018)
There is a constant d ∈ N such that the following is true. Let σ be an
arity-2 signature, and Q a connected UCQ6= which is intricate on σ.
For any instance I on σ, any d-SDNNF representing the lineage of Q
on I has size 2Ω(tw(I)1/d)

20/21

Dr
af
tConclusion

• Knowledge Compilation as a tool for probabilistic databases and
provenance computation

• Upper bounds in KC =⇒ uppers bounds for PQE

• Lower bounds in KC =⇒ limits of the intensional approach of
PQE

Thanks for your attention!

21/21

Dr
af
tConclusion

• Knowledge Compilation as a tool for probabilistic databases and
provenance computation

• Upper bounds in KC =⇒ uppers bounds for PQE

• Lower bounds in KC =⇒ limits of the intensional approach of
PQE

Thanks for your attention!

21/21

Dr
af
tConclusion

• Knowledge Compilation as a tool for probabilistic databases and
provenance computation

• Upper bounds in KC =⇒ uppers bounds for PQE

• Lower bounds in KC =⇒ limits of the intensional approach of
PQE

Thanks for your attention!

21/21

Dr
af
tConclusion

• Knowledge Compilation as a tool for probabilistic databases and
provenance computation

• Upper bounds in KC =⇒ uppers bounds for PQE

• Lower bounds in KC =⇒ limits of the intensional approach of
PQE

Thanks for your attention!

21/21

