Bounded-delay enumeration of regular languages

Antoine Amarilli, Mikaël Monet

WEPA 2022, Clermont-Ferrand, November 22, 2022

Who

Joint work with Antoine Amarilli

Preprint: https://arxiv.org/abs/2209.14878

Outline

Introduction

Main results

Proof of the lower bound

Proof (sketch) of the upper bound

Conclusion

Introduction

Gray code for n-bit words

- Gray code over n-bit words: a permutation

$$
w_{1}, w_{2}, \ldots, w_{2^{n}}
$$

$$
\text { of }(a+b)^{n} \text { such that } w_{i}, w_{i+1} \text { differ by exactly one bit. }
$$

Example: build the Reflected Binary Code (RBC) by induction:

Gray code for n-bit words

- Gray code over n-bit words: a permutation

$$
w_{1}, w_{2}, \ldots, w_{2^{n}}
$$

$$
\text { of }(a+b)^{n} \text { such that } w_{i}, w_{i+1} \text { differ by exactly one bit. }
$$

Example: build the Reflected Binary Code (RBC) by induction:

- for $n=0$, simply ϵ

Gray code for n-bit words

- Gray code over n-bit words: a permutation

$$
\begin{gathered}
w_{1}, w_{2}, \ldots, w_{2^{n}} \\
\text { of }(a+b)^{n} \text { such that } w_{i}, w_{i+1} \text { differ by exactly one bit. }
\end{gathered}
$$

Example: build the Reflected Binary Code (RBC) by induction:

- for $n=0$, simply ϵ
- given the RBC $w_{1}, \ldots, w_{2^{n}}$ for n-bit words, we build the RBC $w_{1}^{\prime}, \ldots, w_{2^{n+1}}^{\prime}$ for $(n+1)$-bit words:

Gray code for n-bit words

- Gray code over n-bit words: a permutation

$$
\begin{gathered}
w_{1}, w_{2}, \ldots, w_{2^{n}} \\
\text { of }(a+b)^{n} \text { such that } w_{i}, w_{i+1} \text { differ by exactly one bit. }
\end{gathered}
$$

Example: build the Reflected Binary Code (RBC) by induction:

- for $n=0$, simply ϵ
- given the RBC $w_{1}, \ldots, w_{2^{n}}$ for n-bit words, we build the RBC $w_{1}^{\prime}, \ldots, w_{2^{n+1}}^{\prime}$ for $(n+1)$-bit words:

$$
\begin{gathered}
w_{1} \\
\vdots \\
w_{2}{ }^{n}
\end{gathered}
$$

Gray code for n-bit words

- Gray code over n-bit words: a permutation

$$
\begin{gathered}
w_{1}, w_{2}, \ldots, w_{2^{n}} \\
\text { of }(a+b)^{n} \text { such that } w_{i}, w_{i+1} \text { differ by exactly one bit. }
\end{gathered}
$$

Example: build the Reflected Binary Code (RBC) by induction:

- for $n=0$, simply ϵ
- given the RBC $w_{1}, \ldots, w_{2^{n}}$ for n-bit words, we build the RBC $w_{1}^{\prime}, \ldots, w_{2^{n+1}}^{\prime}$ for $(n+1)$-bit words:

Gray code for n-bit words

- Gray code over n-bit words: a permutation

$$
\begin{gathered}
w_{1}, w_{2}, \ldots, w_{2^{n}} \\
\text { of }(a+b)^{n} \text { such that } w_{i}, w_{i+1} \text { differ by exactly one bit. }
\end{gathered}
$$

Example: build the Reflected Binary Code (RBC) by induction:

- for $n=0$, simply ϵ
- given the RBC $w_{1}, \ldots, w_{2^{n}}$ for n-bit words, we build the RBC $w_{1}^{\prime}, \ldots, w_{2^{n+1}}^{\prime}$ for $(n+1)$-bit words:

Gray code for n-bit words

- Gray code over n-bit words: a permutation

$$
\begin{gathered}
w_{1}, w_{2}, \ldots, w_{2^{n}} \\
\text { of }(a+b)^{n} \text { such that } w_{i}, w_{i+1} \text { differ by exactly one bit. }
\end{gathered}
$$

Example: build the Reflected Binary Code (RBC) by induction:

- for $n=0$, simply ϵ
- given the RBC $w_{1}, \ldots, w_{2^{n}}$ for n-bit words, we build the RBC $w_{1}^{\prime}, \ldots, w_{2^{n+1}}^{\prime}$ for $(n+1)$-bit words:

$$
\begin{gathered}
a w_{1} \\
\vdots \vdots \\
a w_{2} \\
-\bar{b}-w_{2 n}^{n}--- \\
\vdots \vdots \\
b w_{1}
\end{gathered}
$$

Gray code for n-bit words

- Gray code over n-bit words: a permutation

$$
\begin{gathered}
w_{1}, w_{2}, \ldots, w_{2^{n}} \\
\text { of }(a+b)^{n} \text { such that } w_{i}, w_{i+1} \text { differ by exactly one bit. }
\end{gathered}
$$

Example: build the Reflected Binary Code (RBC) by induction:

- for $n=0$, simply ϵ
- given the RBC $w_{1}, \ldots, w_{2^{n}}$ for n-bit words, we build the RBC $w_{1}^{\prime}, \ldots, w_{2^{n+1}}^{\prime}$ for $(n+1)$-bit words:

$$
\begin{array}{cc}
w_{1}^{\prime}= & a w_{1} \\
\vdots & \vdots \vdots \\
\vdots & a w_{2}{ }^{n} \\
\vdots & -b w_{2^{n}}--- \\
\vdots & \vdots \\
w_{2^{n+1}}^{\prime}= & b w_{1}
\end{array}
$$

Gray code for languages

- Concatenate Gray codes for $n=0,1,2, \ldots$: we obtain a permutation w_{1}, w_{2}, \ldots of $(a+b)^{*}$ where consecutive words are at Levenshtein distance one.

Gray code for languages

- Concatenate Gray codes for $n=0,1,2, \ldots$: we obtain a permutation w_{1}, w_{2}, \ldots of $(a+b)^{*}$ where consecutive words are at Levenshtein distance one.
- In general, let $L \subseteq \Sigma^{*}$ be any language over some alphabet Σ. We say that L is 1 -orderable for the Levenshtein distance if there exists a permutation w_{1}, w_{2}, \ldots of L such that consecutive words are at Levenshtein distance 1.

Gray code for languages

- Concatenate Gray codes for $n=0,1,2, \ldots$: we obtain a permutation w_{1}, w_{2}, \ldots of $(a+b)^{*}$ where consecutive words are at Levenshtein distance one.
- In general, let $L \subseteq \Sigma^{*}$ be any language over some alphabet Σ. We say that L is 1 -orderable for the Levenshtein distance if there exists a permutation w_{1}, w_{2}, \ldots of L such that consecutive words are at Levenshtein distance 1.
- Examples: Are these languages 1 -orderable for the Levenshtein distance?
- a^{*}

Gray code for languages

- Concatenate Gray codes for $n=0,1,2, \ldots$: we obtain a permutation w_{1}, w_{2}, \ldots of $(a+b)^{*}$ where consecutive words are at Levenshtein distance one.
- In general, let $L \subseteq \Sigma^{*}$ be any language over some alphabet Σ. We say that L is 1 -orderable for the Levenshtein distance if there exists a permutation w_{1}, w_{2}, \ldots of L such that consecutive words are at Levenshtein distance 1.
- Examples: Are these languages 1 -orderable for the Levenshtein distance?
- a^{*}
yes

Gray code for languages

- Concatenate Gray codes for $n=0,1,2, \ldots$: we obtain a permutation w_{1}, w_{2}, \ldots of $(a+b)^{*}$ where consecutive words are at Levenshtein distance one.
- In general, let $L \subseteq \Sigma^{*}$ be any language over some alphabet Σ. We say that L is 1 -orderable for the Levenshtein distance if there exists a permutation w_{1}, w_{2}, \ldots of L such that consecutive words are at Levenshtein distance 1.
- Examples: Are these languages 1 -orderable for the Levenshtein distance?
- a^{*}
yes
- $a^{*} b^{*}$

Gray code for languages

- Concatenate Gray codes for $n=0,1,2, \ldots$: we obtain a permutation w_{1}, w_{2}, \ldots of $(a+b)^{*}$ where consecutive words are at Levenshtein distance one.
- In general, let $L \subseteq \Sigma^{*}$ be any language over some alphabet Σ. We say that L is 1 -orderable for the Levenshtein distance if there exists a permutation w_{1}, w_{2}, \ldots of L such that consecutive words are at Levenshtein distance 1.
- Examples: Are these languages 1 -orderable for the Levenshtein distance?
- a^{*}
yes
- $a^{*} b^{*} \quad$ yes (BLACKBOARD)

Gray code for languages

- Concatenate Gray codes for $n=0,1,2, \ldots$: we obtain a permutation w_{1}, w_{2}, \ldots of $(a+b)^{*}$ where consecutive words are at Levenshtein distance one.
- In general, let $L \subseteq \Sigma^{*}$ be any language over some alphabet Σ. We say that L is 1 -orderable for the Levenshtein distance if there exists a permutation w_{1}, w_{2}, \ldots of L such that consecutive words are at Levenshtein distance 1.
- Examples: Are these languages 1 -orderable for the Levenshtein distance?
- a^{*} yes
- $a^{*} b^{*} \quad$ yes (BLACKBOARD)
- $a^{*} b^{*}+b^{*} a^{*}$

Gray code for languages

- Concatenate Gray codes for $n=0,1,2, \ldots$: we obtain a permutation w_{1}, w_{2}, \ldots of $(a+b)^{*}$ where consecutive words are at Levenshtein distance one.
- In general, let $L \subseteq \Sigma^{*}$ be any language over some alphabet Σ. We say that L is 1 -orderable for the Levenshtein distance if there exists a permutation w_{1}, w_{2}, \ldots of L such that consecutive words are at Levenshtein distance 1.
- Examples: Are these languages 1 -orderable for the Levenshtein distance?
- a^{*}
yes
- $a^{*} b^{*}$ yes (BLACKBOARD)
- $a^{*} b^{*}+b^{*} a^{*}$ yes (BLACKBOARD)

Gray code for languages

- Concatenate Gray codes for $n=0,1,2, \ldots$: we obtain a permutation w_{1}, w_{2}, \ldots of $(a+b)^{*}$ where consecutive words are at Levenshtein distance one.
- In general, let $L \subseteq \Sigma^{*}$ be any language over some alphabet Σ. We say that L is 1 -orderable for the Levenshtein distance if there exists a permutation w_{1}, w_{2}, \ldots of L such that consecutive words are at Levenshtein distance 1.
- Examples: Are these languages 1 -orderable for the Levenshtein distance?
- a^{*}
yes
- $a^{*} b^{*}$ yes (BLACKBOARD)
- $a^{*} b^{*}+b^{*} a^{*}$ yes (BLACKBOARD)
- $(a a)^{*}$

Gray code for languages

- Concatenate Gray codes for $n=0,1,2, \ldots$: we obtain a permutation w_{1}, w_{2}, \ldots of $(a+b)^{*}$ where consecutive words are at Levenshtein distance one.
- In general, let $L \subseteq \Sigma^{*}$ be any language over some alphabet Σ. We say that L is 1 -orderable for the Levenshtein distance if there exists a permutation w_{1}, w_{2}, \ldots of L such that consecutive words are at Levenshtein distance 1.
- Examples: Are these languages 1 -orderable for the Levenshtein distance?
- a^{*}
yes
- $a^{*} b^{*}$ yes (BLACKBOARD)
- $a^{*} b^{*}+b^{*} a^{*}$ yes (BLACKBOARD)
- $(a)^{*}$ no

Orderability for the Levenshtein distance

Definition

We say that $L \subseteq \Sigma^{*}$ is d-orderable for the Levenshtein distance if there exists a permutation w_{1}, w_{2}, \ldots of L such that any two consecutive words at at Levenshtein distance at most d.

Orderability for the Levenshtein distance

Definition

We say that $L \subseteq \Sigma^{*}$ is d-orderable for the Levenshtein distance if there exists a permutation w_{1}, w_{2}, \ldots of L such that any two consecutive words at at Levenshtein distance at most d.

Definition

We say that $L \subseteq \Sigma^{*}$ is orderable for the Levenshtein distance if there exists $d \in \mathbb{N}$ such that L is d-orderable for the Levenshtein distance.

Orderability for the Levenshtein distance

Definition

We say that $L \subseteq \Sigma^{*}$ is d-orderable for the Levenshtein distance if there exists a permutation w_{1}, w_{2}, \ldots of L such that any two consecutive words at at Levenshtein distance at most d.

Definition

We say that $L \subseteq \Sigma^{*}$ is orderable for the Levenshtein distance if there exists $d \in \mathbb{N}$ such that L is d-orderable for the Levenshtein distance.

Examples: Are these orderable for the Levenshtein distance?

- for $k \in \mathbb{N}$, the language $\left(a^{k}\right)^{*}$

Orderability for the Levenshtein distance

Definition

We say that $L \subseteq \Sigma^{*}$ is d-orderable for the Levenshtein distance if there exists a permutation w_{1}, w_{2}, \ldots of L such that any two consecutive words at at Levenshtein distance at most d.

Definition

We say that $L \subseteq \Sigma^{*}$ is orderable for the Levenshtein distance if there exists $d \in \mathbb{N}$ such that L is d-orderable for the Levenshtein distance.

Examples: Are these orderable for the Levenshtein distance?

- for $k \in \mathbb{N}$, the language $\left(a^{k}\right)^{*}$ yes

Orderability for the Levenshtein distance

Definition

We say that $L \subseteq \Sigma^{*}$ is d-orderable for the Levenshtein distance if there exists a permutation w_{1}, w_{2}, \ldots of L such that any two consecutive words at at Levenshtein distance at most d.

Definition

We say that $L \subseteq \Sigma^{*}$ is orderable for the Levenshtein distance if there exists $d \in \mathbb{N}$ such that L is d-orderable for the Levenshtein distance.

Examples: Are these orderable for the Levenshtein distance?

- for $k \in \mathbb{N}$, the language $\left(a^{k}\right)^{*}$ yes
- $a^{*}+b^{*}$

Orderability for the Levenshtein distance

Definition

We say that $L \subseteq \Sigma^{*}$ is d-orderable for the Levenshtein distance if there exists a permutation w_{1}, w_{2}, \ldots of L such that any two consecutive words at at Levenshtein distance at most d.

Definition

We say that $L \subseteq \Sigma^{*}$ is orderable for the Levenshtein distance if there exists $d \in \mathbb{N}$ such that L is d-orderable for the Levenshtein distance.

Examples: Are these orderable for the Levenshtein distance?

- for $k \in \mathbb{N}$, the language $\left(a^{k}\right)^{*}$ yes
- $a^{*}+b^{*}$ no (BLACKBOARD)

Other distances: definitions

We extend these definitions to other distances:

- the push-pop distance. Defined like the Levenshtein distance, but the basic operations are:
- popL and popR, to delete the last (resp., the first) letter of the word; and
- $\operatorname{pushL}(\alpha)$ and $\operatorname{pushR}(\alpha)$ for $\alpha \in \Sigma$, to add the letter α at the beginning (resp., at the end) the word.

Other distances: definitions

We extend these definitions to other distances:

- the push-pop distance. Defined like the Levenshtein distance, but the basic operations are:
- popL and popR, to delete the last (resp., the first) letter of the word; and
- $\operatorname{pushL}(\alpha)$ and $\operatorname{pushR}(\alpha)$ for $\alpha \in \Sigma$, to add the letter α at the beginning (resp., at the end) the word.
- the push-pop-right distance. Defined like the push-pop distance, but only allow popR and $\operatorname{pushR}(\alpha)$ for $\alpha \in \Sigma$.

Other distances: first observations

languages orderable for push-pop-right \subseteq languages orderable for push-pop \subseteq languages orderable for Levenshtein.

Other distances: first observations

languages orderable for push-pop-right \subseteq languages orderable for push-pop \subseteq languages orderable for Levenshtein.

Are these inclusions strict?

Other distances: first observations

languages orderable for push-pop-right \subseteq languages orderable for push-pop \subseteq languages orderable for Levenshtein.

Are these inclusions strict?

- $(\epsilon+a) b^{*}$

Other distances: first observations

languages orderable for push-pop-right \subseteq languages orderable for push-pop \subseteq languages orderable for Levenshtein.

Are these inclusions strict?

- $(\epsilon+a) b^{*} \quad$ orderable for push-pop (hence for Levenshtein).

Other distances: first observations

languages orderable for push-pop-right \subseteq languages orderable for push-pop \subseteq languages orderable for Levenshtein.

Are these inclusions strict?

- $(\epsilon+a) b^{*} \quad$ orderable for push-pop (hence for Levenshtein). For push-pop-right?

Other distances: first observations

languages orderable for push-pop-right \subseteq languages orderable for push-pop \subseteq languages orderable for Levenshtein.

Are these inclusions strict?

- $(\epsilon+a) b^{*} \quad$ orderable for push-pop (hence for Levenshtein). For push-pop-right?no

Other distances: first observations

languages orderable for push-pop-right \mp languages orderable for push-pop \subseteq languages orderable for Levenshtein.

Are these inclusions strict?

- $(\epsilon+a) b^{*} \quad$ orderable for push-pop (hence for Levenshtein). For push-pop-right? no
- $a^{*} b^{*}+b^{*} a^{*}$ orderable for Levenshtein (prev slides).

Other distances: first observations

languages orderable for push-pop-right \mp languages orderable for push-pop \subseteq languages orderable for Levenshtein.

Are these inclusions strict?

- $(\epsilon+a) b^{*} \quad$ orderable for push-pop (hence for Levenshtein). For push-pop-right? no
- $a^{*} b^{*}+b^{*} a^{*}$ orderable for Levenshtein (prev slides).

For push-pop?

Other distances: first observations

languages orderable for push-pop-right \mp languages orderable for push-pop \subseteq languages orderable for Levenshtein.

Are these inclusions strict?

- $(\epsilon+a) b^{*} \quad$ orderable for push-pop (hence for Levenshtein). For push-pop-right? no
- $a^{*} b^{*}+b^{*} a^{*}$ orderable for Levenshtein (prev slides). For push-pop? yes (BLACKBOARD)

Questions

We focus on regular languages

Questions

We focus on regular languages

- What are the regular languages that are orderable:
- for the Levenshtein distance?
- for the push-pop distance?
- for the push-pop-right distance?

Questions

We focus on regular languages

- What are the regular languages that are orderable:
- for the Levenshtein distance?
- for the push-pop distance?
- for the push-pop-right distance?
- Can we recognize them? (e.g., given a DFA)

Questions

We focus on regular languages

- What are the regular languages that are orderable:
- for the Levenshtein distance?
- for the push-pop distance?
- for the push-pop-right distance?
- Can we recognize them? (e.g., given a DFA)
- Can we always partition a regular language into a finite number of orderable languages? (as in $a^{*}+b^{*}$)

Questions

We focus on regular languages

- What are the regular languages that are orderable:
- for the Levenshtein distance?
- for the push-pop distance?
- for the push-pop-right distance?
- Can we recognize them? (e.g., given a DFA)
- Can we always partition a regular language into a finite number of orderable languages? (as in $a^{*}+b^{*}$)
- When L is orderable, can we design an enumeration algorithm for it? With what delay? (poly, constant?)

Main results

Main results (Levenshtein and push-pop)

Let L be regular. We show:

- There exists $t \in \mathbb{N}$ and regular languages L_{1}, \ldots, L_{t} such that

$$
L=L_{1} \sqcup \ldots \sqcup L_{t}
$$

and each L_{i} is orderable for the push-pop distance

Main results (Levenshtein and push-pop)

Let L be regular. We show:

- There exists $t \in \mathbb{N}$ and regular languages L_{1}, \ldots, L_{t} such that

$$
L=L_{1} \sqcup \ldots \sqcup L_{t}
$$

and each L_{i} is orderable for the push-pop distance

- and this t is optimal, even for the Levenshtein distance: L cannot be partitioned into less than t orderable languages for the Levenshtein distance.

Main results (Levenshtein and push-pop)

Let L be regular. We show:

- There exists $t \in \mathbb{N}$ and regular languages L_{1}, \ldots, L_{t} such that

$$
L=L_{1} \sqcup \ldots \sqcup L_{t}
$$

and each L_{i} is orderable for the push-pop distance

- and this t is optimal, even for the Levenshtein distance: L cannot be partitioned into less than t orderable languages for the Levenshtein distance.
\rightarrow This shows L is orderable for Levenshtein iff it is for push-pop!

Main results (Levenshtein and push-pop)

Let L be regular. We show:

- There exists $t \in \mathbb{N}$ and regular languages L_{1}, \ldots, L_{t} such that

$$
L=L_{1} \sqcup \ldots \sqcup L_{t}
$$

and each L_{i} is orderable for the push-pop distance

- and this t is optimal, even for the Levenshtein distance: L cannot be partitioned into less than t orderable languages for the Levenshtein distance.
\rightarrow This shows L is orderable for Levenshtein iff it is for push-pop!
- When L is orderable for push-pop then, in a suitable pointer machine model, we have an algorithm that outputs push-pop edit scripts to enumerate L, with constant delay (i.e., independent from the current word length)

Enumeration algorithms with push-pop edit scripts

Let L regular, e.g., $(\epsilon+a) b^{*}$. GOAL: enumerate L with a delay that is independent from the length of the current word.

Enumeration algorithms with push-pop edit scripts

Let L regular, e.g., $(\epsilon+a) b^{*}$. GOAL: enumerate L (in a certain sense) with a delay that is independent from the length of the current word.

Enumeration algorithms with push-pop edit scripts

Let L regular, e.g., $(\epsilon+a) b^{*}$. GOAL: enumerate L (in a certain
sense) with a delay that is independent from the length of the current word. Example of a push-pop program for $(\epsilon+a) b^{*}$:

The current word w_{i} is maintained on a (doubly-ended) pushL(a); output(); queue (BLACKBOARD)

Enumeration algorithms with push-pop edit scripts

Let L regular, e.g., $(\epsilon+a) b^{*}$. GOAL: enumerate L (in a certain sense) with a delay that is independent from the length of the current word. Example of a push-pop program for $(\epsilon+a) b^{*}$:

```
int main{
    output();
    while (true) {
    pushR(b); output();
    pushL(a); output();
    popL();
    }
}
```

The current word w_{i} is maintained on a (doubly-ended) queue (BLACKBOARD)

An edit script is a sequence of push or pop operations that are executed between any two output () instructions. This push-pop program enumerates $(\epsilon+a) b^{*}$ with constant delay.

Proof of the lower bound

Lower bound

Theorem

For a regular language L, there exists L_{1}, \ldots, L_{t} regular such that

$$
L=L_{1} \sqcup \ldots \sqcup \mathrm{~L}_{t}
$$

and each L_{i} is orderable for the push-pop distance. Moreover L cannot be partitioned into less than t orderable languages for the Levenshtein distance.

Lower bound

Theorem

For a regular language L, there exists L_{1}, \ldots, L_{t} regular such that

$$
L=L_{1} \sqcup \ldots \sqcup \mathrm{~L}_{t}
$$

and each L_{i} is orderable for the push-pop distance. Moreover L
cannot be partitioned into less than t orderable languages for the Levenshtein distance.

We will now define this number t and show that it is optimal

Connectivity and compatibility of loopable states

Let $A=\left(Q, \Sigma, q_{0}, F, \delta\right)$ be a DFA for L. For $q \in Q$, define A_{q} to be A where the initial state and final state is q.

Definition: loopable state

A state $q \in Q$ is loopable if $\mathrm{L}\left(A_{q}\right) \neq\{\epsilon\}$. In other words, when there is a non-empty run that starts and ends at q.

Connectivity and compatibility of loopable states

Let $A=\left(Q, \Sigma, q_{0}, F, \delta\right)$ be a DFA for L. For $q \in Q$, define A_{q} to be A where the initial state and final state is q.

Definition: loopable state
A state $q \in Q$ is loopable if $\mathrm{L}\left(A_{q}\right) \neq\{\epsilon\}$. In other words, when there is a non-empty run that starts and ends at q.

Definition: connectivity

Two loopable states $q, q^{\prime} \in Q$ are connected when there is a directed path in A from q to q^{\prime}, or a directed path in A from q^{\prime} to q

Connectivity and compatibility of loopable states

Let $A=\left(Q, \Sigma, q_{0}, F, \delta\right)$ be a DFA for L. For $q \in Q$, define A_{q} to be A where the initial state and final state is q.

Definition: loopable state
A state $q \in Q$ is loopable if $\mathrm{L}\left(A_{q}\right) \neq\{\epsilon\}$. In other words, when there is a non-empty run that starts and ends at q.

Definition: connectivity

Two loopable states $q, q^{\prime} \in Q$ are connected when there is a directed path in A from q to q^{\prime}, or a directed path in A from q^{\prime} to q

Definition: compatibility
Two loopable states $q, q^{\prime} \in Q$ are compatible when $\mathrm{L}\left(A_{q}\right) \cap \mathrm{L}\left(A_{q^{\prime}}\right) \neq\{\epsilon\}$.

Interchangeability of loopable states

Note: The connectivity and compatibility relations of loopable states are reflexive but not transitive

Interchangeability of loopable states

Note: The connectivity and compatibility relations of loopable states are reflexive but not transitive

Definition: interchangeability

Interchangeability is the equivalence relation on loopable states that is defined to be the transitive closure of the union of the connectivity and compatibility relations. In other words, two loopable states $q, q^{\prime} \in Q$ are interchangeable if there is a sequence $q=q_{0}, \ldots, q_{n}=q^{\prime}$ of loopable states such that for all $0 \leq i<n$, the states q_{i} and q_{i+1} are either connected or compatible.

Interchangeability of loopable states

Note: The connectivity and compatibility relations of loopable states are reflexive but not transitive

Definition: interchangeability

Interchangeability is the equivalence relation on loopable states that is defined to be the transitive closure of the union of the connectivity and compatibility relations. In other words, two loopable states $q, q^{\prime} \in Q$ are interchangeable if there is a sequence $q=q_{0}, \ldots, q_{n}=q^{\prime}$ of loopable states such that for all $0 \leq i<n$, the states q_{i} and q_{i+1} are either connected or compatible.

We then define t to be the number of interchangeable classes Some examples follow

Example: $(a+b)^{*}$

Example: $(a+b)^{*}$

- Loopable states: 0

Example: $(a+b)^{*}$

- Loopable states: 0
$\Longrightarrow t=1$

Example: $a^{*} b^{*}$

Example: $a^{*} b^{*}$

- Loopable states: 0 and 1

Example: $a^{*} b^{*}$

- Loopable states: 0 and 1
- 0 and 1 are connected, hence interchangeable

Example: $a^{*} b^{*}$

- Loopable states: 0 and 1
- 0 and 1 are connected, hence interchangeable $\Longrightarrow t=1$

Example: $c^{*} a^{*}+c^{*} b^{*}$

Example: $c^{*} a^{*}+c^{*} b^{*}$

- Loopable states: 0,1 and 2

Example: $c^{*} a^{*}+c^{*} b^{*}$

- Loopable states: 0, 1 and 2
- 0 and 1 are connected hence interchangeable

Example: $c^{*} a^{*}+c^{*} b^{*}$

- Loopable states: 0, 1 and 2
- 0 and 1 are connected hence interchangeable
- 0 and 2 are connected hence interchangeable

Example: $c^{*} a^{*}+c^{*} b^{*}$

- Loopable states: 0, 1 and 2
- 0 and 1 are connected hence interchangeable
- 0 and 2 are connected hence interchangeable
- so 1 and 2 are also interchangeable

Example: $c^{*} a^{*}+c^{*} b^{*}$

- Loopable states: 0, 1 and 2
- 0 and 1 are connected hence interchangeable
- 0 and 2 are connected hence interchangeable
- so 1 and 2 are also interchangeable
$\Longrightarrow t=1$

Example: $a^{*}+b^{*}$

Example: $a^{*}+b^{*}$

- Loopable states: 1 and 2

Example: $a^{*}+b^{*}$

- Loopable states: 1 and 2
- 1 and 2 are neither connected, nor compatible, so they are not interchangeable

Example: $a^{*}+b^{*}$

- Loopable states: 1 and 2
- 1 and 2 are neither connected, nor compatible, so they are not interchangeable
$\Longrightarrow t=2$

Example: $a(a+b c)^{*}+b(c b)^{*} d d d^{*}$

Example: $a(a+b c)^{*}+b(c b)^{*} d d d^{*}$

- Loopable states: 1, 2, 3, 4 and 6

Example: $a(a+b c)^{*}+b(c b)^{*} d d d^{*}$

- Loopable states: 1, 2, 3, 4 and 6
- 1 and 2 are connected hence interchangeable

Example: $a(a+b c)^{*}+b(c b)^{*} d d d^{*}$

- Loopable states: 1, 2, 3, 4 and 6
- 1 and 2 are connected hence interchangeable
- 4, 3 and 6 are connected hence interchangeable

Example: $a(a+b c)^{*}+b(c b)^{*} d d d^{*}$

- Loopable states: 1, 2, 3, 4 and 6
- 1 and 2 are connected hence interchangeable
- 4, 3 and 6 are connected hence interchangeable
- 1 and 4 are compatible (with the word $b c$), hence interchangeable

Example: $a(a+b c)^{*}+b(c b)^{*} d d d^{*}$

- Loopable states: 1, 2, 3, 4 and 6
- 1 and 2 are connected hence interchangeable
- 4, 3 and 6 are connected hence interchangeable
- 1 and 4 are compatible (with the word $b c$), hence interchangeable
$\Longrightarrow t=1$

The partition

Let $\mathcal{C}_{1}, \ldots, \mathcal{C}_{t}$ be the interchangeability classes of loopable states of A.

Definition

For $1 \leq i \leq t$, define

$$
L_{i}=\left\{w \in \mathrm{~L}(A) \mid \text { the run of } w \text { goes through a state of } \mathcal{C}_{i}\right\} .
$$

Also define

$$
\mathrm{NL}=\{w \in \mathrm{~L}(A) \mid \text { the run of } w \text { does not use loopable states }\} .
$$

The partition

Let $\mathcal{C}_{1}, \ldots, \mathcal{C}_{t}$ be the interchangeability classes of loopable states of A.

Definition

For $1 \leq i \leq t$, define

$$
L_{i}=\left\{w \in \mathrm{~L}(A) \mid \text { the run of } w \text { goes through a state of } \mathcal{C}_{i}\right\} .
$$

Also define
$\mathrm{NL}=\{w \in \mathrm{~L}(A) \mid$ the run of w does not use loopable states $\}$.

Proposition

We have $L=$ NL $\sqcup L_{1} \sqcup \ldots \sqcup L_{t}$
Proof: (BLACKBOARD)

Proof of the lower bound

Proposition

We have $L=$ NL $\sqcup L_{1} \sqcup \ldots \sqcup L_{t}$

Proof of the lower bound

Proposition

We have $L=$ NL $\sqcup L_{1} \sqcup \ldots \sqcup L_{t}$

Proposition

L cannot be partitioned into less than t languages that each are orderable for the Levenshtein distance.

Proof: we only do the case $t=2$ and $\mathrm{NL}=\varnothing$ (so $L=L_{1} \sqcup L_{2}$). We prove (BLACKBOARD): for any distance $d \in \mathbb{N}$, there is a threshold $I \in \mathbb{N}$ such that for any two words $u \in L_{1}$ and $v \in L_{2}$ with $i \neq j$ and $|u| \geq I$ and $|v| \geq I$, we have $\delta_{\text {Lev }}(u, v)>d$. Indeed this is enough, using the same argument as for $a^{*}+b^{*}$

Proof (sketch) of the upper bound

Upper bound: existence of an ordering

We have shown:

Theorem

Given a DFA A, we can partition $\mathrm{L}(A)$ into

$$
L=L_{1} \sqcup \ldots \sqcup L_{t}
$$

such that L cannot be partitioned into less than t orderable languages for the Levenshtein distance.

Upper bound: existence of an ordering

We have shown:

Theorem

Given a DFA A, we can partition $\mathrm{L}(A)$ into

$$
L=L_{1} \sqcup \ldots \sqcup L_{t}
$$

such that L cannot be partitioned into less than t orderable languages for the Levenshtein distance.

We now show that each L_{i} is orderable for the push-pop distance

We want

We want to show:

Upper bound: existence

Let A be a DFA that has only one class of interchangeable loopable states. Then $L(A)$ is orderable for the push-pop distance.

We want

We want to show:

Upper bound: existence

Let A be a DFA that has only one class of interchangeable loopable states. Then $\mathrm{L}(A)$ is orderable for the push-pop distance.

Let δ_{pp} denote the push-pop distance on Σ^{*}

d-connectivity

Definition

Two words w, w^{\prime} in a language L are d-connected in L if there exists a sequence w_{0}, \ldots, w_{n} of words of L with $w_{0}=w, w_{n}=w^{\prime}$, and $\delta_{\mathrm{pp}}\left(w_{i}, w_{i+1}\right) \leq d$ for all $0 \leq i<n$.
We say that L is d-connected if every pair of words of L is d-connected in L

d-connectivity

Definition

Two words w, w^{\prime} in a language L are d-connected in L if there exists a sequence w_{0}, \ldots, w_{n} of words of L with $w_{0}=w, w_{n}=w^{\prime}$, and $\delta_{\mathrm{pp}}\left(w_{i}, w_{i+1}\right) \leq d$ for all $0 \leq i<n$.
We say that L is d-connected if every pair of words of L is d-connected in L

In other words, the graph $G_{L, d}$ whose nodes are words of L and where two words are connected by an edge if they are at push-pop distance $\leq d$ is connex.

d-connectivity

Definition

Two words w, w^{\prime} in a language L are d-connected in L if there exists a sequence w_{0}, \ldots, w_{n} of words of L with $w_{0}=w, w_{n}=w^{\prime}$, and $\delta_{\mathrm{pp}}\left(w_{i}, w_{i+1}\right) \leq d$ for all $0 \leq i<n$.
We say that L is d-connected if every pair of words of L is d-connected in L

In other words, the graph $G_{L, d}$ whose nodes are words of L and where two words are connected by an edge if they are at push-pop distance $\leq d$ is connex.

- Note: if L is d-orderable, then L is d-connected.

d-connectivity

Definition

Two words w, w^{\prime} in a language L are d-connected in L if there exists a sequence w_{0}, \ldots, w_{n} of words of L with $w_{0}=w, w_{n}=w^{\prime}$, and $\delta_{\mathrm{pp}}\left(w_{i}, w_{i+1}\right) \leq d$ for all $0 \leq i<n$.
We say that L is d-connected if every pair of words of L is d-connected in L

In other words, the graph $G_{L, d}$ whose nodes are words of L and where two words are connected by an edge if they are at push-pop distance $\leq d$ is connex.

- Note: if L is d-orderable, then L is d-connected.
\rightarrow the converse is not true! E.g., $a^{*}+b^{*}$ is 1 -connected (but not orderable)

d-connectivity

Definition

Two words w, w^{\prime} in a language L are d-connected in L if there exists a sequence w_{0}, \ldots, w_{n} of words of L with $w_{0}=w, w_{n}=w^{\prime}$, and $\delta_{\mathrm{pp}}\left(w_{i}, w_{i+1}\right) \leq d$ for all $0 \leq i<n$.
We say that L is d-connected if every pair of words of L is d-connected in L

In other words, the graph $G_{L, d}$ whose nodes are words of L and where two words are connected by an edge if they are at push-pop distance $\leq d$ is connex.

- Note: if L is d-orderable, then L is d-connected.
\rightarrow the converse is not true! E.g., $a^{*}+b^{*}$ is 1 -connected (but not orderable)
- We show a kind of converse for finite languages in the next slide

d-connectivity implies 3d-orderability for finite languages

Proposition

If L is finite and d-connected then it is $3 d$-orderable.

d-connectivity implies $3 d$-orderability for finite languages

Proposition

If L is finite and d-connected then it is $3 d$-orderable.
Proof: take a spanning tree T of $G_{L, d}$. For $n \in T$, let $h(n)$ be its depth. Apply the following algorithm to the root of T :

```
void visit(node n){
    if(h(n) is even){
        enumerate(n);
        for (child ch of n)
        visit(ch);
    }
    if(h(n) is odd){
        for (child ch of n)
                visit(ch);
        enumerate(n);
    }
}
```


d-connectivity implies $3 d$-orderability for finite languages

Proposition

If L is finite and d-connected then it is $3 d$-orderable.
Proof: take a spanning tree T of $G_{L, d}$. For $n \in T$, let $h(n)$ be its depth. Apply the following algorithm to the root of T :

```
void visit(node n){
    if(h(n) is even){
        enumerate(n);
        for (child ch of n)
        visit(ch);
    }
    if(h(n) is odd){
        for (child ch of n)
        visit(ch);
    enumerate(n);
    }
}
```


Using this for infinite languages

Definition

For L a language and $i, \ell \in \mathbb{N}$, define the i-th ℓ-stratum of L as

$$
S_{i}=\{w \in L|(i-1) \ell \leq|w|<i \ell\}
$$

Using this for infinite languages

Definition

For L a language and $i, \ell \in \mathbb{N}$, define the i-th ℓ-stratum of L as

$$
S_{i}=\{w \in L|(i-1) \ell \leq|w|<i \ell\}
$$

We can show:

Proposition

Let $L=\mathrm{L}(A)$ with A having only one interchangeable class of loopable states. Let, letting $\ell=8|A|^{2}$ and $d=16|A|^{2}$, each S_{i} is d-connected.

Using this for infinite languages

Definition

For L a language and $i, \ell \in \mathbb{N}$, define the i-th ℓ-stratum of L as

$$
S_{i}=\{w \in L|(i-1) \ell \leq|w|<i \ell\}
$$

We can show:

Proposition

Let $L=\mathrm{L}(A)$ with A having only one interchangeable class of loopable states. Let, letting $\ell=8|A|^{2}$ and $d=16|A|^{2}$, each S_{i} is d-connected.

We conclude by concatenating orderings for S_{1}, S_{2}, \ldots obtained with the enumeration technique of the previous slide, with carefully chosen starting and ending points (BLACKBOARD).

Conclusion

Main results (Levenshtein and push-pop)

Let L be regular. Then:

- There exists $t \in \mathbb{N}$ and regular languages L_{1}, \ldots, L_{t} such that

$$
L=L_{1} \sqcup \ldots \sqcup L_{t}
$$

and each L_{i} is orderable for the push-pop distance

Main results (Levenshtein and push-pop)

Let L be regular. Then:

- There exists $t \in \mathbb{N}$ and regular languages L_{1}, \ldots, L_{t} such that

$$
L=L_{1} \sqcup \ldots \sqcup L_{t}
$$

and each L_{i} is orderable for the push-pop distance

- and this t is optimal, even for the Levenshtein distance: L cannot be partitioned into less than t orderable languages for the Levenshtein distance.

Main results (Levenshtein and push-pop)

Let L be regular. Then:

- There exists $t \in \mathbb{N}$ and regular languages L_{1}, \ldots, L_{t} such that

$$
L=L_{1} \sqcup \ldots \sqcup L_{t}
$$

and each L_{i} is orderable for the push-pop distance

- and this t is optimal, even for the Levenshtein distance: L cannot be partitioned into less than t orderable languages for the Levenshtein distance.
\rightarrow This shows L is orderable for Levenshtein iff it is for push-pop!

Main results (Levenshtein and push-pop)

Let L be regular. Then:

- There exists $t \in \mathbb{N}$ and regular languages L_{1}, \ldots, L_{t} such that

$$
L=L_{1} \sqcup \ldots \sqcup L_{t}
$$

and each L_{i} is orderable for the push-pop distance

- and this t is optimal, even for the Levenshtein distance: L cannot be partitioned into less than t orderable languages for the Levenshtein distance.
\rightarrow This shows L is orderable for Levenshtein iff it is for push-pop!
- When L is orderable for push-pop then, in a suitable pointer machine model, we have an algorithm that outputs push-pop edit scripts to enumerate L, with constant delay (i.e., independent from the current word length)

Other results and future work

Other results:

- It is $N P$-hard, given a DFA A such that $\mathrm{L}(A)$ is orderable (for Levenshtein or push-pop), to determine the minimal d such that $\mathrm{L}(A)$ is d-orderable.
- A regular language is partitionable into finitely many orderable languages for the push-pop-right distance if and only if it is slender.

Other results and future work

Other results:

- It is $N P$-hard, given a DFA A such that $L(A)$ is orderable (for Levenshtein or push-pop), to determine the minimal d such that $\mathrm{L}(A)$ is d-orderable.
- A regular language is partitionable into finitely many orderable languages for the push-pop-right distance if and only if it is slender.

Open and future work:

- Make the delay polynomial in $|A|$? (currently it is exp)
- Implementation and real-life use-cases?

Thanks for your attention!

