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The Shapley value



Cooperative games

Notion from . Let X be a set of players
and G : 2X = R be a function defined on subsets of X (G will be
called a game on X). We wish to assign to every player pe X a
contribution sx (G, p). Some reasonable axioms:
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and G : 2X = R be a function defined on subsets of X (G will be
called a game on X). We wish to assign to every player pe X a
contribution sx (G, p). Some reasonable axioms:

1. Null player: A player pis null if G(Su{p}) = G(S) for
every S € X. For every null player we have sx(G,p) =0

2. Symmetry: For every game G on X and players p1, po € X, if
we have G(Su{p1}) =G(Su{py}) for every S c X~ {p1,p2},
then sx (G, p1) = sx(9, p2)

3. Linearity: For every a,b € R, games G1,G> on X and player p
we have sx(aGi + bGo,p) = a-sx(G1,p) + b-sx(Ga,p)

4. Efficiency: For every game G on X we

have 2 peX sx(G,p) =G(X)
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The Shapley value

Theorem [Shapley, 1953]

There is a unique function sx(-,-) that satisfies all four axioms.

Shapleyx(G,p) % 32 BHXIZBIZDY g5 o1y —g(sy)

SEX\{p} |X|I
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Shapley values in databases:
explaining query results



This part of the talk is based on joint work with Daniel Deutch,
Nave Frost and Benny Kimelfeld.

(Paper accepted at )
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Shapley values for databases

e Framework introduced by Livshits, Bertossi, Kimelfeld, and
Sebag [LBKS'20]

e Let D be a relational database, that we see as a set of facts of
the form R(ai,...,ax), and g be a Boolean query that takes as
input a database D and outputs g(D) € {0,1}.
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Shapley values for databases

e Framework introduced by Livshits, Bertossi, Kimelfeld, and
Sebag [LBKS'20]

e Let D be a relational database, that we see as a set of facts of
the form R(ai,...,ax), and g be a Boolean query that takes as
input a database D and outputs g(D) € {0,1}.

e We want to define the “contribution” of every fact f € D for
the (non-)satisfaction of g. We use the Shapley value where
the players are the facts of D and the game maps S ¢ D to

q(S) € {0,1}
Shapley(q, D, ) <
5 |5|!(|D||[—)||!5|_1)!(q(5u{f})—CI(5))

ScD~{f}
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Complexity?

When can it be computed efficiently?

Definition: problem Shapley(q)
Input: A database D and a fact f € D
Output: The value Shapley(g, D, f)
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Complexity?

When can it be computed efficiently?

Definition: problem Shapley(q)
Input: A database D and a fact f € D
Output: The value Shapley(q, D, f)

We consider the (query q is fixed)

Theorem [LBKS'20]
Let g be a self-join—free conjunctive query. If g is hierarchical
then Shapley(q) is PTIME, otherwise it is FP#F-hard
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Link to probabilistic databases?

Theorem [LBKS'20]
Let g be a self-join—free conjunctive query. If g is hierarchical
then Shapley(q) is PTIME, otherwise it is FP#F-hard

This is the same dichotomy as for probabilistic query evaluation...
Is there ?
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Link to probabilistic databases?

Theorem [LBKS'20]
Let g be a self-join—free conjunctive query. If g is hierarchical
then Shapley(q) is PTIME, otherwise it is FP#F-hard

This is the same dichotomy as for probabilistic query evaluation...
Is there 7

. yes, we show that Shapley(q) reduces to probabilistic
query evaluation, for every Boolean query g
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Probabilistic databases

Tuple-independent probabilistic database (TID)
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Probabilistic databases

Tuple-independent probabilistic database (TID)

WorksAt T

D"= Alice CNRS 0.5
Jotim—ENS—0-F
Mary Inria 0.2

Pr(D') = (1-0.9) x 0.5 x (1-0.7) x 0.2
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Probabilistic databases

Tuple-independent probabilistic database (TID)

WorksAt T
Bob Inria 0.9 g = « there are two people who
D = Alice CNRS 05 work at the same institution »

John ENS 0.7
Mary Inria 0.2

Pr((D,m) & q) = ¥prep Pr(D")
D'eq
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PQE(qg) and Shapley(q)

Definition: problem PQE(q)
Input: A tuple-independent database (D, )
Output: The probability Pr((D, ) = q) that (D, ) satisfies g
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PQE(qg) and Shapley(q)

Definition: problem PQE(q)
Input: A tuple-independent database (D, )
Output: The probability Pr((D, ) = q) that (D, ) satisfies g

Theorem (ours)
For every Boolean query g, Shapley(q) reduces in PTIME to
PQE(q)

— In particular, this implies that Shapley(q) is PTIME
whenever PQE(q) is PTIME (and we know a lot about this)

. proof of this result
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Reduction from Shapley(q) to PQE(q) (1/4)

We wish to compute Shapley(q, D, f) w

'5“(|D||[)||.5| “ D (g(su ) - a(S)).
ScDN{f} '
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Reduction from Shapley(q) to PQE(q) (1/4)

We wish to compute Shapley(q, D, f) w

S|I'(|D| -S| - 1)!
PRSI Dl 45 0 £)) - a(5)).
ScD~{f} | |
For an integer k € {0,...,|D|}, define

#Slices(q, D, k) " [{ScD||S| =k and q(S) =1}

Regroup the terms by size to obtain SHAP(q, D, f) =

“72'31 KI(|D] - k - 1)

( ##Slices(q.r, D\ {f}, k)
& D

— #Slices(q_¢, D \ {f}, k))

In other words, Shapley(q) reduces to the problem of computing

#Slices(q), so it suffices to reduce #Slices(q) to PQE(q) 1028



Reduction from Shapley(q) to PQE(q) (2/4)

We wish to compute #Slices(q, D, k) e

KScD||S|=kand q(S) =1}
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Reduction from Shapley(q) to PQE(q) (2/4)

We wish to compute #Slices(q, D, k) e

KScD||S|=kand q(S) =1}

For z € Q, we define a TID database (D,, ) as follows: D,
contains all the facts of D, and for a fact f of D we
define . Then:

Pr(q,(D,,m ) S Pr(S)
ScD; s.t. q(S)=1

n*|D|
= Z Z Pr(S)

i=0 S¢S st
|S|=i and q(S)=1
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Reduction from Shapley(q) to PQE(q) (3/4)

Pr(q, (D7, 7)) = ). > Pr(S)

i=0 ScD s.t.
|S|=i and q(S)=1
n 7z i z n—i
% 2 (@)
0 ScSst. 1+z Lz

|S|=i and q(S)=1

Sl 2

1+2z 1+2z ScS et
|S|=i and q(S)=1
1
(1+ 2y 2 ZZ #Slices(q, D, i)
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Reduction from Shapley(q) to PQE(q) (3/4)

Hence we have

(1+2)"Pr(q,(D;,72)) = izi #Slices(q, D, i).
i=0

This suffices to conclude. Indeed, we now call an oracle to PQE(q)
on n+1 databases D,,,...,D,, for n+ 1 arbitrary distinct
values zy, ..., z,, forming a system of linear equations as given by
the relation above. Since the corresponding matrix is a
Vandermonde with distinct coefficients, it is invertible, so we can
compute in polynomial time the value #Slices(q, D, k).

So Shapley(q) reduces in PTIME to PQE(q)
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Open problem

Do we have the other direction?

Open problem

For every Boolean query g, is it the case that PQE(q) reduces in
PTIME to Shapley(q)?
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Using provenance and knowledge compilation to solve

Shapley(q) (1/2)

e An approach to probabilistic query evaluation: compute the
provenance of the query g on the database D in a formalism
from knowledge compilation, and then use this representation

to compute the probability
— We can do the same for computing Shapley values
Proposition (ours)
Given as input a C

representing the provenance, we can compute in time
O(|C|-|DJ?) the value SHAP(q, D, f).
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Using provenance and knowledge compilation to solve

Shapley(q) (2/2)

Implementation, experiments on TPC-H and IMDB datasets.

The Shapley value
Shapley(q[x/f], Dy, Dy, f)

Algorithm 1 (d-DNNF C" for ELin(g[X/], Dx,Dyp) | Lemma4.6 ( d-DNNFC” (w/ extra vars)
(w/o extra vars) equivalent to ¢

Database D = Dy U Dy
Fact f € Dy

Query g(%)

Answer f

1

Input

ProvSQL [ Boolean circuit C
for Lin(g|x/1]. D)

Knowledge
compiler

Partial eval: set Tseytin

exo vars to 1 Bool. circuit €’ for ) transform [ CNF formula @
ELin(g[x/f], Dy, D) (w/ extra vars)
Proxy

formula

= Algorithm 2
The value Shapley(g, ) _
(heuristics) @ (w/ extra vars)
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Shapley values in ML: SHAP-score




This part of the talk is based on the preprint “On the Complexity of
SHAP-Score-Based Explanations: Tractability via Knowledge
Compilation and Non-Approximability Results” [Arxiv] with Marcelo
Arenas, Pablo Barcel6, and Leopoldo Bertossi

(Conference version at )
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SHAP-score for explainable Al

Let X be a set of features, e an entity (that has a value e(x) for
every feature x € X), M a model (that assigns a value to each
entity), D a probability distribution over the set of entities, and x a

feature.
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SHAP-score for explainable Al

Let X be a set of features, e an entity (that has a value e(x) for
every feature x € X), M a model (that assigns a value to each
entity), D a probability distribution over the set of entities, and x a

feature.
The SHAPp (M, e, x) is the Shapley value of x in the

following game function Ge:
Ge(S) € Eerp[M(e') | €/(y) = e(y) for all y € S]

In other words,

ISP(X] =151 -1)
IX]!

SHAPp(M,e,x) & %

ScX~{x}

(Ge(Su{x})-Ge(S))
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When is it tractable?

Question: For which kind of models/probability distributions can
we compute it efficiently?
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Question: For which kind of models/probability distributions can
we compute it efficiently?

Theorem [Lundberg et al., 2020]
The SHAP-score can be computed in polynomial time for decision
trees
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When is it tractable?

Question: For which kind of models/probability distributions can
we compute it efficiently?

Theorem [Lundberg et al., 2020]
The SHAP-score can be computed in polynomial time for decision
trees

— We generalize this result to more powerful classes of models,
from the field of

19/28



Knowledge compilation

. a field of Al that studies various

formalisms to represent Boolean functions...

— examples: truth tables, Boolean formulas in DNF/CNF,
Boolean circuits, binary decision diagrams (OBDDs), binary
decision trees, etc.
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.. and the tasks that these allow to solve efficiently

— examples: satisfiability in O(n) for truth tables or DNFs but
NP-c for CNFs, model counting in O(n) for OBDDs
but #P-hard for DNFs, etc.
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Knowledge compilation

Knowledge compilation: a field of Al that studies various

formalisms to represent Boolean functions...

— examples: truth tables, Boolean formulas in DNF/CNF,
Boolean circuits, binary decision diagrams (OBDDs), binary
decision trees, etc.

. and the tasks that these allow to solve efficiently

— examples: satisfiability in O(n) for truth tables or DNFs but
NP-c for CNFs, model counting in O(n) for OBDDs
but #P-hard for DNFs, etc.

Deterministic and decomposable Boolean circuits: the less
restricted formalism of knowledge compilation that allows tractable

model counting
20/ 28



Deterministic and decomposable Boolean circuits

(also called “ ")
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Deterministic and decomposable Boolean circuits

(also called “tractable Boolean circuits”)

e Deterministic: inputs of v-gates are
mutually exclusive

e Decomposable: inputs of A-gates
are independent (no variable has a
path to two different inputs of the
same A-gate)

— model counting or even probability evaluation can be solved in
linear time

21/28



Set X of binary features; so an entity e is a function from X
to {0,1}

e A deterministic and decomposable circuit M

An entity e and a feature x € X

e We assume that the distribution D is such that each
feature y € X has an py of being 1
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Set X of binary features; so an entity e is a function from X
to {0,1}

e A deterministic and decomposable circuit M

An entity e and a feature x € X

e We assume that the distribution D is such that each
feature y € X has an py of being 1

Main result

Given as input M, e, x and p, for every y € X, we can compute
the SHAP-score SHAPp(M, e, x) in time O(|M]-|X|?)
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Proof sketch of main result (1/3)

Recall that SHAPp (M, e, x) is defined as

ISIT(IX| =S| -
oy X

D e p[M(e) | €(y) = e(y) for all y € S U {x}]

~Ee.p[M(e') | €'(y) = e(y) for all y € S])
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Proof sketch of main result (1/3)

Recall that SHAPp (M, e, x) is defined as

> BRXEBIED g, oimee) €y) = ety) forall y e Su {x)]
ScX~{x} |X|
~Ee.p[M(e') | €'(y) = e(y) for all y € S])
Lemma

Computing SHAP-score can be reduced in polynomial time to the
following problem.

INPUT: binary features X, entity e, deterministic and
decomposable circuit M, integer k.

OUTPUT: ZS‘CX Ee.p[M(e") | €/ (y) =e(y) for all y € S]

23/28



Proof sketch of main result (2/3)

Goal: compute ¥ scx Eerop[M(e') [€'(y) =e(y) for all y € S].
IS|=k
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Proof sketch of main result (2/3)

Goal: compute ¥ scx Eerop[M(e') [€'(y) =e(y) for all y € S].
IS|=k

e Step 1: smooth the circuit. A Boolean circuit is smooth if for
every V-gate g, every input gate of g sees the same set of
variables. We can smooth M in O(|M|-|X|?)

e Step 2: for every gate g of the circuit
and £ € {0,...,|var(g)|}, define the value

al S Bep[M(€) | €(y) =e(y) forall y € S]
Scvar(g)
|S|=¢

and compute the values aé by bottom-up induction on the
circuit

24 /28



Proof sketch of main result (3/3)

Compute af € Tsc,ar(g) Ber-nlg(¢) | €(y) = e(y) for all y ¢ 5]
1S|=¢
for every gate g and integer £ € {0, ..., |var(g)|}

e g is a variable gate with variable y. Then ag = py
and aé =e(y)

e g is an OR gate with inputs g1,g>. Then aﬁ, = 0‘21 +a§2

e g is an AND gate with inputs g1, g.
¢ 0 E
Then Qg = Lt1e{0,...,var(g1)[} Vg1 * Vg

226{07“'7‘Var(g2)‘}
fl+fz=f
e g is a —-gate with input g;. Then a ('Var(g)‘) O‘gl

— We can compute all the values aﬁ, in time O(|M|- |X[?)
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Reduction from computing expectations

Computing expectations problem for a class C: Given as input a
model M e C and independent probability values on the features,
what is the expected value of M?

Reduction (folklore)

For any class C of models and under the uniform distribution,
computing expectations for C reduces to the problem of

computing SHAP-scores for C

— (One application of the efficiency axiom. Notice the

)
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Reduction from computing expectations

Computing expectations problem for a class C: Given as input a
model M e C and independent probability values on the features,
what is the expected value of M?

Reduction (folklore)

For any class C of models and under the uniform distribution,
computing expectations for C reduces to the problem of

computing SHAP-scores for C

— (One application of the efficiency axiom. Notice the
)
— Computing SHAP-score is #P-hard for CNF or DNF formulas,
for instance
e When a problem is hard, try to approximate it
e We will use the notion of Fully Polynomial-time
Randomized Approximation Scheme (FPRAS). 26 /28



FPRAS

Let X be a finite alphabet and f : ¥* — R be a problem. Then f is
said to have an FPRAS if there is a randomized

algorithm A:¥* x (0,1) = N and a polynomial p(u,v) such that,
given x € ¥* and e € (0,1), algorithm A runs in time p(|x|,/e) and
satisfies the following condition:

Pr(|f(x) - A(x,€)| < ef(x)) > §

° : model counting for DNF formulas has a
FPRAS [KLM89]
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No FPRAS for DNFs

Lemma

Computing the SHAP-score for models given as monotone DNF
formulas has no FPRAS unless NP=RP

This is in contrast to model counting (computing expectaions) for
DNFs which has a FPRAS!
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No FPRAS for DNFs

Lemma

Computing the SHAP-score for models given as monotone DNF
formulas has no FPRAS unless NP=RP

This is in contrast to model counting (computing expectaions) for
DNFs which has a FPRAS!

e (We did not identify a class of models for which computing the
SHAP-score is intractable but where it can be approximated)

Thanks for your attention!
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