Shapley Values for Databases and Machine Learning

Mikaël Monet

VALDA seminar, February 25th 2022 Slides available online at mikael-monet.net/en/talks.html

(naío-

The Shapley value

Shapley values in databases: explaining query results

Shapley values in ML: SHAP-score

The Shapley value

Notion from cooperative game theory. Let X be a set of players and $\mathcal{G}: 2^X \to \mathbb{R}$ be a function defined on subsets of X (\mathcal{G} will be called a game on X). We wish to assign to every player $p \in X$ a contribution $s_X(\mathcal{G}, p)$. Some reasonable axioms:

 Null player: A player p is null if G(S ∪ {p}) = G(S) for every S ⊆ X. For every null player we have s_X(G, p) = 0

- Null player: A player p is null if G(S ∪ {p}) = G(S) for every S ⊆ X. For every null player we have s_X(G, p) = 0
- 2. Symmetry: For every game \mathcal{G} on X and players $p_1, p_2 \in X$, if we have $\mathcal{G}(S \cup \{p_1\}) = \mathcal{G}(S \cup \{p_2\})$ for every $S \subseteq X \setminus \{p_1, p_2\}$, then $s_X(\mathcal{G}, p_1) = s_X(\mathcal{G}, p_2)$

- Null player: A player p is null if G(S ∪ {p}) = G(S) for every S ⊆ X. For every null player we have s_X(G, p) = 0
- 2. Symmetry: For every game \mathcal{G} on X and players $p_1, p_2 \in X$, if we have $\mathcal{G}(S \cup \{p_1\}) = \mathcal{G}(S \cup \{p_2\})$ for every $S \subseteq X \setminus \{p_1, p_2\}$, then $s_X(\mathcal{G}, p_1) = s_X(\mathcal{G}, p_2)$
- 3. Linearity: For every $a, b \in \mathbb{R}$, games $\mathcal{G}_1, \mathcal{G}_2$ on X and player p we have $s_X(a\mathcal{G}_1 + b\mathcal{G}_2, p) = a \cdot s_X(\mathcal{G}_1, p) + b \cdot s_X(\mathcal{G}_2, p)$

- Null player: A player p is null if G(S ∪ {p}) = G(S) for every S ⊆ X. For every null player we have s_X(G, p) = 0
- 2. Symmetry: For every game \mathcal{G} on X and players $p_1, p_2 \in X$, if we have $\mathcal{G}(S \cup \{p_1\}) = \mathcal{G}(S \cup \{p_2\})$ for every $S \subseteq X \setminus \{p_1, p_2\}$, then $s_X(\mathcal{G}, p_1) = s_X(\mathcal{G}, p_2)$
- 3. Linearity: For every $a, b \in \mathbb{R}$, games $\mathcal{G}_1, \mathcal{G}_2$ on X and player p we have $s_X(a\mathcal{G}_1 + b\mathcal{G}_2, p) = a \cdot s_X(\mathcal{G}_1, p) + b \cdot s_X(\mathcal{G}_2, p)$
- 4. Efficiency: For every game \mathcal{G} on X we have $\sum_{p \in X} s_X(\mathcal{G}, p) = \mathcal{G}(X)$

Theorem [Shapley, 1953]

There is a unique function $s_X(\cdot, \cdot)$ that satisfies all four axioms.

Shapley_X(
$$\mathcal{G}, p$$
) $\stackrel{\text{def}}{=} \sum_{S \subseteq X \setminus \{p\}} \frac{|S|!(|X| - |S| - 1)!}{|X|!} (\mathcal{G}(S \cup \{p\}) - \mathcal{G}(S))$

Shapley values in databases: explaining query results

This part of the talk is based on joint work with Daniel Deutch, Nave Frost and Benny Kimelfeld.

(Paper accepted at SIGMOD'22)

Shapley values for databases

- Framework introduced by Livshits, Bertossi, Kimelfeld, and Sebag [LBKS'20]
- Let D be a relational database, that we see as a set of *facts* of the form R(a₁,..., a_k), and q be a Boolean query that takes as input a database D and outputs q(D) ∈ {0,1}.

Shapley values for databases

- Framework introduced by Livshits, Bertossi, Kimelfeld, and Sebag [LBKS'20]
- Let D be a relational database, that we see as a set of *facts* of the form R(a₁,..., a_k), and q be a Boolean query that takes as input a database D and outputs q(D) ∈ {0,1}.
- We want to define the "contribution" of every fact f ∈ D for the (non-)satisfaction of q. We use the Shapley value where the players are the facts of D and the game maps S ⊆ D to q(S) ∈ {0,1}

Shapley
$$(q, D, f) \stackrel{\text{def}}{=}$$

$$\sum_{S \subseteq D \setminus \{f\}} \frac{|S|!(|D| - |S| - 1)!}{|D|!} (q(S \cup \{f\}) - q(S))$$

When can it be computed efficiently?

Definition: problem Shapley(q)**Input:** A database *D* and a fact $f \in D$ **Output:** The value Shapley(q, D, f) When can it be computed efficiently?

Definition: problem Shapley(q)**Input**: A database *D* and a fact $f \in D$ **Output**: The value Shapley(q, D, f)

We consider the data complexity (query q is *fixed*)

Theorem [LBKS'20]

Let q be a self-join-free conjunctive query. If q is hierarchical then Shapley(q) is PTIME, otherwise it is $FP^{\#P}$ -hard

Theorem [LBKS'20]

Let q be a self-join-free conjunctive query. If q is hierarchical then Shapley(q) is PTIME, otherwise it is $FP^{\#P}$ -hard

This is the same dichotomy as for probabilistic query evaluation... Is there a more general connection?

Theorem [LBKS'20]

Let q be a self-join-free conjunctive query. If q is hierarchical then Shapley(q) is PTIME, otherwise it is $FP^{\#P}$ -hard

This is the same dichotomy as for probabilistic query evaluation... Is there a more general connection?

Answer: yes, we show that Shapley(q) reduces to probabilistic query evaluation, for every Boolean query q

	WorksAt		π
	Bob	Inria	0.9
<i>D</i> =	Alice	CNRS	0.5
	John	ENS	0.7
	Mary	Inria	0.2

 $\Pr(D') = (1 - 0.9) \times 0.5 \times (1 - 0.7) \times 0.2$

	WorksAt		π
	Bob	Inria	0.9
D =	Alice	CNRS	0.5
	John	ENS	0.7
	Mary	Inria	0.2

 $q = \ll$ there are two people who work at the same institution »

	WorksAt		π
	Bob	Inria	0.9
D =	Alice	CNRS	0.5
	John	ENS	0.7
	Mary	Inria	0.2

 $q = \ll$ there are two people who work at the same institution »

$$\Pr((D,\pi) \vDash q) = \sum_{\substack{D' \subseteq D \\ D' \vDash q}} \Pr(D')$$

Definition: problem PQE(q)

Input: A tuple-independent database (D, π) **Output**: The probability $Pr((D, \pi) \models q)$ that (D, π) satisfies q

Definition: problem PQE(q)

Input: A tuple-independent database (D, π) **Output**: The probability $Pr((D, \pi) \models q)$ that (D, π) satisfies q

Theorem (ours)

For every Boolean query q, Shapley(q) reduces in PTIME to PQE(q)

→ In particular, this implies that Shapley(q) is PTIME whenever PQE(q) is PTIME (and we know a lot about this)

Next: proof of this result

Reduction from Shapley(q) to PQE(q) (1/4)

We wish to compute Shapley $(q, D, f) \stackrel{\text{def}}{=}$ $\sum_{S \subseteq D \setminus \{f\}} \frac{|S|!(|D| - |S| - 1)!}{|D|!} (q(S \cup \{f\}) - q(S)).$

Reduction from Shapley(q) to PQE(q) (1/4)

We wish to compute Shapley $(q, D, f) \stackrel{\text{def}}{=}$ $\sum_{S \subseteq D \setminus \{f\}} \frac{|S|!(|D| - |S| - 1)!}{|D|!} (q(S \cup \{f\}) - q(S)).$

For an integer $k \in \{0, \ldots, |D|\}$, define

 $\#\text{Slices}(q, D, k) \stackrel{\text{def}}{=} |\{S \subseteq D \mid |S| = k \text{ and } q(S) = 1\}|$

Reduction from Shapley(q) to PQE(q) (1/4)

We wish to compute Shapley
$$(q, D, f) \stackrel{\text{def}}{=}$$

$$\sum_{S \subseteq D \setminus \{f\}} \frac{|S|!(|D| - |S| - 1)!}{|D|!} (q(S \cup \{f\}) - q(S)).$$

For an integer $k \in \{0, \ldots, |D|\}$, define

$$\#\text{Slices}(q, D, k) \stackrel{\text{def}}{=} |\{S \subseteq D \mid |S| = k \text{ and } q(S) = 1\}|$$

Regroup the terms by size to obtain SHAP(q, D, f) =

$$\begin{split} \sum_{k=0}^{|D|-1} \frac{k!(|D|-k-1)}{|D|} \bigg(\ \# \mathrm{Slices}(q_{+f}, D\smallsetminus\{f\}, k) \\ &-\# \mathrm{Slices}(q_{-f}, D\smallsetminus\{f\}, k) \bigg) \end{split}$$

In other words, Shapley(q) reduces to the problem of computing #Slices(q), so it suffices to reduce #Slices(q) to PQE(q)

Reduction from Shapley(q) to PQE(q) (2/4)

We wish to compute #Slices $(q, D, k) \stackrel{\text{def}}{=}$

$$|\{S \subseteq D \mid |S| = k \text{ and } q(S) = 1\}|$$

Reduction from Shapley(q) to PQE(q) (2/4)

We wish to compute #Slices $(q, D, k) \stackrel{\text{def}}{=}$

$$|\{S \subseteq D \mid |S| = k \text{ and } q(S) = 1\}|$$

For $z \in \mathbb{Q}$, we define a TID database (D_z, π_z) as follows: D_z contains all the facts of D, and for a fact f of D we define $\pi_z(f) \stackrel{\text{def}}{=} \frac{z}{1+z}$.

Reduction from Shapley(q) to PQE(q) (2/4)

We wish to compute #Slices $(q, D, k) \stackrel{\text{def}}{=}$

$$|\{S \subseteq D \mid |S| = k \text{ and } q(S) = 1\}|$$

For $z \in \mathbb{Q}$, we define a TID database (D_z, π_z) as follows: D_z contains all the facts of D, and for a fact f of D we define $\pi_z(f) \stackrel{\text{def}}{=} \frac{z}{1+z}$. Then:

$$\Pr(q, (D_z, \pi_z)) \stackrel{\text{def}}{=} \sum_{S \subseteq D_z \text{ s.t. } q(S)=1} \Pr(S)$$
$$= \sum_{i=0}^{n \stackrel{\text{def}}{=} |D|} \sum_{\substack{S \subseteq S \text{ s.t.} \\ |S|=i \text{ and } q(S)=1}} \Pr(S)$$

Reduction from Shapley(q) to PQE(q) (3/4)

$$\Pr(q, (D_z, \pi_z)) = \sum_{i=0}^{n} \sum_{\substack{S \subseteq D \text{ s.t.} \\ |S|=i \text{ and } q(S)=1}} \Pr(S)$$

= $\sum_{i=0}^{n} \sum_{\substack{S \subseteq S \text{ s.t.} \\ |S|=i \text{ and } q(S)=1}} \left(\frac{z}{1+z}\right)^{i} \left(1 - \frac{z}{1+z}\right)^{n-i}$
= $\sum_{i=0}^{n} \left(\frac{z}{1+z}\right)^{i} \left(\frac{1}{1+z}\right)^{n-i} \sum_{\substack{S \subseteq S \text{ s.t.} \\ |S|=i \text{ and } q(S)=1}} 1$
= $\frac{1}{(1+z)^n} \sum_{i=0}^{n} z^i \# \text{Slices}(q, D, i)$

Hence we have

$$(1+z)^n \operatorname{Pr}(q, (D_z, \pi_z)) = \sum_{i=0}^n z^i \# \operatorname{Slices}(q, D, i).$$

This suffices to conclude. Indeed, we now call an oracle to PQE(q)on n + 1 databases D_{z_0}, \ldots, D_{z_n} for n + 1 arbitrary distinct values z_0, \ldots, z_n , forming a system of linear equations as given by the relation above. Since the corresponding matrix is a Vandermonde with distinct coefficients, it is invertible, so we can compute in polynomial time the value #Slices(q, D, k).

So Shapley(q) reduces in PTIME to PQE(q)

Do we have the other direction? We don't know

Open problem

For every Boolean query q, is it the case that PQE(q) reduces in PTIME to Shapley(q)?

Using provenance and knowledge compilation to solve Shapley(q) (1/2)

- An approach to probabilistic query evaluation: compute the provenance of the query *q* on the database *D* in a formalism from knowledge compilation, and then use this representation to compute the probability
- $\rightarrow\,$ We can do the same for computing Shapley values

Proposition (ours)

Given as input a deterministic and decomposable circuit C representing the provenance, we can compute in time $O(|C| \cdot |D|^2)$ the value SHAP(q, D, f).

Using provenance and knowledge compilation to solve Shapley(q) (2/2)

Implementation, experiments on TPC-H and IMDB datasets.

Shapley values in ML: SHAP-score

This part of the talk is based on the preprint "On the Complexity of SHAP-Score-Based Explanations: Tractability via Knowledge Compilation and Non-Approximability Results" [Arxiv] with Marcelo Arenas, Pablo Barceló, and Leopoldo Bertossi (Conference version at AAAI'21)

Let X be a set of features, e an entity (that has a value e(x) for every feature $x \in X$), M a model (that assigns a value to each entity), \mathcal{D} a probability distribution over the set of entities, and x a feature. Let X be a set of features, e an entity (that has a value e(x) for every feature $x \in X$), M a model (that assigns a value to each entity), \mathcal{D} a probability distribution over the set of entities, and x a feature.

The SHAP score SHAP_D(M, e, x) is the Shapley value of x in the following game function G_e :

$$\mathcal{G}_{\mathsf{e}}(S) \stackrel{\text{def}}{=} \mathbb{E}_{\mathsf{e}' \sim \mathcal{D}}[M(\mathsf{e}') \,|\, \mathsf{e}'(y) = \mathsf{e}(y) \text{ for all } y \in S]$$

Let X be a set of features, e an entity (that has a value e(x) for every feature $x \in X$), M a model (that assigns a value to each entity), \mathcal{D} a probability distribution over the set of entities, and x a feature.

The SHAP score SHAP_D(M, e, x) is the Shapley value of x in the following game function G_e :

$$\mathcal{G}_{\mathsf{e}}(S) \stackrel{\mathrm{def}}{=} \mathbb{E}_{\mathsf{e}' \sim \mathcal{D}}[M(\mathsf{e}') \,|\, \mathsf{e}'(y) = \mathsf{e}(y) \text{ for all } y \in S]$$

In other words,

$$\mathsf{SHAP}_{\mathcal{D}}(M, \mathsf{e}, x) \stackrel{\text{def}}{=} \sum_{S \subseteq X \setminus \{x\}} \frac{|S|!(|X| - |S| - 1)!}{|X|!} (\mathcal{G}_{\mathsf{e}}(S \cup \{x\}) - \mathcal{G}_{\mathsf{e}}(S))$$

Question: For which kind of models/probability distributions can we compute it efficiently?

Question: For which kind of models/probability distributions can we compute it efficiently?

Theorem [Lundberg et al., 2020]

The SHAP-score can be computed in polynomial time for decision trees

Question: For which kind of models/probability distributions can we compute it efficiently?

Theorem [Lundberg et al., 2020] The SHAP-score can be computed in polynomial time for decision trees

 \rightarrow We generalize this result to more powerful classes of models, from the field of knowledge compilation

Knowledge compilation

Knowledge compilation: a field of AI that studies various formalisms to represent Boolean functions...

→ examples: truth tables, Boolean formulas in DNF/CNF, Boolean circuits, binary decision diagrams (OBDDs), binary decision trees, etc. Knowledge compilation: a field of AI that studies various formalisms to represent Boolean functions...

- → examples: truth tables, Boolean formulas in DNF/CNF, Boolean circuits, binary decision diagrams (OBDDs), binary decision trees, etc.
- ... and the tasks that these allow to solve efficiently
 - → examples: satisfiability in O(n) for truth tables or DNFs but NP-c for CNFs, model counting in O(n) for OBDDs but #P-hard for DNFs, etc.

Knowledge compilation: a field of AI that studies various formalisms to represent Boolean functions...

- → examples: truth tables, Boolean formulas in DNF/CNF, Boolean circuits, binary decision diagrams (OBDDs), binary decision trees, etc.
- ... and the tasks that these allow to solve efficiently
 - → examples: satisfiability in O(n) for truth tables or DNFs but NP-c for CNFs, model counting in O(n) for OBDDs but #P-hard for DNFs, etc.

Deterministic and decomposable Boolean circuits: the less restricted formalism of knowledge compilation that allows tractable model counting

• Deterministic: inputs of v-gates are mutually exclusive

- Deterministic: inputs of v-gates are mutually exclusive
- Decomposable: inputs of ^-gates are independent (no variable has a path to two different inputs of the same ^-gate)

- Deterministic: inputs of v-gates are mutually exclusive
- Decomposable: inputs of ^-gates are independent (no variable has a path to two different inputs of the same ^-gate)
- $\rightarrow\,$ model counting or even probability evaluation can be solved in linear time

Results

- Set X of binary features; so an entity e is a function from X to {0,1}
- A deterministic and decomposable circuit M
- An entity e and a feature $x \in X$
- We assume that the distribution D is such that each feature y ∈ X has an independent probability p_y of being 1

Results

- Set X of binary features; so an entity e is a function from X to {0,1}
- A deterministic and decomposable circuit M
- An entity e and a feature $x \in X$
- We assume that the distribution D is such that each feature y ∈ X has an independent probability py of being 1

Main result

Given as input M, e, x and p_y for every $y \in X$, we can compute the SHAP-score SHAP_D(M, e, x) in time $O(|M| \cdot |X|^2)$ Recall that $SHAP_{\mathcal{D}}(M, e, x)$ is defined as

$$\sum_{S \subseteq X \setminus \{x\}} \frac{|S|!(|X| - |S| - 1)!}{|X|!} (\mathbb{E}_{e' \sim \mathcal{D}}[M(e') \mid e'(y) = e(y) \text{ for all } y \in S \cup \{x\}]$$
$$- \mathbb{E}_{e' \sim \mathcal{D}}[M(e') \mid e'(y) = e(y) \text{ for all } y \in S])$$

Recall that $SHAP_{\mathcal{D}}(M, e, x)$ is defined as

$$\sum_{S \subseteq X \setminus \{x\}} \frac{|S|!(|X| - |S| - 1)!}{|X|!} (\mathbb{E}_{e' \sim \mathcal{D}}[M(e') \mid e'(y) = e(y) \text{ for all } y \in S \cup \{x\}]$$
$$- \mathbb{E}_{e' \sim \mathcal{D}}[M(e') \mid e'(y) = e(y) \text{ for all } y \in S])$$

Lemma

Computing SHAP-score can be reduced in polynomial time to the following problem.

INPUT: binary features X, entity e, deterministic and

decomposable circuit *M*, integer *k*.

OUTPUT:
$$\sum_{\substack{S \subseteq X \\ |S|=k}} \mathbb{E}_{e' \sim \mathcal{D}}[M(e') \mid e'(y) = e(y) \text{ for all } y \in S]$$

Goal: compute
$$\sum_{\substack{S \subseteq X \\ |S|=k}} \mathbb{E}_{e' \sim \mathcal{D}}[M(e') | e'(y) = e(y) \text{ for all } y \in S].$$

Goal: compute $\sum_{\substack{S \subseteq X \\ |S|=k}} \mathbb{E}_{e' \sim \mathcal{D}}[M(e') | e'(y) = e(y) \text{ for all } y \in S].$

 Step 1: smooth the circuit. A Boolean circuit is smooth if for every ∨-gate g, every input gate of g sees the same set of variables. We can smooth M in O(|M| · |X|²)

Goal: compute
$$\sum_{\substack{S \subseteq X \\ |S|=k}} \mathbb{E}_{e' \sim \mathcal{D}}[M(e') | e'(y) = e(y) \text{ for all } y \in S].$$

- Step 1: smooth the circuit. A Boolean circuit is smooth if for every ∨-gate g, every input gate of g sees the same set of variables. We can smooth M in O(|M| · |X|²)
- Step 2: for every gate g of the circuit and ℓ ∈ {0,..., |var(g)|}, define the value

$$\alpha_g^{\ell} \stackrel{\text{def}}{=} \sum_{\substack{S \subseteq \text{var}(g) \\ |S|=\ell}} \mathbb{E}_{e' \sim \mathcal{D}}[M_g(e') \mid e'(y) = e(y) \text{ for all } y \in S]$$

Goal: compute
$$\sum_{\substack{S \subseteq X \\ |S|=k}} \mathbb{E}_{e' \sim \mathcal{D}}[M(e') | e'(y) = e(y) \text{ for all } y \in S].$$

- Step 1: smooth the circuit. A Boolean circuit is smooth if for every ∨-gate g, every input gate of g sees the same set of variables. We can smooth M in O(|M| · |X|²)
- Step 2: for every gate g of the circuit and ℓ ∈ {0,..., |var(g)|}, define the value

$$\alpha_g^{\ell} \stackrel{\text{def}}{=} \sum_{\substack{S \subseteq \text{var}(g) \\ |S|=\ell}} \mathbb{E}_{e' \sim \mathcal{D}}[M_g(e') \mid e'(y) = e(y) \text{ for all } y \in S]$$

and compute the values α_g^ℓ by bottom-up induction on the circuit

Compute $\alpha_g^{\ell} \stackrel{\text{def}}{=} \sum_{\substack{S \subseteq \text{var}(g) \\ |S| = \ell}} \mathbb{E}_{e' \sim \mathcal{D}}[g(e') | e'(y) = e(y) \text{ for all } y \in S]$ for every gate g and integer $\ell \in \{0, \dots, |\text{var}(g)|\}$

- g is a variable gate with variable y. Then $\alpha_g^0 = p_y$ and $\alpha_g^1 = e(y)$
- g is an OR gate with inputs g_1, g_2 . Then $\alpha_g^\ell = \alpha_{g_1}^\ell + \alpha_{g_2}^\ell$
- g is an AND gate with inputs g_1, g_2 . Then $\alpha_g^{\ell} = \sum_{\substack{\ell_1 \in \{0, \dots, | var(g_1)| \\ \ell_2 \in \{0, \dots, | var(g_2)| \} \\ \ell_1 + \ell_2 = \ell}} \alpha_{g_1}^{\ell_1} \cdot \alpha_{g_2}^{\ell_2}$

• g is a ¬-gate with input g_1 . Then $\alpha_g^{\ell} = \binom{|\mathsf{var}(g)|}{\ell} - \alpha_{g_1}^{\ell}$

 \rightarrow We can compute all the values α_g^ℓ in time $O(|M|\cdot|X|^2)$

Reduction from computing expectations

Computing expectations problem for a class C: Given as input a model $M \in C$ and independent probability values on the features, what is the expected value of M?

Reduction (folklore)

For any class ${\mathcal C}$ of models and under the uniform distribution, computing expectations for ${\mathcal C}$ reduces to the problem of computing SHAP-scores for ${\mathcal C}$

→ (One application of the efficiency axiom. Notice the difference with the open problem on Shapley(q))

Reduction from computing expectations

Computing expectations problem for a class C: Given as input a model $M \in C$ and independent probability values on the features, what is the expected value of M?

Reduction (folklore)

For any class ${\mathcal C}$ of models and under the uniform distribution, computing expectations for ${\mathcal C}$ reduces to the problem of computing SHAP-scores for ${\mathcal C}$

- → (One application of the efficiency axiom. Notice the difference with the open problem on Shapley(q))
- ⇒ Computing SHAP-score is #P-hard for CNF or DNF formulas, for instance

Reduction from computing expectations

Computing expectations problem for a class C: Given as input a model $M \in C$ and independent probability values on the features, what is the expected value of M?

Reduction (folklore)

For any class ${\cal C}$ of models and under the uniform distribution, computing expectations for ${\cal C}$ reduces to the problem of computing SHAP-scores for ${\cal C}$

- → (One application of the efficiency axiom. Notice the difference with the open problem on Shapley(q))
- ⇒ Computing SHAP-score is #P-hard for CNF or DNF formulas, for instance
 - When a problem is hard, try to approximate it
 - We will use the notion of Fully Polynomial-time Randomized Approximation Scheme (FPRAS).

Let Σ be a finite alphabet and $f: \Sigma^* \to \mathbb{R}$ be a problem. Then f is said to have an FPRAS if there is a randomized algorithm $\mathcal{A}: \Sigma^* \times (0,1) \to \mathbb{N}$ and a polynomial p(u,v) such that, given $x \in \Sigma^*$ and $\epsilon \in (0,1)$, algorithm \mathcal{A} runs in time $p(|x|, 1/\epsilon)$ and satisfies the following condition:

$$\Pr\left(|f(x) - \mathcal{A}(x,\epsilon)| \le \epsilon f(x)\right) \ge \frac{3}{4}.$$

• Example: model counting for DNF formulas has a FPRAS [KLM89]

Lemma

Computing the SHAP-score for models given as monotone DNF formulas has no FPRAS unless NP=RP $\ensuremath{\mathsf{NP}}$

This is in contrast to model counting (computing expectaions) for DNFs which has a FPRAS!

Lemma

Computing the SHAP-score for models given as monotone DNF formulas has no FPRAS unless NP=RP

This is in contrast to model counting (computing expectaions) for DNFs which has a FPRAS!

• (We did not identify a class of models for which computing the SHAP-score is intractable but where it can be approximated)

Thanks for your attention!

- Marcelo Arenas, Pablo Barceló, Leopoldo E. Bertossi, and Mikaël Monet.
 On the complexity of shap-score-based explanations: Tractability via knowledge compilation and non-approximability results.
- Richard M Karp, Michael Luby, and Neal Madras. Monte-carlo approximation algorithms for enumeration problems.

Journal of algorithms, 10(3):429-448, 1989.

Bibliography ii

Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag.

The shapley value of tuples in query answering. In *ICDT*, volume 155, pages 20:1–20:19. Schloss Dagstuhl, 2020.

 Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee.
From local explanations to global understanding with explainable ai for trees.

Nature machine intelligence, 2(1):2522–5839, 2020.

Lloyd S Shapley.

A value for n-person games.

Contributions to the Theory of Games, 2(28):307-317, 1953.