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The Shapley value



Cooperative games

Notion from cooperative game theory. Let X be a set of players
and G ∶ 2X → R be a function defined on subsets of X (G will be
called a game on X ). We wish to assign to every player p ∈ X a
contribution sX (G,p). Some reasonable axioms:

1. Null player: A player p is null if G(S ∪ {p}) = G(S) for
every S ⊆ X . For every null player we have sX (G,p) = 0

2. Symmetry: For every game G on X and players p1,p2 ∈ X , if
we have G(S ∪ {p1}) = G(S ∪ {p2}) for every S ⊆ X ∖ {p1,p2},
then sX (G,p1) = sX (G,p2)

3. Linearity: For every a,b ∈ R, games G1,G2 on X and player p
we have sX (aG1 + bG2,p) = a ⋅ sX (G1,p) + b ⋅ sX (G2,p)

4. Efficiency: For every game G on X we
have ∑p∈X sX (G,p) = G(X )
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The Shapley value

Theorem [Shapley, 1953]

There is a unique function sX (⋅, ⋅) that satisfies all four axioms.

ShapleyX (G,p)
def= ∑

S⊆X∖{p}

∣S ∣!(∣X ∣ − ∣S ∣ − 1)!
∣X ∣! (G(S ∪ {p}) − G(S))
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Shapley values in databases:
explaining query results



My co-authors

This part of the talk is based on joint work with Daniel Deutch,
Nave Frost and Benny Kimelfeld.

(Paper accepted at SIGMOD’22)
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Shapley values for databases

• Framework introduced by Livshits, Bertossi, Kimelfeld, and
Sebag [LBKS’20]

• Let D be a relational database, that we see as a set of facts of
the form R(a1, ..., ak), and q be a Boolean query that takes as
input a database D and outputs q(D) ∈ {0,1}.

• We want to define the “contribution” of every fact f ∈ D for
the (non-)satisfaction of q. We use the Shapley value where
the players are the facts of D and the game maps S ⊆ D to
q(S) ∈ {0,1}

Shapley(q,D, f ) def=

∑
S⊆D∖{f }

∣S ∣!(∣D ∣ − ∣S ∣ − 1)!
∣D ∣!

(q(S ∪ {f }) − q(S))
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Complexity?

When can it be computed efficiently?

Definition: problem Shapley(q)
Input: A database D and a fact f ∈ D
Output: The value Shapley(q,D, f )

We consider the data complexity (query q is fixed)

Theorem [LBKS’20]
Let q be a self-join–free conjunctive query. If q is hierarchical
then Shapley(q) is PTIME, otherwise it is FP#P-hard
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Link to probabilistic databases?

Theorem [LBKS’20]
Let q be a self-join–free conjunctive query. If q is hierarchical
then Shapley(q) is PTIME, otherwise it is FP#P-hard

This is the same dichotomy as for probabilistic query evaluation...
Is there a more general connection?

Answer: yes, we show that Shapley(q) reduces to probabilistic
query evaluation, for every Boolean query q
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Probabilistic databases

Tuple-independent probabilistic database (TID)

Pr(D ′) = (1 − 0.9) × 0.5 × (1 − 0.7) × 0.2

q = « there are two people who
work at the same institution »
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PQE(q) and Shapley(q)

Definition: problem PQE(q)
Input: A tuple-independent database (D, π)
Output: The probability Pr((D, π) ⊧ q) that (D, π) satisfies q

Theorem (ours)

For every Boolean query q, Shapley(q) reduces in PTIME to
PQE(q)

→ In particular, this implies that Shapley(q) is PTIME
whenever PQE(q) is PTIME (and we know a lot about this)

Next: proof of this result
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Reduction from Shapley(q) to PQE(q) (1/4)

We wish to compute Shapley(q,D, f ) def=

∑
S⊆D∖{f }

∣S ∣!(∣D ∣ − ∣S ∣ − 1)!
∣D ∣!

(q(S ∪ {f }) − q(S)).

For an integer k ∈ {0, . . . , ∣D ∣}, define

#Slices(q,D, k) def= ∣{S ⊆ D ∣ ∣S ∣ = k and q(S) = 1}∣

Regroup the terms by size to obtain SHAP(q,D, f ) =

∣D ∣−1
∑
k=0

k!(∣D ∣ − k − 1)
∣D ∣ ( #Slices(q+f ,D ∖ {f }, k)

−#Slices(q−f ,D ∖ {f }, k))

In other words, Shapley(q) reduces to the problem of computing
#Slices(q), so it suffices to reduce #Slices(q) to PQE(q)
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Reduction from Shapley(q) to PQE(q) (2/4)

We wish to compute #Slices(q,D, k) def=

∣{S ⊆ D ∣ ∣S ∣ = k and q(S) = 1}∣

For z ∈ Q, we define a TID database (Dz , πz) as follows: Dz

contains all the facts of D, and for a fact f of D we
define πz(f ) def= z

1+z . Then:

Pr(q, (Dz , πz)) def= ∑
S⊆Dz s.t. q(S)=1

Pr(S)

=
n
def= ∣D ∣
∑
i=0

∑
S⊆S s.t.

∣S ∣=i and q(S)=1

Pr(S)
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Reduction from Shapley(q) to PQE(q) (3/4)

Pr(q, (Dz , πz)) =
n

∑
i=0

∑
S⊆D s.t.

∣S ∣=i and q(S)=1

Pr(S)

=
n

∑
i=0

∑
S⊆S s.t.

∣S ∣=i and q(S)=1

( z

1 + z
)
i

(1 − z

1 + z
)
n−i

=
n

∑
i=0
( z

1 + z
)
i

( 1
1 + z

)
n−i

∑
S⊆S s.t.

∣S ∣=i and q(S)=1

1

= 1
(1 + z)n

n

∑
i=0

z i#Slices(q,D, i)
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Reduction from Shapley(q) to PQE(q) (3/4)

Hence we have

(1 + z)n Pr(q, (Dz , πz)) =
n

∑
i=0

z i #Slices(q,D, i).

This suffices to conclude. Indeed, we now call an oracle to PQE(q)
on n + 1 databases Dz0 , . . . ,Dzn for n + 1 arbitrary distinct
values z0, . . . , zn, forming a system of linear equations as given by
the relation above. Since the corresponding matrix is a
Vandermonde with distinct coefficients, it is invertible, so we can
compute in polynomial time the value #Slices(q,D, k).

So Shapley(q) reduces in PTIME to PQE(q)
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Open problem

Do we have the other direction? We don’t know

Open problem

For every Boolean query q, is it the case that PQE(q) reduces in
PTIME to Shapley(q)?

14 / 28



Using provenance and knowledge compilation to solve
Shapley(q) (1/2)

• An approach to probabilistic query evaluation: compute the
provenance of the query q on the database D in a formalism
from knowledge compilation, and then use this representation
to compute the probability

→ We can do the same for computing Shapley values

Proposition (ours)
Given as input a deterministic and decomposable circuit C
representing the provenance, we can compute in time
O(∣C ∣ ⋅ ∣D ∣2) the value SHAP(q,D, f ).
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Using provenance and knowledge compilation to solve
Shapley(q) (2/2)

Implementation, experiments on TPC-H and IMDB datasets.

16 / 28



Shapley values in ML: SHAP-score



My co-authors

This part of the talk is based on the preprint “On the Complexity of
SHAP-Score-Based Explanations: Tractability via Knowledge
Compilation and Non-Approximability Results” [Arxiv] with Marcelo
Arenas, Pablo Barceló, and Leopoldo Bertossi
(Conference version at AAAI’21)
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SHAP-score for explainable AI

Let X be a set of features, e an entity (that has a value e(x) for
every feature x ∈ X ), M a model (that assigns a value to each
entity), D a probability distribution over the set of entities, and x a
feature.

The SHAP score SHAPD(M, e, x) is the Shapley value of x in the
following game function Ge:

Ge(S) def= Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S]

In other words,

SHAPD(M, e, x) def= ∑
S⊆X∖{x}

∣S ∣!(∣X ∣ − ∣S ∣ − 1)!
∣X ∣! (Ge(S∪{x})−Ge(S))
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When is it tractable?

Question: For which kind of models/probability distributions can
we compute it efficiently?

Theorem [Lundberg et al., 2020]
The SHAP-score can be computed in polynomial time for decision
trees

→ We generalize this result to more powerful classes of models,
from the field of knowledge compilation
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Knowledge compilation

Knowledge compilation: a field of AI that studies various
formalisms to represent Boolean functions...

→ examples: truth tables, Boolean formulas in DNF/CNF,
Boolean circuits, binary decision diagrams (OBDDs), binary
decision trees, etc.

... and the tasks that these allow to solve efficiently

→ examples: satisfiability in O(n) for truth tables or DNFs but
NP-c for CNFs, model counting in O(n) for OBDDs
but #P-hard for DNFs, etc.

Deterministic and decomposable Boolean circuits: the less
restricted formalism of knowledge compilation that allows tractable
model counting

20 / 28
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Deterministic and decomposable Boolean circuits

(also called “tractable Boolean circuits”)

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

• Deterministic: inputs of ∨-gates are
mutually exclusive

• Decomposable: inputs of ∧-gates
are independent (no variable has a
path to two different inputs of the
same ∧-gate)

→ model counting or even probability evaluation can be solved in
linear time
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Results

• Set X of binary features; so an entity e is a function from X

to {0,1}
• A deterministic and decomposable circuit M

• An entity e and a feature x ∈ X
• We assume that the distribution D is such that each

feature y ∈ X has an independent probability py of being 1

Main result
Given as input M, e, x and py for every y ∈ X , we can compute
the SHAP-score SHAPD(M, e, x) in time O(∣M ∣ ⋅ ∣X ∣2)
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Proof sketch of main result (1/3)

Recall that SHAPD(M, e, x) is defined as

∑
S⊆X∖{x}

∣S ∣!(∣X ∣ − ∣S ∣ − 1)!
∣X ∣! (Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S ∪ {x}]

−Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S])

Lemma
Computing SHAP-score can be reduced in polynomial time to the
following problem.
INPUT: binary features X , entity e, deterministic and
decomposable circuit M, integer k .
OUTPUT: ∑S⊆X

∣S ∣=k
Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S]
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Proof sketch of main result (2/3)

Goal: compute ∑S⊆X
∣S ∣=k

Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S].

• Step 1: smooth the circuit. A Boolean circuit is smooth if for
every ∨-gate g , every input gate of g sees the same set of
variables. We can smooth M in O(∣M ∣ ⋅ ∣X ∣2)

• Step 2: for every gate g of the circuit
and ℓ ∈ {0, . . . , ∣var(g)∣}, define the value

αℓ
g

def= ∑
S⊆var(g)
∣S ∣=ℓ

Ee′∼D[Mg(e′) ∣ e′(y) = e(y) for all y ∈ S]

and compute the values αℓ
g by bottom-up induction on the

circuit
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Proof sketch of main result (3/3)

Compute αℓ
g

def= ∑S⊆var(g)
∣S ∣=ℓ

Ee′∼D[g(e′) ∣ e′(y) = e(y) for all y ∈ S]

for every gate g and integer ℓ ∈ {0, . . . , ∣var(g)∣}

• g is a variable gate with variable y . Then α0
g = py

and α1
g = e(y)

• g is an OR gate with inputs g1,g2. Then αℓ
g = αℓ

g1
+ αℓ

g2

• g is an AND gate with inputs g1,g2.
Then αℓ

g = ∑ℓ1∈{0,...,∣var(g1)∣}
ℓ2∈{0,...,∣var(g2)∣}

ℓ1+ℓ2=ℓ

αℓ1
g1
⋅ αℓ2

g2

• g is a ¬-gate with input g1. Then αℓ
g = (∣var(g)∣ℓ

) − αℓ
g1

→ We can compute all the values αℓ
g in time O(∣M ∣ ⋅ ∣X ∣2)
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Reduction from computing expectations

Computing expectations problem for a class C: Given as input a
model M ∈ C and independent probability values on the features,
what is the expected value of M?

Reduction (folklore)
For any class C of models and under the uniform distribution,
computing expectations for C reduces to the problem of
computing SHAP-scores for C

→ (One application of the efficiency axiom. Notice the difference
with the open problem on Shapley(q))

Ô⇒ Computing SHAP-score is #P-hard for CNF or DNF formulas,
for instance

• When a problem is hard, try to approximate it
• We will use the notion of Fully Polynomial-time

Randomized Approximation Scheme (FPRAS).
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FPRAS

Let Σ be a finite alphabet and f ∶ Σ∗ → R be a problem. Then f is
said to have an FPRAS if there is a randomized
algorithm A ∶ Σ∗ × (0,1)→ N and a polynomial p(u, v) such that,
given x ∈ Σ∗ and ϵ ∈ (0,1), algorithm A runs in time p(∣x ∣, 1/ϵ) and
satisfies the following condition:

Pr (∣f (x) −A(x , ϵ)∣ ≤ ϵf (x)) ≥ 3
4
.

• Example: model counting for DNF formulas has a
FPRAS [KLM89]
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No FPRAS for DNFs

Lemma
Computing the SHAP-score for models given as monotone DNF
formulas has no FPRAS unless NP=RP

This is in contrast to model counting (computing expectaions) for
DNFs which has a FPRAS!

• (We did not identify a class of models for which computing the
SHAP-score is intractable but where it can be approximated)

Thanks for your attention!
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