The Intensional-Extensional Problem in Probabilistic Databases

Mikaël Monet

October 16th, 2023 Probabilistic Circuits and Logic workshop

Outline

1. Recap from Dan Suciu's talk

Tuple-independent probabilistic databases

Provenance and knowledge compilation

The Intensional-Extensional problem

- 2. Solving the problem for a specific class of UCQs
- 3. The non-cancelling intersections conjecture

Recap from Dan Suciu's talk

• Probabilistic databases: to represent data uncertainty

 \rightarrow simplest formalism: tuple-independent database

	Likes		р
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

• Probabilistic databases: to represent data uncertainty

ightarrow simplest formalism: tuple-independent database

	Lik	ces	р
			0.5
D' =	Alice	John	1
			0.2
	John	Bob	0.7

• Probabilistic databases: to represent data uncertainty

 $\rightarrow \ \mathsf{simplest} \ \mathsf{formalism:} \ \mathsf{tuple-independent} \ \mathsf{database}$

	Lik	es	p
			0.5
D' =	Alice	John	1
			0.2
	John	Bob	0.7

$$Pr(D') = (1 - 0.5) \times 1 \times (1 - 0.2) \times 0.7$$

• Probabilistic databases: to represent data uncertainty

 \rightarrow simplest formalism: tuple-independent database

	Lik	es	p
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

q = "there are two people who like the same person" $\exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$

• Probabilistic databases: to represent data uncertainty

ightarrow simplest formalism: tuple-independent database

D = Alice Bob 0.5 Alice John 1		Lik	es	p
D = Alice John 1		Alice	Bob	0.5
	D =	Alice	John	1
Bob Bob 0.2		Bob	Bob	0.2
John Bob 0.7		John	Bob	0.7

q = "there are two people who like the same person" $\exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$

$$\Pr(D \models q) = \sum_{\substack{D' \subseteq D \\ D' \models q}} \Pr(D')$$

• Probabilistic databases: to represent data uncertainty

ightarrow simplest formalism: tuple-independent database

	Lik	kes	p
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

q = "there are two people who like the same person" $\exists x \ v \ z : I(x \ z) \land I(v \ z) \land x \neq 0$

$$\exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$$

$$\Pr(D \models q) = \sum_{\substack{D' \subseteq D \\ D' \models q}} \Pr(D')$$
 (not efficient)

• Probabilistic databases: to represent data uncertainty

ightarrow simplest formalism: tuple-independent database

	Lik	es	p
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

q = "there are two people who like the same person" $\exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$

$$\exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$$

$$Pr(D \models q) = 1 - \left[(1 - 0.5)(1 - 0.2)(1 - 0.7) + 0.5(1 - 0.2)(1 - 0.7) + (1 - 0.5)0.2(1 - 0.7) + (1 - 0.5)(1 - 0.2)0.7 \right]$$

Definition: problem PQE(q), for q a Boolean query

Input: a tuple-independent probabilistic database D

Definition: problem PQE(q), for q a Boolean query

Input: a tuple-independent probabilistic database *D*

- Dalvi and Suciu [JACM'12] have shown a dichotomy on the (data) complexity of PQE(q) for unions of conjunctive queries:
 - either $PQE(q) \in \underline{PTIME}$, and q is called "safe"
 - or PQE(q) is $FP^{\#P}$ -hard, and q is called "unsafe"

Definition: problem PQE(q), for q a Boolean query

Input: a tuple-independent probabilistic database *D*

- Dalvi and Suciu [JACM'12] have shown a dichotomy on the (data) complexity of PQE(q) for unions of conjunctive queries:
 - either $PQE(q) \in \underline{PTIME}$, and q is called "safe"
 - or PQE(q) is $FP^{\#P}$ -hard, and q is called "unsafe"
- Their algorithm for a safe query q essentially uses three rules:
 - → Independence: $Pr(A \land B) = Pr(A) \times Pr(B)$ when A, B are independent events

Definition: problem PQE(q), for q a Boolean query

Input: a tuple-independent probabilistic database *D*

- Dalvi and Suciu [JACM'12] have shown a dichotomy on the (data) complexity of PQE(q) for unions of conjunctive queries:
 - either $PQE(q) \in \underline{PTIME}$, and q is called "safe"
 - or PQE(q) is $FP^{\#P}$ -hard, and q is called "unsafe"
- Their algorithm for a safe query q essentially uses three rules:
 - → Independence: $Pr(A \land B) = Pr(A) \times Pr(B)$ when A, B are independent events
 - \rightarrow Negation: $Pr(\neg A) = 1 Pr(A)$

Definition: problem PQE(q), for q a Boolean query

Input: a tuple-independent probabilistic database *D*

- Dalvi and Suciu [JACM'12] have shown a dichotomy on the (data) complexity of PQE(q) for unions of conjunctive queries:
 - either $PQE(q) \in \underline{PTIME}$, and q is called "safe"
 - or PQE(q) is $FP^{\#P}$ -hard, and q is called "unsafe"
- Their algorithm for a safe query q essentially uses three rules:
 - → Independence: $Pr(A \land B) = Pr(A) \times Pr(B)$ when A, B are independent events
 - \rightarrow Negation: $Pr(\neg A) = 1 Pr(A)$
 - → Inclusion–exclusion: $Pr(A \lor B \lor C \lor ...) = Pr(A) + Pr(B) + ... Pr(A \land B) Pr(A \land C) ... + Pr(A \land B \land C) + ...$

Provenance

Definition

The provenance $\operatorname{Prov}(q,I)$ of query q on database D is the Boolean function with facts of D as variables and such that for every valuation $\tau:D\to\{0,1\}$, $\operatorname{Prov}(q,D)$ evaluates to TRUE under τ if and only if $\{f\in D|\tau(f)=1\}\models q$

Provenance

Definition

The provenance $\operatorname{Prov}(q,I)$ of query q on database D is the Boolean function with facts of D as variables and such that for every valuation $\tau:D\to\{0,1\}$, $\operatorname{Prov}(q,D)$ evaluates to TRUE under τ if and only if $\{f\in D|\tau(f)=1\}\models q$

Possible representations:

- Boolean formulas
- Binary Decision Diagrams (OBDDs, FBDDs, etc)
- Boolean circuits

	Lik	kes	р
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

$$q = \exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$$

$$D = egin{array}{cccc} Likes & p & & & \\ Alice & Bob & 0.5 & & \\ Alice & John & 1 & & \\ Bob & Bob & 0.2 & & \\ John & Bob & 0.7 & & \\ \end{array}$$

$$Prov(q, D) = [L(A, B) \wedge L(B, B)]$$
$$\vee [L(A, B) \wedge L(J, B)]$$
$$\vee [L(B, B) \wedge L(J, B)]$$

$$q = \exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$$

	Lik	es	p
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

$$\operatorname{Prov}(q, D) = \bigwedge_{L(A,B)} \bigvee_{J(A,B)} \bigvee_{L(B,B)} \bigvee_{L(J,B)} \bigvee_{L$$

$$q = \exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$$

	Lik	ces	р
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

$$\operatorname{Prov}(q, D) = \bigwedge_{L(A,B)} \bigvee_{L(B,B)} \bigvee_{L(B,B)} \bigvee_{L(J,B)} \bigvee_{L(B,B)} \bigvee_{L(J,B)} \bigvee_{L$$

$$q = \exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$$

We have
$$Pr(D \models q) = Pr(Prov(q, D) = true)$$

$$Pr(D \models q) = Pr(Prov(q, D) = true)$$

ightarrow If we can, in PTIME, compute $\operatorname{Prov}(q,D)$ in a formalism from knowledge compilation that allows PTIME probability computation, we can solve $\operatorname{PQE}(q)$ in PTIME

$$\Pr(D \models q) = \Pr(\Pr(q, D) = \text{true})$$

- \rightarrow If we can, in PTIME, compute Prov(q, D) in a formalism from knowledge compilation that allows PTIME probability computation, we can solve PQE(q) in PTIME
 - free or ordered decision diagrams (OBDDs, FBDDs)

$$Pr(D \models q) = Pr(Prov(q, D) = true)$$

- \rightarrow If we can, in PTIME, compute Prov(q, D) in a formalism from knowledge compilation that allows PTIME probability computation, we can solve PQE(q) in PTIME
 - free or ordered decision diagrams (OBDDs, FBDDs)
 - deterministic and decomposable Boolean circuits (d-Ds)

$$\Pr(D \models q) = \Pr(\Pr(q, D) = \text{true})$$

- ightarrow If we can, in PTIME, compute $\operatorname{Prov}(q,D)$ in a formalism from knowledge compilation that allows PTIME probability computation, we can solve $\operatorname{PQE}(q)$ in PTIME
 - free or ordered decision diagrams (OBDDs, FBDDs)
 - deterministic and decomposable Boolean circuits (d-Ds)
 - Dan Suciu's talk: the safe UCQs for which this is possible with OBDDs are exactly the inversion-free UCQs
- \rightarrow This talk: what about d-Ds?

Let C be a Boolean circuit

• a \land -gate g is decomposable if any two inputs gates g_1, g_2 of g depend on disjoint sets of variables

Let C be a Boolean circuit

- a ∧-gate g is decomposable if any two inputs gates g₁, g₂ of g depend on disjoint sets of variables
- a ∨-gate g is deterministic if any two inputs gates g₁, g₂ of g are mutually exclusive

Let C be a Boolean circuit

- a ∧-gate g is decomposable if any two inputs gates g₁, g₂ of g depend on disjoint sets of variables
- a ∨-gate g is deterministic if any two inputs gates g₁, g₂ of g
 are mutually exclusive
- the circuit C is a d-D if all its ∧-gates are decomposable and all its ∨-gates are deterministic

Let C be a Boolean circuit

- a ∧-gate g is decomposable if any two inputs gates g₁, g₂ of g depend on disjoint sets of variables
- a \vee -gate g is deterministic if any two inputs gates g_1, g_2 of g are mutually exclusive
- the circuit C is a d-D if all its ∧-gates are decomposable and all its ∨-gates are deterministic
- \to To obtain the probability, replace \land -gates by \times , \lor -gates by +, \neg -gates by 1-x, and evaluate. In other words, use the following rules:
 - → Independence: $Pr(A \land B) = Pr(A) \times Pr(B)$ when A, B are independent events
 - \rightarrow Negation: $Pr(\neg A) = 1 Pr(A)$
 - \rightarrow Disjoint Events: $Pr(A \lor B) = Pr(A) + Pr(B)$ for A, B disjoint events

d-Ds: example

	Lik	ces	р
	Alice	Bob	0.5
D =	Alice	John	1
	Bob	Bob	0.2
	John	Bob	0.7

$$q = \exists x, y, z : L(x, z) \land L(y, z) \land x \neq y$$

The Intensional-Extensional problem

Intensional-Extensional (open) problem for d-Ds

For every safe UCQ q, can we compute in PTIME its provenance on a database D as a deterministic and decomposable circuit?

The Intensional-Extensional problem

Intensional-Extensional (open) problem for d-Ds

For every safe UCQ q, can we compute in PTIME its provenance on a database D as a deterministic and decomposable circuit?

In other words, can we replace the inclusion–exclusion rule by the disjunction rule?

The Intensional-Extensional problem

Intensional-Extensional (open) problem for d-Ds

For every safe UCQ q, can we compute in PTIME its provenance on a database D as a deterministic and decomposable circuit?

In other words, can we replace the inclusion–exclusion rule by the disjunction rule?

→ This approach is more modular than Dalvi and Suciu's original algorithm for safe UCQs, and it would allow us to do more than probabilistic evaluation: enumerate the satisfying states of the data, compute the satisfying state of the data that is most probable, update the tuples' probabilities, etc.

Solving the problem for a specific

class of UCQs

Main result from PODS'20

- ullet Focus on a class of UCQs, denoted ${\cal H}$ (defined next slide)
- It had been conjectured that for some safe queries $q \in \mathcal{H}$, the provenance of q cannot be computed in PTIME as d-Ds
 - → because these are the simplest queries for which Dalvi and Suciu's algorithm uses inclusion—exclusion
 - → because this conjecture had been proven for more restricted formalisms of knowledge compilation (d-SDNNFs, dec-DNNFs)

Main result

For every (fixed) safe query $q \in \mathcal{H}$, being given as input a database D, we can compute in PTIME a d-D that represents $\mathrm{Prov}(q,D)$.

The \mathcal{H} queries

• Let $k \ge 1$ and R, S_1, \ldots, S_k, T be pairwise distinct relational predicates, with R and T unary and S_i binary. Define the queries $h_{k,i}$ for $0 \le i \le k$:

The \mathcal{H} queries

• Let $k \ge 1$ and R, S_1, \ldots, S_k, T be pairwise distinct relational predicates, with R and T unary and S_i binary. Define the queries $h_{k,i}$ for $0 \le i \le k$:

- $h_{k,0} \stackrel{\text{def}}{=} \exists x \exists y \ R(x) \land S_1(x,y);$
- $h_{k,i} \stackrel{\text{def}}{=} \exists x \exists y \ S_i(x,y) \land S_{i+1}(x,y) \text{ for } 1 \leq i < k;$
- $h_{k,k} \stackrel{\text{def}}{=} \exists x \exists y \ S_k(x,y) \land T(y).$

The \mathcal{H} queries

• Let $k \ge 1$ and R, S_1, \ldots, S_k, T be pairwise distinct relational predicates, with R and T unary and S_i binary. Define the queries $h_{k,i}$ for $0 \le i \le k$:

- $h_{k,0} \stackrel{\text{def}}{=} \exists x \exists y \ R(x) \land S_1(x,y);$
- $h_{k,i} \stackrel{\text{def}}{=} \exists x \exists y \ S_i(x,y) \land S_{i+1}(x,y) \text{ for } 1 \leq i < k;$
- $h_{k,k} \stackrel{\text{def}}{=} \exists x \exists y \ S_k(x,y) \wedge T(y).$
- $\mathcal{H}_k \stackrel{\text{def}}{=}$ the set of UCQs that can be formed from the queries $h_{k,i}$, i.e., positive Boolean combinations of those queries
- $\mathcal{H} \stackrel{\mathrm{def}}{=} \bigcup_{k=1}^{\infty} \mathcal{H}_k$

Write $[k] \stackrel{\text{def}}{=} \{0, \dots, k\}$. Let us represent a query $q \in \mathcal{H}_k$ as follows:

 the (Hasse diagram of) Boolean lattice of 2^[k]

- the (Hasse diagram of) Boolean lattice of 2^[k]
- each node $v \subseteq [k]$ of the graph represents a subquery $q_v \stackrel{\text{def}}{=} (\bigwedge_{\ell \in v} h_{k,\ell}) \wedge (\bigwedge_{\ell \in [k] \setminus v} \neg h_{k,\ell})$. (Note that q_v is not a UCQ)

- the (Hasse diagram of) Boolean lattice of 2^[k]
- each node $v \subseteq [k]$ of the graph represents a subquery $q_v \stackrel{\text{def}}{=} (\bigwedge_{\ell \in v} h_{k,\ell}) \wedge (\bigwedge_{\ell \in [k] \setminus v} \neg h_{k,\ell})$. (Note that q_v is not a UCQ)
- (in particular, every database D satisfies exactly one subquery q_{ν})

- the (Hasse diagram of) Boolean lattice of 2^[k]
- each node $v \subseteq [k]$ of the graph represents a subquery $q_v \stackrel{\mathrm{def}}{=} (\bigwedge_{\ell \in v} h_{k,\ell}) \wedge (\bigwedge_{\ell \in [k] \setminus v} \neg h_{k,\ell})$. (Note that q_v is not a UCQ)
- (in particular, every database D satisfies exactly one subquery q_v)
- some nodes are colored, and q= the disjunction of the subqueries $q_{\rm v}$ that are represented by the colored nodes ${\rm v}$ $_{12/22}$

Proof technique (2/4): basic queries

Proposition (Fink & Olteanu [TODS'16])

For any adjacent nodes v, v' of the graph, being given as input a database D, we can compute in PTIME a d-D representing $\text{Prov}(q_v \vee q_{v'}, D)$.

Proof technique (2/4): basic queries

Proposition (Fink & Olteanu [TODS'16])

For any adjacent nodes v, v' of the graph, being given as input a database D, we can compute in PTIME a d-D representing $\text{Prov}(q_v \lor q_{v'}, D)$.

- Idea: starting from q, we will entirely uncolor the graph by using multiple times the following operations:
 - Uncolor two adjacent nodes that are colored
 - Color two adjacent nodes that were not colored

Proof technique (2/4): basic queries

Proposition (Fink & Olteanu [TODS'16])

For any adjacent nodes v, v' of the graph, being given as input a database D, we can compute in PTIME a d-D representing $\text{Prov}(q_v \vee q_{v'}, D)$.

- Idea: starting from q, we will entirely uncolor the graph by using multiple times the following operations:
 - Uncolor two adjacent nodes that are colored
 - Color two adjacent nodes that were not colored
- \rightarrow Simultaneously, we build a deterministic and decomposable circuit for the provenance of q

Uncoloring:

Uncoloring:

 $Prov(q_v \vee q_{v'}, D)$

Prov(q, D) =

Prov(q', D)

Uncoloring:

$$q' =$$

$$\mathrm{Prov}(q,D) =$$

Then continue with q'

Coloring: (Guy Van den Broeck's trick)

Coloring: (Guy Van den Broeck's trick)

$$Prov(q, D) =$$

Coloring: (Guy Van den Broeck's trick)

$$\mathrm{Prov}(q,D) =$$

Then continue with q'

Proposition

Proposition

The non-cancelling intersections

conjecture

Co-workers

Ongoing work with Antoine Amarilli, Louis Jachiet and Dan Suciu

Intersection lattices, Möbius function and Inclusion-Exclusion

• Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets, pairwise incomparable

→ **Example:** $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}$

• Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets, pairwise incomparable

→ **Example:**
$$\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}$$

• Let $\mathbb{L}_{\mathcal{F}}$ be its intersection lattice:

- Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets, pairwise incomparable
 - → **Example:** $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}$
- Let $\mathbb{L}_{\mathcal{F}}$ be its intersection lattice:

• Let $\mu_{\mathcal{F}}: \mathbb{L}_{\mathcal{F}} \to \mathbb{Z}$ be the Möbius function defined by

- Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets, pairwise incomparable
 - → **Example:** $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}$
- Let $\mathbb{L}_{\mathcal{F}}$ be its intersection lattice:

- Let $\mu_{\mathcal{F}}: \mathbb{L}_{\mathcal{F}} \to \mathbb{Z}$ be the Möbius function defined by
 - $\mu_{\mathcal{F}}(\top) = 1$

- Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets, pairwise incomparable
 - \rightarrow **Example:** $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}$
- Let $\mathbb{L}_{\mathcal{F}}$ be its intersection lattice:

- Let $\mu_{\mathcal{F}}: \mathbb{L}_{\mathcal{F}} \to \mathbb{Z}$ be the Möbius function defined by
 - $\mu_{\mathcal{F}}(\top) = 1$
 - $\mu_{\mathcal{F}}(I) = \sum_{\substack{l' \in \mathbb{L}_{\mathcal{F}} \\ l' > l}} \mu_{\mathcal{F}}(l')$ for $I \in \mathbb{L}_{\mathcal{F}}, I \neq \top$

- Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets, pairwise incomparable
 - \rightarrow **Example:** $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}$
- Let $\mathbb{L}_{\mathcal{F}}$ be its intersection lattice:

- Let $\mu_{\mathcal{F}}: \mathbb{L}_{\mathcal{F}} \to \mathbb{Z}$ be the Möbius function defined by
 - $\mu_{\mathcal{F}}(\top) = 1$
 - $\mu_{\mathcal{F}}(I) = \sum_{\substack{l' \in \mathbb{L}_{\mathcal{F}} \\ l' > l}} \mu_{\mathcal{F}}(l')$ for $I \in \mathbb{L}_{\mathcal{F}}, I \neq \top$

Fact (coefficients of the Inclusion-Exclusion formula)

$$|\bigcup_{i=1}^{n} S_{i}| = -\sum_{\substack{I \in \mathbb{L}_{\mathcal{F}} \\ I \neq T}} \mu_{\mathcal{F}}(I) \times |I|$$

- Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets, pairwise incomparable
 - → **Example:** $\mathcal{F} = \{\{a, b\}, \{a, c\}, \{b, c\}, \{d\}\}$
- Let $\mathbb{L}_{\mathcal{F}}$ be its intersection lattice:

- Let $\mu_{\mathcal{F}}: \mathbb{L}_{\mathcal{F}} \to \mathbb{Z}$ be the Möbius function defined by
 - $\mu_{\mathcal{F}}(\top) = 1$
 - $\mu_{\mathcal{F}}(I) =$ $-\sum_{\substack{l' \in \mathbb{L}_{\mathcal{F}} \\ l' > l}} \mu_{\mathcal{F}}(I')$ for $I \in \mathbb{L}_{\mathcal{F}}, I \neq \top$

Fact (coefficients of the Inclusion-Exclusion formula)

$$|\bigcup_{i=1}^n S_i| = -\sum_{\substack{I \in \mathbb{L}_{\mathcal{F}} \\ I \neq \top}} \mu_{\mathcal{F}}(I) \times |I|$$

• Define the non-cancelling intersections of \mathcal{F} by $\text{NCI}(\mathcal{F}) \stackrel{\mathrm{def}}{=} \{I \in \mathbb{L}_{\mathcal{F}} \mid I \neq \top \text{ and } \mu_{\mathcal{F}}(I) \neq 0\}$

Non-cancelling intersections conjecture

- For two sets S, T such that $S \cap T = \emptyset$, define the disjoint union $S \stackrel{\bullet}{\cup} T \stackrel{\mathrm{def}}{=} S \cup T$
- For two sets S,T such that $T\subseteq S$, define the subset complement $S\stackrel{\bullet}{\setminus} T\stackrel{\mathrm{def}}{=} S\setminus T$

Non-cancelling intersections conjecture

- For two sets S, T such that $S \cap T = \emptyset$, define the disjoint union $S \stackrel{\bullet}{\cup} T \stackrel{\text{def}}{=} S \cup T$
- For two sets S, T such that $T \subseteq S$, define the subset complement $S \ \ \ T \stackrel{\text{def}}{=} S \setminus T$

ullet For a set family $\mathcal T$, define $ullet(\mathcal T)$ to be the smallest set family which contains all the sets of $\mathcal T$ and is closed under disjoint union and subset complement

Non-cancelling intersections conjecture

- For two sets S, T such that $S \cap T = \emptyset$, define the disjoint union $S \stackrel{\bullet}{\cup} T \stackrel{\text{def}}{=} S \cup T$
- For two sets S,T such that $T\subseteq S$, define the subset complement $S\stackrel{\bullet}{\setminus} T\stackrel{\mathrm{def}}{=} S\setminus T$
- For a set family T, define ●(T) to be the smallest set family which contains all the sets of T and is closed under disjoint union and subset complement

Non-cancelling intersections conjecture (NCI for short)

Let $\mathcal{F} = \{S_1, \dots, S_n\}$ be a finite family of finite sets. Then $\bigcup_{i=1}^n S_i \in \bullet(\mathtt{NCI}(\mathcal{F}))$.

ightarrow We have $igcup_{i=1}^n S_i = \{a,b,c,d\} = ((\{a\}\ \dot{ullet}\ \{b\})\ \dot{ullet}\ \{c\})\ \dot{ullet}\ \{d\}$

$$ightarrow$$
 We have $igcup_{i=1}^n S_i = \{a,b,c,d\} = ((\{a\}\ \dot{ullet}\ \{b\})\ \dot{ullet}\ \{c\})\ \dot{ullet}\ \{d\}$

That was easy...

 \rightarrow We can express $\bigcup_{i=1}^{n} S_i = \{a, b, c, d, e, f, g, h\}$ with:

Conclusion

- ullet We have sketched a proof that we can build in PTIME d-Ds for the provenance of safe queries in the class ${\cal H}$
- We have stated a more general conjecture about intersection lattices: the non-cancelling intersections conjecture

Conclusion

- ullet We have sketched a proof that we can build in PTIME d-Ds for the provenance of safe queries in the class ${\cal H}$
- We have stated a more general conjecture about intersection lattices: the non-cancelling intersections conjecture
 - ightarrow Counterexample search by bruteforce: no counterexample so far...

Conclusion

- ullet We have sketched a proof that we can build in PTIME d-Ds for the provenance of safe queries in the class ${\cal H}$
- We have stated a more general conjecture about intersection lattices: the non-cancelling intersections conjecture
 - → Counterexample search by bruteforce: no counterexample so far...
 - → We have some partial positive results: a reformulation of the conjecture that works in the Boolean lattices, and a proof for specific subcases of this reformulation

Thanks for your attention!

Bibliography i

Nilesh N. Dalvi and Dan Suciu.

The dichotomy of probabilistic inference for unions of conjunctive queries.

Journal of the ACM, 59(6):30, 2012.

Robert Fink and Dan Olteanu.

Dichotomies for queries with negation in probabilistic databases.

ACM Transactions on Database Systems (TODS), 41(1):4, 2016.

Bibliography ii

Mikaël Monet.

Solving a special case of the intensional vs extensional conjecture in probabilistic databases.

In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 149–163, 2020.