The Tractability of SHAP-Score-Based Explanations over Deterministic and Decomposable Boolean Circuits

Marcelo Arenas, Pablo Barceló, Leopoldo Bertossi, Mikaël Monet

AAAI'21 conference, held online, February 6th 2021

Research on Data

One minute summary (1/2)

SHAP-score in explainable AI: a notion used to explain the decisions of AI models. Let:

- M be a model (example: a classifier used by a bank to decide when clients can be given a loan)
- e be an entity (example: a client)
- x a feature (example: "has_stable_job")
\rightarrow The SHAP-score $\operatorname{SHAP}(M, e, x)$ represents the influence of the feature value $\mathrm{e}(x)$ on the output $M(\mathrm{e})$

One minute summary (2/2)

We focus on binary classifiers $M:\{0,1\}^{n} \rightarrow\{0,1\}$ (features are binary, and the output is yes/no)

Main result

The SHAP-score $\operatorname{SHAP}(M, e, x)$ can be computed in polynomial time when the model M is given as a deterministic and decomposable Boolean circuit

These classifiers are studied in the field of knowledge compilation and generalize binary decision trees, Binary Decision Diagrams (OBDDs, FBDDs), d-DNNFs, etc.

Outline

Shapley values and SHAP-score

Knowledge compilation: deterministic and decomposable Boolean circuits

Results and proof sketch

Shapley values and SHAP-score

Shapley values (1/2)

Notion from cooperative game theory. Let X be a set of players and $\mathcal{G}: 2^{X} \rightarrow \mathbb{R}$ be a game on X. We wish to assign to every player $p \in X$ a contribution $s_{X}(\mathcal{G}, p)$. Some reasonnable axioms:

Shapley values (1/2)

Notion from cooperative game theory. Let X be a set of players and $\mathcal{G}: 2^{X} \rightarrow \mathbb{R}$ be a game on X. We wish to assign to every player $p \in X$ a contribution $s_{X}(\mathcal{G}, p)$. Some reasonnable axioms:

1. Symmetry: For every game \mathcal{G} on X and players $p_{1}, p_{2} \in X$, if we have $\mathcal{G}\left(S \cup\left\{p_{1}\right\}\right)=\mathcal{G}\left(S \cup\left\{p_{2}\right\}\right)$ for every $S \subseteq X$, then $s_{X}\left(\mathcal{G}, p_{1}\right)=s_{X}\left(\mathcal{G}, p_{2}\right)$

Shapley values (1/2)

Notion from cooperative game theory. Let X be a set of players and $\mathcal{G}: 2^{X} \rightarrow \mathbb{R}$ be a game on X. We wish to assign to every player $p \in X$ a contribution $s_{X}(\mathcal{G}, p)$. Some reasonnable axioms:

1. Symmetry: For every game \mathcal{G} on X and players $p_{1}, p_{2} \in X$, if we have $\mathcal{G}\left(S \cup\left\{p_{1}\right\}\right)=\mathcal{G}\left(S \cup\left\{p_{2}\right\}\right)$ for every $S \subseteq X$, then $s_{X}\left(\mathcal{G}, p_{1}\right)=s_{X}\left(\mathcal{G}, p_{2}\right)$
2. Null player: A player p is null if $\mathcal{G}(S \cup\{x\})=\mathcal{G}(S)$ for every $S \subseteq X$. For every null player we have $s_{X}(\mathcal{G}, x)=0$

Shapley values (1/2)

Notion from cooperative game theory. Let X be a set of players and $\mathcal{G}: 2^{X} \rightarrow \mathbb{R}$ be a game on X. We wish to assign to every player $p \in X$ a contribution $s_{X}(\mathcal{G}, p)$. Some reasonnable axioms:

1. Symmetry: For every game \mathcal{G} on X and players $p_{1}, p_{2} \in X$, if we have $\mathcal{G}\left(S \cup\left\{p_{1}\right\}\right)=\mathcal{G}\left(S \cup\left\{p_{2}\right\}\right)$ for every $S \subseteq X$, then $s_{X}\left(\mathcal{G}, p_{1}\right)=s_{X}\left(\mathcal{G}, p_{2}\right)$
2. Null player: A player p is null if $\mathcal{G}(S \cup\{x\})=\mathcal{G}(S)$ for every $S \subseteq X$. For every null player we have $s_{X}(\mathcal{G}, x)=0$
3. Linearity: For every $a, b \in \mathbb{R}$, games $\mathcal{G}_{1}, \mathcal{G}_{2}$ on X and player p we have $s_{X}\left(a \mathcal{G}_{1}+b \mathcal{G}_{2}, p\right)=a \cdot s_{X}\left(\mathcal{G}_{1}, p\right)+b \cdot s_{X}\left(\mathcal{G}_{2}, p\right)$

Shapley values (1/2)

Notion from cooperative game theory. Let X be a set of players and $\mathcal{G}: 2^{X} \rightarrow \mathbb{R}$ be a game on X. We wish to assign to every player $p \in X$ a contribution $s_{X}(\mathcal{G}, p)$. Some reasonnable axioms:

1. Symmetry: For every game \mathcal{G} on X and players $p_{1}, p_{2} \in X$, if we have $\mathcal{G}\left(S \cup\left\{p_{1}\right\}\right)=\mathcal{G}\left(S \cup\left\{p_{2}\right\}\right)$ for every $S \subseteq X$, then $s_{X}\left(\mathcal{G}, p_{1}\right)=s_{X}\left(\mathcal{G}, p_{2}\right)$
2. Null player: A player p is null if $\mathcal{G}(S \cup\{x\})=\mathcal{G}(S)$ for every $S \subseteq X$. For every null player we have $s_{X}(\mathcal{G}, x)=0$
3. Linearity: For every $a, b \in \mathbb{R}$, games $\mathcal{G}_{1}, \mathcal{G}_{2}$ on X and player p we have $s_{X}\left(a \mathcal{G}_{1}+b \mathcal{G}_{2}, p\right)=a \cdot s_{X}\left(\mathcal{G}_{1}, p\right)+b \cdot s_{X}\left(\mathcal{G}_{2}, p\right)$
4. Efficiency: For every game \mathcal{G} on X we have $\sum_{p \in X} s_{X}(\mathcal{G}, p)=\mathcal{G}(X)-\mathcal{G}(\varnothing)$

Shapley values (2/2)

Theorem [Shapley, 1953]

There is a unique function $s_{X}(\cdot, \cdot)$ that satisfies all four axioms.
Shapley $_{X}(\mathcal{G}, p) \stackrel{\text { def }}{=} \sum_{S \subseteq X \backslash\{p\}} \frac{|S|!(|X|-|S|-1)!}{|X|!}(\mathcal{G}(S \cup\{p\})-\mathcal{G}(S))$

Has found many applications in computer science.
Next slide: the SHAP-score for XAI

SHAP-score for explainable AI

Let X be a set of features, e an entity (that has a value $\mathrm{e}(x)$ for every feature $x \in X$), M a model (that assigns a value to each entity), \mathcal{D} a probability distribution over the set of entities, and x a feature.

SHAP-score for explainable AI

Let X be a set of features, e an entity (that has a value $\mathrm{e}(x)$ for every feature $x \in X$), M a model (that assigns a value to each entity), \mathcal{D} a probability distribution over the set of entities, and x a feature.
The SHAP score $\operatorname{SHAP}_{\mathcal{D}}(M, e, x)$ is the Shapley value of x in the following game function \mathcal{G} :

$$
\mathcal{G}(S) \stackrel{\text { def }}{=} \mathbb{E}_{\mathrm{e}^{\prime} \sim \mathcal{D}}\left[M\left(\mathrm{e}^{\prime}\right) \mid \mathrm{e}^{\prime}(y)=\mathrm{e}(y) \text { for all } y \in S\right]
$$

SHAP-score for explainable AI

Let X be a set of features, e an entity (that has a value $\mathrm{e}(x)$ for every feature $x \in X$), M a model (that assigns a value to each entity), \mathcal{D} a probability distribution over the set of entities, and x a feature.
The SHAP score $\operatorname{SHAP}_{\mathcal{D}}(M, e, x)$ is the Shapley value of x in the following game function \mathcal{G} :

$$
\mathcal{G}(S) \stackrel{\text { def }}{=} \mathbb{E}_{\mathrm{e}^{\prime} \sim \mathcal{D}}\left[M\left(\mathrm{e}^{\prime}\right) \mid \mathrm{e}^{\prime}(y)=\mathrm{e}(y) \text { for all } y \in S\right]
$$

In other words,
$\operatorname{SHAP}_{\mathcal{D}}(M, \mathrm{e}, x) \stackrel{\text { def }}{=} \sum_{S \subseteq X \backslash\{x\}} \frac{|S|!(|X|-|S|-1)!}{|X|!}(\mathcal{G}(S \cup\{x\})-\mathcal{G}(S))$

When is it tractable?

Question: For which kind of models/probability distributions can we compute it efficiently?

When is it tractable?

Question: For which kind of models/probability distributions can we compute it efficiently?

Theorem [Lundberg et al., 2020]

The SHAP-score can be computed in polynomial time for decision trees

When is it tractable?

Question: For which kind of models/probability distributions can we compute it efficiently?

Theorem [Lundberg et al., 2020]

The SHAP-score can be computed in polynomial time for decision trees
\rightarrow We generalize this result to more powerful classes of models, from the field of knowledge compilation

Knowledge compilation: deterministic and decomposable Boolean circuits

Knowledge compilation

Knowledge compilation: a field of Al that studies various formalisms to represent Boolean functions...
\rightarrow examples: truth tables, Boolean formulas in DNF/CNF, Boolean circuits, binary decision diagrams (OBDDs), binary decision trees, etc.

Knowledge compilation

Knowledge compilation: a field of AI that studies various formalisms to represent Boolean functions...
\rightarrow examples: truth tables, Boolean formulas in DNF/CNF, Boolean circuits, binary decision diagrams (OBDDs), binary decision trees, etc.
... and the tasks that these allow to solve efficiently
\rightarrow examples: satisfiability in $O(n)$ for truth tables or DNFs but NP-c for CNFs, model counting in $O(n)$ for OBDDs but \#P-hard for DNFs, etc.

Knowledge compilation

Knowledge compilation: a field of Al that studies various formalisms to represent Boolean functions...
\rightarrow examples: truth tables, Boolean formulas in DNF/CNF, Boolean circuits, binary decision diagrams (OBDDs), binary decision trees, etc.
... and the tasks that these allow to solve efficiently
\rightarrow examples: satisfiability in $O(n)$ for truth tables or DNFs but NP-c for CNFs, model counting in $O(n)$ for OBDDs but \#P-hard for DNFs, etc.

Deterministic and decomposable Boolean circuits: the less restricted formalism of knowledge compilation that allows tractable model counting

Deterministic and decomposable Boolean circuits
(also called "tractable Boolean circuits")

Deterministic and decomposable Boolean circuits

 (also called "tractable Boolean circuits")

- Deterministic: inputs of v -gates are mutually exclusive

Deterministic and decomposable Boolean circuits

(also called "tractable Boolean circuits")

- Deterministic: inputs of \vee-gates are mutually exclusive
- Decomposable: inputs of \wedge-gates are independent (no variable has a path to two different inputs of the same ^-gate)

Deterministic and decomposable Boolean circuits

(also called "tractable Boolean circuits")

- Deterministic: inputs of \vee-gates are mutually exclusive
- Decomposable: inputs of \wedge-gates are independent (no variable has a path to two different inputs of the same ^-gate)
\rightarrow model counting or even probability evaluation can be solved in linear time

Results and proof sketch

Results

- Set X of binary features; so an entity e is a function from X to $\{0,1\}$
- A deterministic and decomposable circuit M
- An entity e and a feature $x \in X$
- We assume that the distribution \mathcal{D} is such that each feature $y \in X$ has an independent probability p_{y} of being 1

Results

- Set X of binary features; so an entity e is a function from X to $\{0,1\}$
- A deterministic and decomposable circuit M
- An entity e and a feature $x \in X$
- We assume that the distribution \mathcal{D} is such that each feature $y \in X$ has an independent probability p_{y} of being 1

Main result

Given as input M, e, x and p_{y} for every $y \in X$, we can compute the SHAP^{2}-score $\operatorname{SHAP}_{\mathcal{D}}(M, \mathrm{e}, x)$ in time $O\left(|M| \cdot|X|^{2}\right)$

Results

- Set X of binary features; so an entity e is a function from X to $\{0,1\}$
- A deterministic and decomposable circuit M
- An entity e and a feature $x \in X$
- We assume that the distribution \mathcal{D} is such that each feature $y \in X$ has an independent probability p_{y} of being 1

Main result

Given as input M, e, x and p_{y} for every $y \in X$, we can compute the SHAP-score $\operatorname{SHAP}_{\mathcal{D}}(M, \mathrm{e}, x)$ in time $O\left(|M| \cdot|X|^{2}\right)$

Secondary result (easy)

For any class \mathcal{C} of models and under the uniform distribution, model counting for \mathcal{C} reduces to the problem of computing SHAP-scores for \mathcal{C}

Proof sketch of main result $(1 / 3)$

Recall that $\operatorname{SHAP}_{\mathcal{D}}(M, e, x)$ is defined as

$$
\begin{aligned}
\sum_{S \subseteq X \backslash\{x\}} \frac{|S|!(|X|-|S|-1)!}{|X|!} & \left(\mathbb{E}_{\mathrm{e}^{\prime} \sim \mathcal{D}}\left[M\left(\mathrm{e}^{\prime}\right) \mid \mathrm{e}^{\prime}(y)=\mathrm{e}(y) \text { for all } y \in S \cup\{x\}\right]\right. \\
& \left.-\mathbb{E}_{\mathrm{e}^{\prime} \sim \mathcal{D}}\left[M\left(\mathrm{e}^{\prime}\right) \mid \mathrm{e}^{\prime}(y)=\mathrm{e}(y) \text { for all } y \in S\right]\right)
\end{aligned}
$$

Proof sketch of main result $(1 / 3)$

Recall that $\operatorname{SHAP}_{\mathcal{D}}(M, \mathrm{e}, x)$ is defined as

$$
\begin{aligned}
\sum_{S \subseteq X \backslash\{x\}} \frac{|S|!(|X|-|S|-1)!}{|X|!} & \left(\mathbb{E}_{\mathrm{e}^{\prime} \sim \mathcal{D}}\left[M\left(\mathrm{e}^{\prime}\right) \mid \mathrm{e}^{\prime}(y)=\mathrm{e}(y) \text { for all } y \in S \cup\{x\}\right]\right. \\
& \left.-\mathbb{E}_{\mathrm{e}^{\prime} \sim \mathcal{D}}\left[M\left(\mathrm{e}^{\prime}\right) \mid \mathrm{e}^{\prime}(y)=\mathrm{e}(y) \text { for all } y \in S\right]\right)
\end{aligned}
$$

Lemma

Computing SHAP-score can be reduced in polynomial time to the following problem.
INPUT: binary features X, entity e, deterministic and decomposable circuit M, integer k.
OUTPUT: $\sum_{\substack{S \subseteq X \mid=k}}^{\operatorname{Sc}} \mathbb{E}_{\mathrm{e}^{\prime} \sim \mathcal{D}}\left[M\left(\mathrm{e}^{\prime}\right) \mid \mathrm{e}^{\prime}(y)=\mathrm{e}(y)\right.$ for all $\left.y \in S\right]$

Proof sketch of main result (2/3)

Goal: compute $\underset{\substack{S \subseteq X \\|S|=k}}{ } \mathbb{E}_{\mathrm{e}^{\prime} \sim \mathcal{D}}\left[M\left(\mathrm{e}^{\prime}\right) \mid \mathrm{e}^{\prime}(y)=\mathrm{e}(y)\right.$ for all $\left.y \in S\right]$.

Proof sketch of main result $(2 / 3)$

Goal: compute $\underset{\substack{S \subseteq x \\|S|=k}}{ } \mathbb{E}_{\mathrm{e}^{\prime} \sim \mathcal{D}}\left[M\left(\mathrm{e}^{\prime}\right) \mid \mathrm{e}^{\prime}(y)=\mathrm{e}(y)\right.$ for all $\left.y \in S\right]$.

- Step 1: smooth the circuit. A Boolean circuit is smooth if for every \vee-gate g, every input gate of g sees the same set of variables. We can smooth M in $O\left(|M| \cdot|X|^{2}\right)$

Proof sketch of main result (2/3)

Goal: compute $\sum \underset{\substack{S \subseteq X \mid=k}}{ } \mathbb{E}_{\mathrm{e}^{\prime} \sim \mathcal{D}}\left[M\left(\mathrm{e}^{\prime}\right) \mid \mathrm{e}^{\prime}(y)=\mathrm{e}(y)\right.$ for all $\left.y \in S\right]$.

- Step 1: smooth the circuit. A Boolean circuit is smooth if for every \vee-gate g, every input gate of g sees the same set of variables. We can smooth M in $O\left(|M| \cdot|X|^{2}\right)$
- Step 2: for every gate g of the circuit and $\ell \in\{0, \ldots,|\operatorname{var}(g)|\}$, define the value

$$
\alpha_{g}^{\ell} \stackrel{\text { def }}{=} \sum_{\substack{S \subseteq v a r(g) \\|S|=\ell}} \mathbb{E}_{\mathrm{e}^{\prime} \sim \mathcal{D}}\left[M_{g}\left(\mathrm{e}^{\prime}\right) \mid \mathrm{e}^{\prime}(y)=\mathrm{e}(y) \text { for all } y \in S\right]
$$

Proof sketch of main result (2/3)

Goal: compute $\sum \underset{\substack{S \subseteq X \\|S|=k}}{ } \mathbb{E}_{\mathrm{e}^{\prime} \sim \mathcal{D}}\left[M\left(\mathrm{e}^{\prime}\right) \mid \mathrm{e}^{\prime}(y)=\mathrm{e}(y)\right.$ for all $\left.y \in S\right]$.

- Step 1: smooth the circuit. A Boolean circuit is smooth if for every \vee-gate g, every input gate of g sees the same set of variables. We can smooth M in $O\left(|M| \cdot|X|^{2}\right)$
- Step 2: for every gate g of the circuit and $\ell \in\{0, \ldots,|\operatorname{var}(g)|\}$, define the value

$$
\alpha_{g}^{\ell} \stackrel{\text { def }}{=} \sum_{\substack{S \subseteq v a r(g) \\|S|=\ell}} \mathbb{E}_{\mathrm{e}^{\prime} \sim \mathcal{D}}\left[M_{g}\left(\mathrm{e}^{\prime}\right) \mid \mathrm{e}^{\prime}(y)=\mathrm{e}(y) \text { for all } y \in S\right]
$$

and compute the values α_{g}^{ℓ} by bottom-up induction on the circuit

Proof sketch of main result $(3 / 3)$

Compute $\alpha_{g}^{\ell} \stackrel{\text { def }}{=} \sum_{S \subseteq \operatorname{var}(g)} \mathbb{E}_{\mathrm{e}^{\prime} \sim \mathcal{D}}\left[g\left(\mathrm{e}^{\prime}\right) \mid \mathrm{e}^{\prime}(y)=\mathrm{e}(y)\right.$ for all $\left.y \in S\right]$ $|S|=\ell$
for every gate g and integer $\ell \in\{0, \ldots,|\operatorname{var}(g)|\}$

- g is a variable gate with variable y. Then $\alpha_{g}^{0}=p_{y}$ and $\alpha_{g}^{1}=\mathrm{e}(y)$
- g is an OR gate with inputs g_{1}, g_{2}. Then $\alpha_{g}^{\ell}=\alpha_{g_{1}}^{\ell}+\alpha_{g_{2}}^{\ell}$
- g is an AND gate with inputs g_{1}, g_{2}.

Then $\alpha_{g}^{\ell}=\sum_{\substack{\ell_{1} \in\left\{0, \ldots,\left|\operatorname{var}\left(g_{1}\right)\right|\right\} \\ \ell_{2} \in\left\{, \ldots,\left|,\left|a r\left(g_{2}\right)\right|\right\} \\ \ell_{1}+\ell_{2}=\ell\right.}} \alpha_{g_{1}}^{\ell_{1}} \cdot \alpha_{g_{2}}^{\ell_{2}}$

- g is a \neg-gate with input g_{1}. Then $\alpha_{g}^{\ell}=\binom{|\operatorname{var}(g)|}{\ell}-\alpha_{g_{1}}^{\ell}$
\rightarrow We can compute all the values α_{g}^{ℓ} in time $O\left(|M| \cdot|X|^{2}\right)$

Conclusion

- We prove that the SHAP-score can be computed in

PTIME for deterministic and decomposable Boolean circuits under product distributions
\rightarrow this generalizes a result of [Lundberg et al., 2020]

- We show that computing SHAP-scores is always as hard as the model counting problem
\rightarrow computing SHAP-score is actually PTIME-equivalent to the problem of computing expectations! Check out the [AAA'21 paper by Van den Broeck, Lykov, Schleich, and Suciu] :)

Conclusion

- We prove that the SHAP-score can be computed in

PTIME for deterministic and decomposable Boolean circuits under product distributions
\rightarrow this generalizes a result of [Lundberg et al., 2020]

- We show that computing SHAP-scores is always as hard as the model counting problem
\rightarrow computing SHAP-score is actually PTIME-equivalent to the problem of computing expectations! Check out the [AAA'21 paper by Van den Broeck, Lykov, Schleich, and Suciu] :)

Future work:

- Other probability distributions?
- When the problem is intractable, can we still approximate/sort the values efficiently?
- Practical implementation of our algorithm

Conclusion

- We prove that the SHAP-score can be computed in

PTIME for deterministic and decomposable Boolean circuits under product distributions
\rightarrow this generalizes a result of [Lundberg et al., 2020]

- We show that computing SHAP-scores is always as hard as the model counting problem
\rightarrow computing SHAP-score is actually PTIME-equivalent to the problem of computing expectations! Check out the [AAA'21 paper by Van den Broeck, Lykov, Schleich, and Suciu] :)

Future work:

- Other probability distributions?
- When the problem is intractable, can we still approximate/sort the values efficiently?
- Practical implementation of our algorithm

Bibliography i

目 Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee.
From local explanations to global understanding with explainable ai for trees.
Nature machine intelligence, 2(1):2522-5839, 2020.
R Lloyd S Shapley.
A value for \boldsymbol{n}-person games.
Contributions to the Theory of Games, 2(28):307-317, 1953.

Bibliography ii

䍰 Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and Dan Suciu. On the tractability of shap explanations. arXiv preprint arXiv:2009.08634, 2020.

