
The Tractability of SHAP-Score-Based
Explanations over Deterministic and
Decomposable Boolean Circuits

Marcelo Arenas, Pablo Barceló, Leopoldo Bertossi, Mikaël Monet

AAAI’21 conference, held online, February 6th 2021



One minute summary (1/2)

SHAP-score in explainable AI: a notion used to explain the
decisions of AI models. Let:

• M be a model (example: a classifier used by a bank to decide
when clients can be given a loan)

• e be an entity (example: a client)

• x a feature (example: “has_stable_job”)

→ The SHAP-score SHAP(M, e, x) represents the influence of the
feature value e(x) on the output M(e)

1 / 14



One minute summary (2/2)

We focus on binary classifiers M ∶ {0,1}n → {0,1} (features are
binary, and the output is yes/no)

Main result

The SHAP-score SHAP(M, e, x) can be computed in polynomial
time when the model M is given as a deterministic and
decomposable Boolean circuit

These classifiers are studied in the field of knowledge compilation
and generalize binary decision trees, Binary Decision Diagrams
(OBDDs, FBDDs), d-DNNFs, etc.

2 / 14



Outline

Shapley values and SHAP-score

Knowledge compilation: deterministic and decomposable Boolean
circuits

Results and proof sketch

3 / 14



Shapley values and SHAP-score



Shapley values (1/2)

Notion from cooperative game theory. Let X be a set of players
and G ∶ 2X → R be a game on X . We wish to assign to every
player p ∈ X a contribution sX (G,p). Some reasonnable axioms:

1. Symmetry: For every game G on X and players p1,p2 ∈ X , if
we have G(S ∪ {p1}) = G(S ∪ {p2}) for every S ⊆ X ,
then sX (G,p1) = sX (G,p2)

2. Null player: A player p is null if G(S ∪ {x}) = G(S) for
every S ⊆ X . For every null player we have sX (G, x) = 0

3. Linearity: For every a,b ∈ R, games G1,G2 on X and player p
we have sX (aG1 + bG2,p) = a ⋅ sX (G1,p) + b ⋅ sX (G2,p)

4. Efficiency: For every game G on X we
have ∑p∈X sX (G,p) = G(X ) − G(∅)

4 / 14



Shapley values (1/2)

Notion from cooperative game theory. Let X be a set of players
and G ∶ 2X → R be a game on X . We wish to assign to every
player p ∈ X a contribution sX (G,p). Some reasonnable axioms:

1. Symmetry: For every game G on X and players p1,p2 ∈ X , if
we have G(S ∪ {p1}) = G(S ∪ {p2}) for every S ⊆ X ,
then sX (G,p1) = sX (G,p2)

2. Null player: A player p is null if G(S ∪ {x}) = G(S) for
every S ⊆ X . For every null player we have sX (G, x) = 0

3. Linearity: For every a,b ∈ R, games G1,G2 on X and player p
we have sX (aG1 + bG2,p) = a ⋅ sX (G1,p) + b ⋅ sX (G2,p)

4. Efficiency: For every game G on X we
have ∑p∈X sX (G,p) = G(X ) − G(∅)

4 / 14



Shapley values (1/2)

Notion from cooperative game theory. Let X be a set of players
and G ∶ 2X → R be a game on X . We wish to assign to every
player p ∈ X a contribution sX (G,p). Some reasonnable axioms:

1. Symmetry: For every game G on X and players p1,p2 ∈ X , if
we have G(S ∪ {p1}) = G(S ∪ {p2}) for every S ⊆ X ,
then sX (G,p1) = sX (G,p2)

2. Null player: A player p is null if G(S ∪ {x}) = G(S) for
every S ⊆ X . For every null player we have sX (G, x) = 0

3. Linearity: For every a,b ∈ R, games G1,G2 on X and player p
we have sX (aG1 + bG2,p) = a ⋅ sX (G1,p) + b ⋅ sX (G2,p)

4. Efficiency: For every game G on X we
have ∑p∈X sX (G,p) = G(X ) − G(∅)

4 / 14



Shapley values (1/2)

Notion from cooperative game theory. Let X be a set of players
and G ∶ 2X → R be a game on X . We wish to assign to every
player p ∈ X a contribution sX (G,p). Some reasonnable axioms:

1. Symmetry: For every game G on X and players p1,p2 ∈ X , if
we have G(S ∪ {p1}) = G(S ∪ {p2}) for every S ⊆ X ,
then sX (G,p1) = sX (G,p2)

2. Null player: A player p is null if G(S ∪ {x}) = G(S) for
every S ⊆ X . For every null player we have sX (G, x) = 0

3. Linearity: For every a,b ∈ R, games G1,G2 on X and player p
we have sX (aG1 + bG2,p) = a ⋅ sX (G1,p) + b ⋅ sX (G2,p)

4. Efficiency: For every game G on X we
have ∑p∈X sX (G,p) = G(X ) − G(∅)

4 / 14



Shapley values (1/2)

Notion from cooperative game theory. Let X be a set of players
and G ∶ 2X → R be a game on X . We wish to assign to every
player p ∈ X a contribution sX (G,p). Some reasonnable axioms:

1. Symmetry: For every game G on X and players p1,p2 ∈ X , if
we have G(S ∪ {p1}) = G(S ∪ {p2}) for every S ⊆ X ,
then sX (G,p1) = sX (G,p2)

2. Null player: A player p is null if G(S ∪ {x}) = G(S) for
every S ⊆ X . For every null player we have sX (G, x) = 0

3. Linearity: For every a,b ∈ R, games G1,G2 on X and player p
we have sX (aG1 + bG2,p) = a ⋅ sX (G1,p) + b ⋅ sX (G2,p)

4. Efficiency: For every game G on X we
have ∑p∈X sX (G,p) = G(X ) − G(∅)

4 / 14



Shapley values (2/2)

Theorem [Shapley, 1953]

There is a unique function sX (⋅, ⋅) that satisfies all four axioms.

ShapleyX (G,p) def= ∑
S⊆X∖{p}

∣S ∣!(∣X ∣ − ∣S ∣ − 1)!
∣X ∣! (G(S ∪ {p}) − G(S))

Has found many applications in computer science.
Next slide: the SHAP-score for XAI

5 / 14



SHAP-score for explainable AI

Let X be a set of features, e an entity (that has a value e(x) for
every feature x ∈ X ), M a model (that assigns a value to each
entity), D a probability distribution over the set of entities, and x a
feature.

The SHAP score SHAPD(M, e, x) is the Shapley value of x in the
following game function G:

G(S) def= Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S]

In other words,

SHAPD(M, e, x) def= ∑
S⊆X∖{x}

∣S ∣!(∣X ∣ − ∣S ∣ − 1)!
∣X ∣! (G(S ∪{x})−G(S))

6 / 14



SHAP-score for explainable AI

Let X be a set of features, e an entity (that has a value e(x) for
every feature x ∈ X ), M a model (that assigns a value to each
entity), D a probability distribution over the set of entities, and x a
feature.
The SHAP score SHAPD(M, e, x) is the Shapley value of x in the
following game function G:

G(S) def= Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S]

In other words,

SHAPD(M, e, x) def= ∑
S⊆X∖{x}

∣S ∣!(∣X ∣ − ∣S ∣ − 1)!
∣X ∣! (G(S ∪{x})−G(S))

6 / 14



SHAP-score for explainable AI

Let X be a set of features, e an entity (that has a value e(x) for
every feature x ∈ X ), M a model (that assigns a value to each
entity), D a probability distribution over the set of entities, and x a
feature.
The SHAP score SHAPD(M, e, x) is the Shapley value of x in the
following game function G:

G(S) def= Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S]

In other words,

SHAPD(M, e, x) def= ∑
S⊆X∖{x}

∣S ∣!(∣X ∣ − ∣S ∣ − 1)!
∣X ∣! (G(S ∪{x})−G(S))

6 / 14



When is it tractable?

Question: For which kind of models/probability distributions can
we compute it efficiently?

Theorem [Lundberg et al., 2020]
The SHAP-score can be computed in polynomial time for decision
trees

→ We generalize this result to more powerful classes of models,
from the field of knowledge compilation

7 / 14



When is it tractable?

Question: For which kind of models/probability distributions can
we compute it efficiently?

Theorem [Lundberg et al., 2020]
The SHAP-score can be computed in polynomial time for decision
trees

→ We generalize this result to more powerful classes of models,
from the field of knowledge compilation

7 / 14



When is it tractable?

Question: For which kind of models/probability distributions can
we compute it efficiently?

Theorem [Lundberg et al., 2020]
The SHAP-score can be computed in polynomial time for decision
trees

→ We generalize this result to more powerful classes of models,
from the field of knowledge compilation

7 / 14



Knowledge compilation:
deterministic and decomposable
Boolean circuits



Knowledge compilation

Knowledge compilation: a field of AI that studies various
formalisms to represent Boolean functions...

→ examples: truth tables, Boolean formulas in DNF/CNF,
Boolean circuits, binary decision diagrams (OBDDs), binary
decision trees, etc.

... and the tasks that these allow to solve efficiently

→ examples: satisfiability in O(n) for truth tables or DNFs but
NP-c for CNFs, model counting in O(n) for OBDDs
but #P-hard for DNFs, etc.

Deterministic and decomposable Boolean circuits: the less
restricted formalism of knowledge compilation that allows tractable
model counting

8 / 14



Knowledge compilation

Knowledge compilation: a field of AI that studies various
formalisms to represent Boolean functions...

→ examples: truth tables, Boolean formulas in DNF/CNF,
Boolean circuits, binary decision diagrams (OBDDs), binary
decision trees, etc.

... and the tasks that these allow to solve efficiently

→ examples: satisfiability in O(n) for truth tables or DNFs but
NP-c for CNFs, model counting in O(n) for OBDDs
but #P-hard for DNFs, etc.

Deterministic and decomposable Boolean circuits: the less
restricted formalism of knowledge compilation that allows tractable
model counting

8 / 14



Knowledge compilation

Knowledge compilation: a field of AI that studies various
formalisms to represent Boolean functions...

→ examples: truth tables, Boolean formulas in DNF/CNF,
Boolean circuits, binary decision diagrams (OBDDs), binary
decision trees, etc.

... and the tasks that these allow to solve efficiently

→ examples: satisfiability in O(n) for truth tables or DNFs but
NP-c for CNFs, model counting in O(n) for OBDDs
but #P-hard for DNFs, etc.

Deterministic and decomposable Boolean circuits: the less
restricted formalism of knowledge compilation that allows tractable
model counting

8 / 14



Deterministic and decomposable Boolean circuits

(also called “tractable Boolean circuits”)

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

• Deterministic: inputs of ∨-gates are
mutually exclusive

• Decomposable: inputs of ∧-gates
are independent (no variable has a
path to two different inputs of the
same ∧-gate)

→ model counting or even probability evaluation can be solved in
linear time

9 / 14



Deterministic and decomposable Boolean circuits

(also called “tractable Boolean circuits”)

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

• Deterministic: inputs of ∨-gates are
mutually exclusive

• Decomposable: inputs of ∧-gates
are independent (no variable has a
path to two different inputs of the
same ∧-gate)

→ model counting or even probability evaluation can be solved in
linear time

9 / 14



Deterministic and decomposable Boolean circuits

(also called “tractable Boolean circuits”)

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

• Deterministic: inputs of ∨-gates are
mutually exclusive

• Decomposable: inputs of ∧-gates
are independent (no variable has a
path to two different inputs of the
same ∧-gate)

→ model counting or even probability evaluation can be solved in
linear time

9 / 14



Deterministic and decomposable Boolean circuits

(also called “tractable Boolean circuits”)

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

• Deterministic: inputs of ∨-gates are
mutually exclusive

• Decomposable: inputs of ∧-gates
are independent (no variable has a
path to two different inputs of the
same ∧-gate)

→ model counting or even probability evaluation can be solved in
linear time

9 / 14



Results and proof sketch



Results

• Set X of binary features; so an entity e is a function from X

to {0,1}
• A deterministic and decomposable circuit M
• An entity e and a feature x ∈ X
• We assume that the distribution D is such that each

feature y ∈ X has an independent probability py of being 1

Main result
Given as input M, e, x and py for every y ∈ X , we can compute
the SHAP-score SHAPD(M, e, x) in time O(∣M ∣ ⋅ ∣X ∣2)

Secondary result (easy)
For any class C of models and under the uniform distribution,
model counting for C reduces to the problem of computing
SHAP-scores for C

10 / 14



Results

• Set X of binary features; so an entity e is a function from X

to {0,1}
• A deterministic and decomposable circuit M
• An entity e and a feature x ∈ X
• We assume that the distribution D is such that each

feature y ∈ X has an independent probability py of being 1

Main result
Given as input M, e, x and py for every y ∈ X , we can compute
the SHAP-score SHAPD(M, e, x) in time O(∣M ∣ ⋅ ∣X ∣2)

Secondary result (easy)
For any class C of models and under the uniform distribution,
model counting for C reduces to the problem of computing
SHAP-scores for C

10 / 14



Results

• Set X of binary features; so an entity e is a function from X

to {0,1}
• A deterministic and decomposable circuit M
• An entity e and a feature x ∈ X
• We assume that the distribution D is such that each

feature y ∈ X has an independent probability py of being 1

Main result
Given as input M, e, x and py for every y ∈ X , we can compute
the SHAP-score SHAPD(M, e, x) in time O(∣M ∣ ⋅ ∣X ∣2)

Secondary result (easy)
For any class C of models and under the uniform distribution,
model counting for C reduces to the problem of computing
SHAP-scores for C

10 / 14



Proof sketch of main result (1/3)

Recall that SHAPD(M, e, x) is defined as

∑
S⊆X∖{x}

∣S ∣!(∣X ∣ − ∣S ∣ − 1)!
∣X ∣! (Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S ∪ {x}]

−Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S])

Lemma
Computing SHAP-score can be reduced in polynomial time to the
following problem.
INPUT: binary features X , entity e, deterministic and
decomposable circuit M, integer k .
OUTPUT: ∑S⊆X

∣S ∣=k
Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S]

11 / 14



Proof sketch of main result (1/3)

Recall that SHAPD(M, e, x) is defined as

∑
S⊆X∖{x}

∣S ∣!(∣X ∣ − ∣S ∣ − 1)!
∣X ∣! (Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S ∪ {x}]

−Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S])

Lemma
Computing SHAP-score can be reduced in polynomial time to the
following problem.
INPUT: binary features X , entity e, deterministic and
decomposable circuit M, integer k .
OUTPUT: ∑S⊆X

∣S ∣=k
Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S]

11 / 14



Proof sketch of main result (2/3)

Goal: compute ∑S⊆X
∣S ∣=k

Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S].

• Step 1: smooth the circuit. A Boolean circuit is smooth if for
every ∨-gate g , every input gate of g sees the same set of
variables. We can smooth M in O(∣M ∣ ⋅ ∣X ∣2)

• Step 2: for every gate g of the circuit
and ` ∈ {0, . . . , ∣var(g)∣}, define the value

α`
g

def= ∑
S⊆var(g)
∣S ∣=`

Ee′∼D[Mg(e′) ∣ e′(y) = e(y) for all y ∈ S]

and compute the values α`
g by bottom-up induction on the

circuit

12 / 14



Proof sketch of main result (2/3)

Goal: compute ∑S⊆X
∣S ∣=k

Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S].

• Step 1: smooth the circuit. A Boolean circuit is smooth if for
every ∨-gate g , every input gate of g sees the same set of
variables. We can smooth M in O(∣M ∣ ⋅ ∣X ∣2)

• Step 2: for every gate g of the circuit
and ` ∈ {0, . . . , ∣var(g)∣}, define the value

α`
g

def= ∑
S⊆var(g)
∣S ∣=`

Ee′∼D[Mg(e′) ∣ e′(y) = e(y) for all y ∈ S]

and compute the values α`
g by bottom-up induction on the

circuit

12 / 14



Proof sketch of main result (2/3)

Goal: compute ∑S⊆X
∣S ∣=k

Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S].

• Step 1: smooth the circuit. A Boolean circuit is smooth if for
every ∨-gate g , every input gate of g sees the same set of
variables. We can smooth M in O(∣M ∣ ⋅ ∣X ∣2)

• Step 2: for every gate g of the circuit
and ` ∈ {0, . . . , ∣var(g)∣}, define the value

α`
g

def= ∑
S⊆var(g)
∣S ∣=`

Ee′∼D[Mg(e′) ∣ e′(y) = e(y) for all y ∈ S]

and compute the values α`
g by bottom-up induction on the

circuit

12 / 14



Proof sketch of main result (2/3)

Goal: compute ∑S⊆X
∣S ∣=k

Ee′∼D[M(e′) ∣ e′(y) = e(y) for all y ∈ S].

• Step 1: smooth the circuit. A Boolean circuit is smooth if for
every ∨-gate g , every input gate of g sees the same set of
variables. We can smooth M in O(∣M ∣ ⋅ ∣X ∣2)

• Step 2: for every gate g of the circuit
and ` ∈ {0, . . . , ∣var(g)∣}, define the value

α`
g

def= ∑
S⊆var(g)
∣S ∣=`

Ee′∼D[Mg(e′) ∣ e′(y) = e(y) for all y ∈ S]

and compute the values α`
g by bottom-up induction on the

circuit

12 / 14



Proof sketch of main result (3/3)

Compute α`
g

def= ∑S⊆var(g)
∣S ∣=`

Ee′∼D[g(e′) ∣ e′(y) = e(y) for all y ∈ S]

for every gate g and integer ` ∈ {0, . . . , ∣var(g)∣}

• g is a variable gate with variable y . Then α0
g = py

and α1
g = e(y)

• g is an OR gate with inputs g1,g2. Then α`
g = α`

g1
+ α`

g2

• g is an AND gate with inputs g1,g2.
Then α`

g = ∑`1∈{0,...,∣var(g1)∣}
`2∈{0,...,∣var(g2)∣}

`1+`2=`

α`1
g1
⋅ α`2

g2

• g is a ¬-gate with input g1. Then α`
g = (∣var(g)∣

`
) − α`

g1

→ We can compute all the values α`
g in time O(∣M ∣ ⋅ ∣X ∣2)

13 / 14



Conclusion

• We prove that the SHAP-score can be computed in
PTIME for deterministic and decomposable Boolean circuits
under product distributions
→ this generalizes a result of [Lundberg et al., 2020]

• We show that computing SHAP-scores is always as hard as the
model counting problem
→ computing SHAP-score is actually PTIME-equivalent to the

problem of computing expectations! Check out the [AAA’21
paper by Van den Broeck, Lykov, Schleich, and Suciu] :)

Future work:

• Other probability distributions?
• When the problem is intractable, can we still approximate/sort

the values efficiently?
• Practical implementation of our algorithm

Thanks for your attention!

14 / 14



Conclusion

• We prove that the SHAP-score can be computed in
PTIME for deterministic and decomposable Boolean circuits
under product distributions
→ this generalizes a result of [Lundberg et al., 2020]

• We show that computing SHAP-scores is always as hard as the
model counting problem
→ computing SHAP-score is actually PTIME-equivalent to the

problem of computing expectations! Check out the [AAA’21
paper by Van den Broeck, Lykov, Schleich, and Suciu] :)

Future work:

• Other probability distributions?
• When the problem is intractable, can we still approximate/sort

the values efficiently?
• Practical implementation of our algorithm

Thanks for your attention!

14 / 14



Conclusion

• We prove that the SHAP-score can be computed in
PTIME for deterministic and decomposable Boolean circuits
under product distributions
→ this generalizes a result of [Lundberg et al., 2020]

• We show that computing SHAP-scores is always as hard as the
model counting problem
→ computing SHAP-score is actually PTIME-equivalent to the

problem of computing expectations! Check out the [AAA’21
paper by Van den Broeck, Lykov, Schleich, and Suciu] :)

Future work:

• Other probability distributions?
• When the problem is intractable, can we still approximate/sort

the values efficiently?
• Practical implementation of our algorithm

Thanks for your attention!14 / 14



Bibliography i

Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave,
Jordan M Prutkin, Bala Nair, Ronit Katz, Jonathan
Himmelfarb, Nisha Bansal, and Su-In Lee.
From local explanations to global understanding with
explainable ai for trees.
Nature machine intelligence, 2(1):2522–5839, 2020.

Lloyd S Shapley.
A value for n-person games.
Contributions to the Theory of Games, 2(28):307–317, 1953.



Bibliography ii

Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and
Dan Suciu.
On the tractability of shap explanations.
arXiv preprint arXiv:2009.08634, 2020.


	Shapley values and SHAP-score
	Knowledge compilation: deterministic and decomposable Boolean circuits
	Results and proof sketch
	Appendix

