Weighted Counting of Matchings in Unbounded-Treewidth Graph Families

Antoine Amarilli, Mikaël Monet

MFCS 2022, Vienna, August 23rd 2022

Who

Joint work with Antoine Amarilli

https://arxiv.org/abs/2205.00851

What

- Matching in a graph: set of edges that do not intersect

What

- Matching in a graph: set of edges that do not intersect

OK

What

- Matching in a graph: set of edges that do not intersect

OK

What

- Matching in a graph: set of edges that do not intersect

What

- Matching in a graph: set of edges that do not intersect
\rightarrow Can we count them?

What

- Matching in a graph: set of edges that do not intersect
\rightarrow Can we count them?

We know:

- counting matchings is \#P-hard in general, even in very restricted settings (planar, 3-regular, bipartite...)

What

- Matching in a graph: set of edges that do not intersect
\rightarrow Can we count them?

We know:

- counting matchings is \#P-hard in general, even in very restricted settings (planar, 3-regular, bipartite...)
- counting matchings is in polynomial time over graphs of bounded treewidth

What

- Matching in a graph: set of edges that do not intersect
\rightarrow Can we count them?

We know:

- counting matchings is \#P-hard in general, even in very restricted settings (planar, 3-regular, bipartite...)
- counting matchings is in polynomial time over graphs of bounded treewidth
\Longrightarrow Is there another criterion than bounded treewidth that allows matchings to be counted efficiently?

What

- Matching in a graph: set of edges that do not intersect
\rightarrow Can we count them?

We know:

- counting matchings is \#P-hard in general, even in very restricted settings (planar, 3-regular, bipartite...)
- counting matchings is in polynomial time over graphs of bounded treewidth
\Longrightarrow Is there another criterion than bounded treewidth that allows matchings to be counted efficiently? No!*
* subject to defining the problem in a slighlty more general way and assuming a certain "treewidth-constructibility" requirement; see next slide for Proper Usage.

Our result

Theorem

Let \mathcal{G} be an arbitrary family of graphs which has unbounded treewidth. Then the problem, given a graph $G=(V, E)$ of \mathcal{G}, of computing the number of matchings of G, is intractable.

Our result

Theorem

Let \mathcal{G} be an arbitran family of graphs which has unbounded treewidth. Then the probleme stien a graph $G=(V, E)$ of \mathcal{G}, of computing the number of matchings of G, is intractable.

Our result

Theorem

Let \mathcal{G} be an arbitran family of graphs which has unbounded treewidth. Then the probleme sten a graph $G=(V, E)$ of \mathcal{G}, of computing the number of matchings of G, is intractable.

- Counter-example: $\mathcal{G}=$ the family of all cliques

Our result

Theorem

Let \mathcal{G} be an arbitrary family of graphs which has unbounded treewidth. Then the problem, given a graph $G=(V, E)$ of \mathcal{G} and rational probabilities values $\pi(e)$ for every edge of G, of computing the number of matchings of G the probability of a matching in G, is intractable.

Our result

Theorem

Let \mathcal{G} be an arbitrary family of graphs which has unbounded treewidth. Then the problem, given a graph $G=(V, E)$ of \mathcal{G} and rational probabilities values $\pi(e)$ for every edge of G, of computing the number of matchings of G the probability of a matching in G, is intractable.

- probability of a matching in G : probability of drawing a matching when we select each edge independently with probability $\pi(e)$

Our result

- probability of a matching in G : probability of drawing a matching when we select each edge independently with probability $\pi(e)$

Our result

- probability of a matching in G : probability of drawing a matching when we select each edge independently with probability $\pi(e)$
- Counter-example: $\mathcal{G}=$ the family of all cliques but where edges are exponentially subdivided

Our result

Theorem

Let \mathcal{G} be an arbitrary family of graphs which has unbounded treewidth is treewidth-constructible. Then the problem, given a graph $G=(V, E)$ of \mathcal{G} and rational probabilities values $\pi(e)$ for every edge of G, of computing the number of matchings of G the probability of a matching in G, is intractable.

- probability of a matching in G : probability of drawing a matching when we select each edge independently with probability $\pi(e)$

Our result

Theorem

Let \mathcal{G} be an arbitrary family of graphs which has unbounded treewidth is treewidth-constructible. Then the problem, given a graph $G=(V, E)$ of \mathcal{G} and rational probabilities values $\pi(e)$ for every edge of G, of computing the number of matchings of G the probability of a matching in G, is intractable.

- probability of a matching in G : probability of drawing a matching when we select each edge independently with probability $\pi(e)$
- treewidth-constructible: given $k \in \mathbb{N}$ as input, we can construct in polynomial time a graph of \mathcal{G} whose treewidth is $\geq k$

Proof sketch 1/4: Extracting a topological minor

We reduce from counting matchings on planar graphs of maximum degree 3 , which is \#P-hard. Let H be such a graph.

Proof sketch 1/4: Extracting a topological minor

We reduce from counting matchings on planar graphs of maximum degree 3 , which is \#P-hard. Let H be such a graph.

- Step 1. Using treewidth constructibility of \mathcal{G} and the polynomial grid-minor extraction algorithm of [Chekuri and Chuzhoy, 2016], construct a graph $G \in \mathcal{G}$ such that H is a topological minor of G

Proof sketch 1/4: Extracting a topological minor

We reduce from counting matchings on planar graphs of maximum degree 3 , which is \#P-hard. Let H be such a graph.

- Step 1. Using treewidth constructibility of \mathcal{G} and the polynomial grid-minor extraction algorithm of [Chekuri and Chuzhoy, 2016], construct a graph $G \in \mathcal{G}$ such that H is a topological minor of G

Proof sketch 1/4: Extracting a topological minor

We reduce from counting matchings on planar graphs of maximum degree 3 , which is \#P-hard. Let H be such a graph.

- Step 1. Using treewidth constructibility of \mathcal{G} and the polynomial grid-minor extraction algorithm of [Chekuri and Chuzhoy, 2016], construct a graph $G \in \mathcal{G}$ such that H is a topological minor of G
- Step 2. Assign probability zero to all non-interesting edges

Proof sketch 1/4: Extracting a topological minor

We reduce from counting matchings on planar graphs of maximum degree 3 , which is \#P-hard. Let H be such a graph.

- Step 1. Using treewidth constructibility of \mathcal{G} and the polynomial grid-minor extraction algorithm of [Chekuri and Chuzhoy, 2016], construct a graph $G \in \mathcal{G}$ such that H is a topological minor of G
- Step 2. Assign probability zero to all non-interesting edges

Proof sketch 2/4: How to recover the matchings?

Proof sketch 2/4: How to recover the matchings?

Proof sketch 2/4: How to recover the matchings?

- Understand the relationship between matchings of those two graphs

Proof sketch 2/4: How to recover the matchings?

- Understand the relationship between matchings of those two graphs

Proof sketch 2/4: How to recover the matchings?

- Understand the relationship between matchings of those two graphs

Proof sketch 2/4: How to recover the matchings?

- a selection function of $H=(V, E)$ is a partial function μ that maps every vertex to at most one incident edge

Proof sketch 2/4: How to recover the matchings?

- a selection function of $H=(V, E)$ is a partial function μ that maps every vertex to at most one incident edge

Proof sketch 2/4: How to recover the matchings?

- a selection function of $H=(V, E)$ is a partial function μ that maps every vertex to at most one incident edge

- for $i \in\{0,1,2\}$, an edge $e \in E$ has type i with respect to μ if exactly i of its endpoints select it;

Proof sketch 2/4: How to recover the matchings?

- a selection function of $H=(V, E)$ is a partial function μ that maps every vertex to at most one incident edge

- for $i \in\{0,1,2\}$, an edge $e \in E$ has type i with respect to μ if exactly i of its endpoints select it;
- for $\tau=\left(\tau_{0}, \tau_{1}, \tau_{2}\right) \in\{0, \ldots,|E|\}^{3}$, define S_{τ} to be the set of selection functions μ such that for $i \in\{0,1,2\}$, exactly τ_{i} edges of H are of type i with respect to μ.

Proof sketch 2/4: How to recover the matchings?

- a selection function of $H=(V, E)$ is a partial function μ that maps every vertex to at most one incident edge

Fact

We have that $\# \operatorname{Matching}(H)=\sum_{\substack{\tau \in\{0, \ldots,|E|\}^{3} \\ \tau_{1}=0}}\left|S_{\tau}\right|$.

- for $i \in\{0,1,2\}$, an edge $e \in E$ has type i with respect to μ if exactly i of its endpoints select it;
- for $\tau=\left(\tau_{0}, \tau_{1}, \tau_{2}\right) \in\{0, \ldots,|E|\}^{3}$, define S_{τ} to be the set of selection functions μ such that for $i \in\{0,1,2\}$, exactly τ_{i} edges of H are of type i with respect to μ.

Proof sketch 2/4: How to recover the matchings?

- a selection function of $H=(V, E)$ is a partial function μ that maps every vertex to at most one incident edge

Fact

We have that $\# \operatorname{Matching}(H)=\sum_{\substack{\tau \in\{0, \ldots,|E|\}^{3} \\ \tau_{1}=0}}\left|S_{\tau}\right|$.

- for $i \in\{0,1,2\}$, an edge $e \in E$ has type i with respect to μ if exactly i of its endpoints select it;
- for $\tau=\left(\tau_{0}, \tau_{1}, \tau_{2}\right) \in\{0, \ldots,|E|\}^{3}$, define S_{τ} to be the set of selection functions μ such that for $i \in\{0,1,2\}$, exactly τ_{i} edges of H are of type i with respect to μ.

Proof sketch 2/4: How to recover the matchings?

- a selection function of $H=(V, E)$ is a partial function μ that maps every vertex to at most one incident edge

Fact

We have that $\# \operatorname{Matching}(H)=\sum_{\substack{\tau \in\{0, \ldots,|E|\}^{3} \\ \tau_{1}=0}}\left|S_{\tau}\right|$.

- for $i \in\{0,1,2\}$, an edge $e \in E$ has type i with respect to μ if exactly i of its endpoints select it;
- for $\tau=\left(\tau_{0}, \tau_{1}, \tau_{2}\right) \in\{0, \ldots,|E|\}^{3}$, define S_{τ} to be the set of selection functions μ such that for $i \in\{0,1,2\}$, exactly τ_{i} edges of H are of type i with respect to μ.

Proof sketch 2/4: How to recover the matchings?

- a selection function of $H=(V, E)$ is a partial function μ that maps every vertex to at most one incident edge

Fact

We have that $\# \operatorname{Matching}(H)=\sum_{\substack{\tau \in\{0, \ldots,|E|\}^{3} \\ \tau_{1}=0}}\left|S_{\tau}\right|$.

- for $i \in\{0,1,2\}$, an edge $e \in E$ has type i with respect to μ if exactly i of its endpoints select it;
- for $\tau=\left(\tau_{0}, \tau_{1}, \tau_{2}\right) \in\{0, \ldots,|E|\}^{3}$, define S_{τ} to be the set of selection functions μ such that for $i \in\{0,1,2\}$, exactly τ_{i} edges of H are of type i with respect to μ.

Proof sketch 2/4: How to recover the matchings?

- a selection function of $H=(V, E)$ is a partial function μ that maps every vertex to at most one incident edge

Fact

We have that $\# \operatorname{Matching}(H)=\sum_{\substack{\tau \in\{0, \ldots,|E|\}^{3} \\ \tau_{1}=0}}\left|S_{\tau}\right|$.

- for $i \in\{0,1,2\}$, an edge $e \in E$ has type i with respect to μ if exactly i of its endpoints select it;
- for $\tau=\left(\tau_{0}, \tau_{1}, \tau_{2}\right) \in\{0, \ldots,|E|\}^{3}$, define S_{τ} to be the set of selection functions μ such that for $i \in\{0,1,2\}$, exactly τ_{i} edges of H are of type i with respect to μ.

Proof sketch 3/4: Polynomial interpolation

- Step 3. Somehow, construct polynomially many probabilistic graphs $\left(G, \pi_{1}\right),\left(G, \pi_{2}\right),\left(G, \pi_{3}\right), \ldots$ and use polynomial interpolation to recover all the $\left|S_{\tau}\right|$ values

Proof sketch 3/4: Polynomial interpolation

- Step 3. Somehow, construct polynomially many probabilistic graphs $\left(G, \pi_{1}\right),\left(G, \pi_{2}\right),\left(G, \pi_{3}\right), \ldots$ and use polynomial interpolation to recover all the $\left|S_{\tau}\right|$ values
\rightarrow Using techniques from [Dalvi and Suciu, 2012], this works when all edges of H are subdivided the same number of times.

Proof sketch 3/4: Polynomial interpolation

- Step 3. Somehow, construct polynomially many probabilistic graphs $\left(G, \pi_{1}\right),\left(G, \pi_{2}\right),\left(G, \pi_{3}\right), \ldots$ and use polynomial interpolation to recover all the $\left|S_{\tau}\right|$ values
\rightarrow Using techniques from [Dalvi and Suciu, 2012], this works when all edges of H are subdivided the same number of times.

Proof sketch 3/4: Polynomial interpolation

- Step 3. Somehow, construct polynomially many probabilistic graphs $\left(G, \pi_{1}\right),\left(G, \pi_{2}\right),\left(G, \pi_{3}\right), \ldots$ and use polynomial interpolation to recover all the $\left|S_{\tau}\right|$ values
\rightarrow Using techniques from [Dalvi and Suciu, 2012], this works when all edges of H are subdivided the same number of times. But we can have different subdivision lengths!

Proof sketch 4/4: A technical challenge

"Emulate" long paths with probability $1 / 2$ with short paths:
Find $p, q, r, s \in[0 ; 1]$ such that the probability of a matching in

Equals the probability of a matching in

Proof sketch 4/4: A technical challenge

"Emulate" long paths with probability $1 / 2$ with short paths:
Find $p, q, r, s \in[0 ; 1]$ such that the probability of a matching in

Equals the probability of a matching in

Proof sketch 4/4: A technical challenge

"Emulate" long paths with probability $1 / 2$ with short paths:
Find $p, q, r, s \in[0 ; 1]$ such that the probability of a matching in

Equals the probability of a matching in

Proof sketch 4/4: A technical challenge

"Emulate" long paths with probability $1 / 2$ with short paths:
Find $p, q, r, s \in[0 ; 1]$ such that the probability of a matching in

Equals the probability of a matching in

Proof sketch 4/4: A technical challenge

"Emulate" long paths with probability $1 / 2$ with short paths:
Find $p, q, r, s \in[0 ; 1]$ such that the probability of a matching in

Equals the probability of a matching in

Proof sketch 4/4: A technical challenge

"Emulate" long paths with probability $1 / 2$ with short paths:
Find $p, q, r, s \in[0 ; 1]$ such that the probability of a matching in

Equals the probability of a matching in

$$
\begin{aligned}
& (p, q, r, s)=\left(\frac{1}{4992} \sqrt{1002921}+\frac{977}{1664}, \frac{3}{7600} \sqrt{1002921}+\right. \\
& \left.\frac{3367}{7600},-\frac{3}{7600} \sqrt{1002921}+\frac{3367}{7600},-\frac{1}{4992} \sqrt{1002921}+\frac{977}{1664}\right)
\end{aligned}
$$

Proof sketch 4/4: A technical challenge

"Emulate" long paths with probability $1 / 2$ with short paths:
Find $p(i), q(i), r(i), s(i) \in[0 ; 1]$ such that the probability of a matching in

Equals the probability of a matching in

$$
\frac{1}{2} \text { on all edges }
$$

i edges
$(p(i), q(i), r(i), s(i))=?$

Proof sketch 4/4: A technical challenge

"Emulate" long paths with probability $1 / 2$ with short paths:
Find $p(i), q(i), r(i), s(i) \in[0 ; 1]$ such that the probability of a matching in
$\bullet{ }^{1}{ }^{p(i)} \bullet^{q(i)} \bullet^{r(i)} \bullet^{s(i)}$ •

Equals the probability of a matching in

$(p(i), q(i), r(i), s(i))=?$

Proof sketch 4/4: A technical challenge

"Emulate" long paths with probability $1 / 2$ with short paths:
Find $p(i), q(i), r(i), s(i) \in[0 ; 1]$ such that the probability of a matching in

Equals the probability of a matching in

$(p(i), q(i), r(i), s(i))=?$

Proof sketch 4/4: A technical challenge

"Emulate" long paths with probability $1 / 2$ with short paths:
Find $p(i), q(i), r(i), s(i) \in[0 ; 1]$ such that the probability of a matching in

- 1 •p(i) ${ }^{q(i)}{ }^{r(i)}{ }^{s(i)}{ }^{1}$ •

Equals the probability of a matching in

$(p(i), q(i), r(i), s(i))=?$

Proof sketch 4/4: A technical challenge

"Emulate" long paths with probability $1 / 2$ with short paths:
Find $p(i), q(i), r(i), s(i) \in[0 ; 1]$ such that the probability of a matching in

Equals the probability of a matching in

$$
\frac{1}{2} \text { on all edges }
$$

i edges
$(p(i), q(i), r(i), s(i))=?$
\Longrightarrow This is possible when i is even and ≥ 4

Closed form expressions for $p(i), q(i), r(i), s(i)$

Let $T=1 / 2^{i}$ and F_{k} be the $(i+k)$-th Fibonacci number. Then let:

Closed form expressions for $p(i), q(i), r(i), s(i)$

Let $T=1 / 2^{i}$ and F_{k} be the $(i+k)$-th Fibonacci number. Then let:

$$
\begin{aligned}
& P=2 F_{-1} F_{-2}^{2}+2\left(F_{-1}^{2}-1\right) F_{-2} \\
& Q=2 F_{-1}^{2} F_{-2}-2\left(F_{-1}^{4}+F_{-1}^{3} F_{-2}\right) T \\
& A=2 F_{-1} F_{-2}^{2} \\
& \equiv=F_{-1}^{2} F_{-2}-\left(F_{-1}^{4}+2 F_{-1}^{3} F_{-2}+F_{-1}^{2} F_{-2}^{2}\right) T \\
& \Theta=F_{-1}^{2} T-F_{-2}
\end{aligned}
$$

Closed form expressions for $p(i), q(i), r(i), s(i)$

Let $T=1 / 2^{i}$ and F_{k} be the $(i+k)$-th Fibonacci number. Then let:

$$
\begin{aligned}
& P=2 F_{-1} F_{-2}^{2}+2\left(F_{-1}^{2}-1\right) F_{-2} \\
& Q=2 F_{-1}^{2} F_{-2}-2\left(F_{-1}^{4}+F_{-1}^{3} F_{-2}\right) T \\
& A=2 F_{-1} F_{-2}^{2} \\
& \equiv=F_{-1}^{2} F_{-2}-\left(F_{-1}^{4}+2 F_{-1}^{3} F_{-2}+F_{-1}^{2} F_{-2}^{2}\right) T \\
& \Theta=F_{-1}^{2} T-F_{-2}
\end{aligned}
$$

$$
C_{0}=\left(F_{-1}^{4}-2 F_{-1}^{2}+1\right) F_{-2}^{2}
$$

$$
C_{1}=2\left(\left(F_{-1}^{4}+F_{-1}^{2}\right) F_{-2}^{3}+2\left(F_{-1}^{5}-F_{-1}^{3}\right) F_{-2}^{2}+\left(F_{-1}^{6}-2 F_{-1}^{4}+F_{-1}^{2}\right) F_{-2}\right)
$$

$$
C_{2}=F_{-1}^{8}+4 F_{-1}^{5} F_{-2}^{3}+F_{-1}^{4} F_{-2}^{4}-2 F_{-1}^{6}+F_{-1}^{4}
$$

$$
+2\left(3 F_{-1}^{6}-F_{-1}^{4}\right) F_{-2}^{2}+4\left(F_{-1}^{7}-F_{-1}^{5}\right) F_{-2}
$$

$$
\Sigma=C_{0}-C_{1} T+C_{2} T^{2}
$$

Closed form expressions for $p(i), q(i), r(i), s(i)$

Let $T=1 / 2^{i}$ and F_{k} be the $(i+k)$-th Fibonacci number. Then let:

$$
\begin{array}{ll}
P=2 F_{-1} F_{-2}^{2}+2\left(F_{-1}^{2}-1\right) F_{-2} & p(i)=(A+\Xi+\Theta+\sqrt{\Sigma}) / P \\
Q=2 F_{-1}^{2} F_{-2}-2\left(F_{-1}^{4}+F_{-1}^{3} F_{-2}\right) T & q(i)=(\overline{\text { 三 }} \Theta+\sqrt{\Sigma}) / Q \\
A=2 F_{-1} F_{-2}^{2} & r(i)=(\overline{\text { 三 }} \Theta-\sqrt{\Sigma}) / Q \\
\equiv=F_{-1}^{2} F_{-2}-\left(F_{-1}^{4}+2 F_{-1}^{3} F_{-2}+F_{-1}^{2} F_{-2}^{2}\right) T & s(i)=(A+\Xi+\Theta-\sqrt{\Sigma}) / P \\
\Theta=F_{-1}^{2} T-F_{-2} &
\end{array}
$$

$$
C_{0}=\left(F_{-1}^{4}-2 F_{-1}^{2}+1\right) F_{-2}^{2}
$$

$$
C_{1}=2\left(\left(F_{-1}^{4}+F_{-1}^{2}\right) F_{-2}^{3}+2\left(F_{-1}^{5}-F_{-1}^{3}\right) F_{-2}^{2}+\left(F_{-1}^{6}-2 F_{-1}^{4}+F_{-1}^{2}\right) F_{-2}\right)
$$

$$
C_{2}=F_{-1}^{8}+4 F_{-1}^{5} F_{-2}^{3}+F_{-1}^{4} F_{-2}^{4}-2 F_{-1}^{6}+F_{-1}^{4}
$$

$$
+2\left(3 F_{-1}^{6}-F_{-1}^{4}\right) F_{-2}^{2}+4\left(F_{-1}^{7}-F_{-1}^{5}\right) F_{-2}
$$

$$
\Sigma=C_{0}-C_{1} T+C_{2} T^{2}
$$

Closed form expressions for $p(i), q(i), r(i), s(i)$

Let $T=1 / 2^{i}$ and F_{k} be the $(i+k)$-th Fibonacci number. Then let:

$$
\begin{array}{ll}
P=2 F_{-1} F_{-2}^{2}+2\left(F_{-1}^{2}-1\right) F_{-2} & p(i)=(A+\Xi+\Theta+\sqrt{\Sigma}) / P \\
Q=2 F_{-1}^{2} F_{-2}-2\left(F_{-1}^{4}+F_{-1}^{3} F_{-2}\right) T & q(i)=(\overline{\text { 三 }} \Theta+\sqrt{\Sigma}) / Q \\
A=2 F_{-1} F_{-2}^{2} & r(i)=(\bar{\Xi}--\sqrt{\Sigma}) / Q \\
\equiv=F_{-1}^{2} F_{-2}-\left(F_{-1}^{4}+2 F_{-1}^{3} F_{-2}+F_{-1}^{2} F_{-2}^{2}\right) T & s(i)=(A+\equiv+\Theta-\sqrt{\Sigma}) / P \\
\Theta=F_{-1}^{2} T-F_{-2} &
\end{array}
$$

$$
C_{0}=\left(F_{-1}^{4}-2 F_{-1}^{2}+1\right) F_{-2}^{2}
$$

$$
C_{1}=2\left(\left(F_{-1}^{4}+F_{-1}^{2}\right) F_{-2}^{3}+2\left(F_{-1}^{5}-F_{-1}^{3}\right) F_{-2}^{2}+\left(F_{-1}^{6}-2 F_{-1}^{4}+F_{-1}^{2}\right) F_{-2}\right)
$$

$$
C_{2}=F_{-1}^{8}+4 F_{-1}^{5} F_{-2}^{3}+F_{-1}^{4} F_{-2}^{4}-2 F_{-1}^{6}+F_{-1}^{4}
$$

$$
+2\left(3 F_{-1}^{6}-F_{-1}^{4}\right) F_{-2}^{2}+4\left(F_{-1}^{7}-F_{-1}^{5}\right) F_{-2}
$$

$$
\Sigma=C_{0}-C_{1} T+C_{2} T^{2}
$$

Conclusion

Theorem

Let \mathcal{G} be an arbitrary family of graphs which is treewidth constructible. Then the problem, given a graph $G=(V, E)$ of \mathcal{G} and rational probabilities values $\pi(e)$ for every edge of G, of computing the probability of a matching in G, is intractable.

Conclusion

Theorem

Let \mathcal{G} be an arbitrary family of graphs which is treewidth constructible. Then the problem, given a graph $G=(V, E)$ of \mathcal{G} and rational probabilities values $\pi(e)$ for every edge of G, of computing the probability of a matching in G, is intractable.

- also holds for edge covers (and most likely also for independent sets and vertex covers, when probabilities are on the nodes)

Conclusion

Theorem

Let \mathcal{G} be an arbitrary family of graphs which is treewidth constructible. Then the problem, given a graph $G=(V, E)$ of \mathcal{G} and rational probabilities values $\pi(e)$ for every edge of G, of computing the probability of a matching in G, is intractable.

- also holds for edge covers (and most likely also for independent sets and vertex covers, when probabilities are on the nodes)
- but the result is false for perfect matchings! These can be counted on planar graphs by the FKT algorithm

Conclusion

Open: allow only probabilities in $\{0,1 / 2\}$. In other words:

Open problem

Let \mathcal{G} be an arbitrary family of graphs which is treewidth constructible and which is closed under taking subgraphs. Then the problem, given a graph G of \mathcal{G}, of computing the number of matchings in G, is intractable.

Conclusion

Open: allow only probabilities in $\{0,1 / 2\}$. In other words:

Open problem

Let \mathcal{G} be an arbitrary family of graphs which is treewidth constructible and which is closed under taking subgraphs. Then the problem, given a graph G of \mathcal{G}, of computing the number of matchings in G, is intractable.

Thanks for your attention!

Bibliography i

Chandra Chekuri and Julia Chuzhoy.
Polynomial bounds for the grid-minor theorem. Journal of the ACM, 63(5):1-65, 2016.
固
Nilesh N. Dalvi and Dan Suciu.
The dichotomy of probabilistic inference for unions of conjunctive queries.
Journal of the ACM, 59(6):30, 2012.

