Shapley Values for Relational Databases

Mikaël Monet

ENS Paris-Saclay visit at Cristal, December 6th 2021

L'équipe LINKS
 (Linking Dynamic Data)

Joint team between Inria Lille, university of Lille, and the CNRS CRIStAL lab. Members :

- 9 permanent members (1 directeur de recherche, 2 professeurs, 5 maîtres de conférence, 1 chargé de recherche)
- 5 PhD students
- 1 research engineer

Research themes

- Store, query, update, integrate heterogeneous data...
\rightarrow relational databases, graph databases, RDF, hybrid formats, etc.
- that can be linked and constrained...
\rightarrow schema mappings, integrity constraints, ontologies, etc.
- that is potentially voluminous...
\rightarrow "big data", streaming algorithms, usage of RDBMS for graphs, etc.
- and can also contain uncertainty
\rightarrow databases with missing values, probabilistic databases

The Shapley value

Cooperative games

Notion from cooperative game theory. Let X be a set of players and $\mathcal{G}: 2^{X} \rightarrow \mathbb{R}$ be a function defined on subsets of $X(\mathcal{G}$ will be called a game on X). We wish to assign to every player $p \in X$ a contribution $s_{X}(\mathcal{G}, p)$. Some reasonnable axioms:

Cooperative games

Notion from cooperative game theory. Let X be a set of players and $\mathcal{G}: 2^{X} \rightarrow \mathbb{R}$ be a function defined on subsets of $X(\mathcal{G}$ will be called a game on X). We wish to assign to every player $p \in X$ a contribution $s_{X}(\mathcal{G}, p)$. Some reasonnable axioms:

1. Null player: A player p is null if $\mathcal{G}(S \cup\{x\})=\mathcal{G}(S)$ for every $S \subseteq X$. For every null player we have $s_{X}(\mathcal{G}, x)=0$

Cooperative games

Notion from cooperative game theory. Let X be a set of players and $\mathcal{G}: 2^{X} \rightarrow \mathbb{R}$ be a function defined on subsets of $X(\mathcal{G}$ will be called a game on X). We wish to assign to every player $p \in X$ a contribution $s_{X}(\mathcal{G}, p)$. Some reasonnable axioms:

1. Null player: A player p is null if $\mathcal{G}(S \cup\{x\})=\mathcal{G}(S)$ for every $S \subseteq X$. For every null player we have $s_{X}(\mathcal{G}, x)=0$
2. Symmetry: For every game \mathcal{G} on X and players $p_{1}, p_{2} \in X$, if we have $\mathcal{G}\left(S \cup\left\{p_{1}\right\}\right)=\mathcal{G}\left(S \cup\left\{p_{2}\right\}\right)$ for every $S \subseteq X \backslash\left\{p_{1}, p_{2}\right\}$, then $s_{X}\left(\mathcal{G}, p_{1}\right)=s_{X}\left(\mathcal{G}, p_{2}\right)$

Cooperative games

Notion from cooperative game theory. Let X be a set of players and $\mathcal{G}: 2^{X} \rightarrow \mathbb{R}$ be a function defined on subsets of $X(\mathcal{G}$ will be called a game on X). We wish to assign to every player $p \in X$ a contribution $s_{X}(\mathcal{G}, p)$. Some reasonnable axioms:

1. Null player: A player p is null if $\mathcal{G}(S \cup\{x\})=\mathcal{G}(S)$ for every $S \subseteq X$. For every null player we have $s_{X}(\mathcal{G}, x)=0$
2. Symmetry: For every game \mathcal{G} on X and players $p_{1}, p_{2} \in X$, if we have $\mathcal{G}\left(S \cup\left\{p_{1}\right\}\right)=\mathcal{G}\left(S \cup\left\{p_{2}\right\}\right)$ for every $S \subseteq X \backslash\left\{p_{1}, p_{2}\right\}$, then $s_{X}\left(\mathcal{G}, p_{1}\right)=s_{X}\left(\mathcal{G}, p_{2}\right)$
3. Linearity: For every $a, b \in \mathbb{R}$, games $\mathcal{G}_{1}, \mathcal{G}_{2}$ on X and player p we have $s_{X}\left(a \mathcal{G}_{1}+b \mathcal{G}_{2}, p\right)=a \cdot s_{X}\left(\mathcal{G}_{1}, p\right)+b \cdot s_{X}\left(\mathcal{G}_{2}, p\right)$

Cooperative games

Notion from cooperative game theory. Let X be a set of players and $\mathcal{G}: 2^{X} \rightarrow \mathbb{R}$ be a function defined on subsets of $X(\mathcal{G}$ will be called a game on X). We wish to assign to every player $p \in X$ a contribution $s_{X}(\mathcal{G}, p)$. Some reasonnable axioms:

1. Null player: A player p is null if $\mathcal{G}(S \cup\{x\})=\mathcal{G}(S)$ for every $S \subseteq X$. For every null player we have $s_{X}(\mathcal{G}, x)=0$
2. Symmetry: For every game \mathcal{G} on X and players $p_{1}, p_{2} \in X$, if we have $\mathcal{G}\left(S \cup\left\{p_{1}\right\}\right)=\mathcal{G}\left(S \cup\left\{p_{2}\right\}\right)$ for every $S \subseteq X \backslash\left\{p_{1}, p_{2}\right\}$, then $s_{X}\left(\mathcal{G}, p_{1}\right)=s_{X}\left(\mathcal{G}, p_{2}\right)$
3. Linearity: For every $a, b \in \mathbb{R}$, games $\mathcal{G}_{1}, \mathcal{G}_{2}$ on X and player p we have $s_{X}\left(a \mathcal{G}_{1}+b \mathcal{G}_{2}, p\right)=a \cdot s_{X}\left(\mathcal{G}_{1}, p\right)+b \cdot s_{X}\left(\mathcal{G}_{2}, p\right)$
4. Efficiency: For every game \mathcal{G} on X we have $\sum_{p \in X} s_{X}(\mathcal{G}, p)=\mathcal{G}(X)$

The Shapley value

Theorem [Shapley, 1953]

There is a unique function $s_{X}(\cdot, \cdot)$ that satisfies all four axioms.
$\operatorname{Shapley}_{X}(\mathcal{G}, p) \stackrel{\text { def }}{=} \sum_{S \subseteq X \backslash\{p\}} \frac{|S|!(|X|-|S|-1)!}{|X|!}(\mathcal{G}(S \cup\{p\})-\mathcal{G}(S))$

Shapley values in databases: explaining query results

Shapley values for databases

- Framework introduced by Livshits, Bertossi, Kimelfeld, and Sebag [LBKS'20]
- Let D be a relational database, that we see as a set of facts of the form $R\left(a_{1}, \ldots, a_{k}\right)$, and q be a Boolean query that takes as input a database D and outputs $q(D) \in\{0,1\}$.

Shapley values for databases

- Framework introduced by Livshits, Bertossi, Kimelfeld, and Sebag [LBKS'20]
- Let D be a relational database, that we see as a set of facts of the form $R\left(a_{1}, \ldots, a_{k}\right)$, and q be a Boolean query that takes as input a database D and outputs $q(D) \in\{0,1\}$.
- We want to define the "contribution" of every fact $f \in D$ for the (non-)satisfaction of q. We use the Shapley value where the players are the facts of D and the game maps $S \subseteq D$ to $q(S) \in\{0,1\}$

$$
\begin{aligned}
& \text { Shapley }(q, D, f) \stackrel{\text { def }}{=} \\
& \sum_{S \subseteq D \backslash\{f\}} \frac{|S|!(|D|-|S|-1)!}{|D|!}(q(S \cup\{f\})-q(S)) .
\end{aligned}
$$

Complexity?

When can it be computed efficiently?

Definition: problem Shapley (q)
Input: A database D and a fact $f \in D$
Output: The value Shapley (q, D, f)

Complexity?

When can it be computed efficiently?

Definition: problem Shapley (q)

Input: A database D and a fact $f \in D$
Output: The value Shapley (q, D, f)
We consider the data complexity (query q is fixed)

Theorem [LBKS'20]

Let q be a self-join-free conjunctive query. If q is hierarchical then Shapley (q) is PTIME, otherwise it is $\mathrm{FP}^{\# \mathrm{P}}$-hard

Link to probabilistic databases?

Theorem [LBKS'20]

Let q be a self-join-free conjunctive query. If q is hierarchical then Shapley (q) is PTIME, otherwise it is $\mathrm{FP}^{\# \mathrm{P}}$-hard

This is the same dichotomy as for probabilistic query evaluation... Is there a more general connection?

Link to probabilistic databases?

Theorem [LBKS'20]

Let q be a self-join-free conjunctive query. If q is hierarchical then Shapley (q) is PTIME, otherwise it is FP \#P -hard

This is the same dichotomy as for probabilistic query evaluation... Is there a more general connection?

Answer: yes, we show that Shapley (q) reduces to probabilistic query evaluation, for every Boolean query q

Probabilistic databases

Tuple-independent probabilistic database (TID)

Probabilistic databases

Tuple-independent probabilistic database (TID)

Probabilistic databases

Tuple-independent probabilistic database (TID)

	WorksAt		π
	Bob	Inria	0.9
$D^{\prime}=$	Alice	CNRS	0.5
	John	ENS	0.7
	Mary	Inria	0.2

Probabilistic databases

Tuple-independent probabilistic database (TID)

$D^{\prime}=$	WorksAt		π
	Bob	Inria	0.9
	Alice	CNRS	0.5
	John	ENS	0.7
	Mary	Inria	0.2

Probabilistic databases

Tuple-independent probabilistic database (TID)

$D=$| WorksAt | | π |
| :---: | :---: | :---: |
| | Bob | Inria |
| Alice | CNRS | 0.9 |
| | 0.5 | |
| | John | ENS |
| | 0.7 | |
| | Mary | Inria | 0.2 | |
| :--- |

$q=$ « there are two people who work at the same institution »

Mary Inria 0.2

Probabilistic databases

Tuple-independent probabilistic database (TID)

$D=$	WorksAt		π	$q=$ « there are two people who work at the same institution»
	Bob	Inria	0.9	
	Alice	CNRS	0.5	
	John	ENS	0.7	
	Mary	Inria	0.2	

$$
\operatorname{Pr}((D, \pi) \vDash q)=\sum_{\substack{D^{\prime} \subseteq D \\ D^{\prime} \vDash q}} \operatorname{Pr}\left(D^{\prime}\right)
$$

$\operatorname{PQE}(q)$ and Shapley (q)

Definition: problem PQE(q)

Input: A tuple-independent database (D, π)
Output: The probability $\operatorname{Pr}((D, \pi) \vDash q)$ that (D, π) satisfies q

$\operatorname{PQE}(q)$ and Shapley (q)

Definition: problem PQE(q)

Input: A tuple-independent database (D, π)
Output: The probability $\operatorname{Pr}((D, \pi) \vDash q)$ that (D, π) satisfies q

Theorem (ours)

For every Boolean query q, Shapley (q) reduces in PTIME to PQE(q)
\rightarrow In particular, this implies that Shapley (q) is PTIME whenever PQE (q) is PTIME (and we know a lot about this)

Next: proof of this result

Reduction from Shapley (q) to $\operatorname{PQE}(q)(1 / 4)$

We wish to compute Shapley $(q, D, f) \stackrel{\text { def }}{=}$

$$
\sum_{S \subseteq D \backslash\{f\}} \frac{|S|!(|D|-|S|-1)!}{|D|!}(q(S \cup\{f\})-q(S)) .
$$

Reduction from Shapley (q) to $\operatorname{PQE}(q)(1 / 4)$

We wish to compute Shapley $(q, D, f) \stackrel{\text { def }}{=}$

$$
\sum_{S \subseteq D \backslash\{f\}} \frac{|S|!(|D|-|S|-1)!}{|D|!}(q(S \cup\{f\})-q(S)) .
$$

For an integer $k \in\{0, \ldots,|D|\}$, define

$$
\# \operatorname{Slices}(q, D, k) \stackrel{\text { def }}{=} \mid\{S \subseteq D| | S \mid=k \text { and } q(S)=1\} \mid .
$$

Reduction from Shapley (q) to $\operatorname{PQE}(q)(1 / 4)$

We wish to compute Shapley $(q, D, f) \stackrel{\text { def }}{=}$

$$
\sum_{S \subseteq D \backslash\{f\}} \frac{|S|!(|D|-|S|-1)!}{|D|!}(q(S \cup\{f\})-q(S)) .
$$

For an integer $k \in\{0, \ldots,|D|\}$, define

$$
\# \operatorname{Slices}(q, D, k) \stackrel{\text { def }}{=} \mid\{S \subseteq D| | S \mid=k \text { and } q(S)=1\} \mid .
$$

Regroup the terms by size to obtain $\operatorname{SHAP}(q, D, f)=$

$$
\begin{aligned}
\sum_{k=0}^{|D|-1} \frac{k!(|D|-k-1)}{|D|}(& \# \operatorname{Slices}\left(q_{+f}, D \backslash\{f\}, k\right) \\
& \left.-\# \operatorname{Slices}\left(q_{-f}, D \backslash\{f\}, k\right)\right)
\end{aligned}
$$

In other words, Shapley (q) reduces to the problem of computing \#Slices(q), so it suffices to reduce \#Slices(q) to PQE(q)

Reduction from Shapley (q) to $\operatorname{PQE}(q)(2 / 4)$

We wish to compute $\# \operatorname{Slices}(q, D, k) \stackrel{\text { def }}{=}$

$$
\mid\{S \subseteq D| | S \mid=k \text { and } q(S)=1\} \mid .
$$

Reduction from Shapley (q) to $\operatorname{PQE}(q)(2 / 4)$

We wish to compute $\# \operatorname{Slices}(q, D, k) \stackrel{\text { def }}{=}$

$$
\mid\{S \subseteq D| | S \mid=k \text { and } q(S)=1\} \mid .
$$

For $z \in \mathbb{Q}$, we define a TID database $\left(D_{z}, \pi_{z}\right)$ as follows: D_{z} contains all the facts of D, and for a fact f of D we define $\pi_{z}(f) \stackrel{\text { def }}{=} \frac{z}{1+z}$.

Reduction from Shapley (q) to $\operatorname{PQE}(q)(2 / 4)$

We wish to compute $\# \operatorname{Slices}(q, D, k) \stackrel{\text { def }}{=}$

$$
\mid\{S \subseteq D| | S \mid=k \text { and } q(S)=1\} \mid .
$$

For $z \in \mathbb{Q}$, we define a TID database $\left(D_{z}, \pi_{z}\right)$ as follows: D_{z} contains all the facts of D, and for a fact f of D we define $\pi_{z}(f) \stackrel{\text { def }}{=} \frac{z}{1+z}$. Then:

$$
\begin{aligned}
\operatorname{Pr}\left(q,\left(D_{z}, \pi_{z}\right)\right) & \stackrel{\text { def }}{=} \sum_{\substack{ } D_{z} \text { s.t. } q(S)=1} \operatorname{Pr}(S) \\
& =\sum_{i=0}^{n=} \sum_{\substack{S \subseteq S \text { s.t. } \\
|S|=i \text { and } q(S)=1}} \operatorname{Pr}(S)
\end{aligned}
$$

Reduction from Shapley (q) to $\operatorname{PQE}(q)(3 / 4)$

$$
\begin{aligned}
& \operatorname{Pr}\left(q,\left(D_{z}, \pi_{z}\right)\right)=\sum_{i=0}^{n} \sum_{\substack{S \subseteq D \\
|S|=i \\
\text { s.t. } \\
\text { and } q(S)=1}} \operatorname{Pr}(S) \\
& =\sum_{i=0}^{n} \sum_{\substack{S \subseteq S \text { s.t. } \\
|S|=i \\
\text { ind } q(S)=1}}\left(\frac{z}{1+z}\right)^{i}\left(1-\frac{z}{1+z}\right)^{n-i} \\
& =\sum_{i=0}^{n}\left(\frac{z}{1+z}\right)^{i}\left(\frac{1}{1+z}\right)^{n-i} \quad \sum_{S \subseteq S \text { s.t. }} 1 \\
& |S|=i \text { and } q(S)=1 \\
& =\frac{1}{(1+z)^{n}} \sum_{i=0}^{n} z^{i} \# \operatorname{Slices}(q, D, i) \text {. }
\end{aligned}
$$

Reduction from Shapley (q) to $\operatorname{PQE}(q)(3 / 4)$

Hence we have

$$
(1+z)^{n} \operatorname{Pr}\left(q,\left(D_{z}, \pi_{z}\right)\right)=\sum_{i=0}^{n} z^{i} \# \operatorname{Slices}(q, D, i)
$$

This suffices to conclude. Indeed, we now call an oracle to $\operatorname{PQE}(q)$ on $n+1$ databases $D_{z_{0}}, \ldots, D_{z_{n}}$ for $n+1$ arbitrary distinct values z_{0}, \ldots, z_{n}, forming a system of linear equations as given by the relation above. Since the corresponding matrix is a
Vandermonde with distinct coefficients, it is invertible, so we can compute in polynomial time the value $\# \operatorname{Slices}(q, D, k)$.

So Shapley (q) reduces in PTIME to $\operatorname{PQE}(q)$.

Open problem

Do we have the other direction? We don't know

Open problem

For every Boolean query q, is it the case that $\operatorname{PQE}(q)$ reduces in PTIME to Shapley (q)?

Using provenance and knowledge compilation to solve Shapley (q) (1/2)

- An approach to probabilistic query evaluation: compute the provenance of the query q on the database D in a formalism from knowledge compilation, and then use this representation to compute the probability.
\rightarrow We can do the same for computing Shapley values

Proposition (ours)

Given as input a deterministic and decomposable circuit C representing the provenance, we can compute in time $O\left(|C| \cdot\left|D_{\mathrm{n}}\right|^{2}\right)$ the value $\operatorname{SHAP}\left(q, D_{\mathrm{n}}, D_{\mathrm{x}}, f\right)$.

Using provenance and knowledge compilation to solve Shapley(q) (2/2)

Implementation, experiments on TPC-H and IMDB datasets.

The End

- Thanks for your attention!
- (Contact us for research internships)

Bibliography i

Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag.
The shapley value of tuples in query answering. In ICDT, volume 155, pages 20:1-20:19. Schloss Dagstuhl, 2020.

Eloyd S Shapley.
A value for n -person games.
Contributions to the Theory of Games, 2(28):307-317, 1953.

