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• 9 permanent members (1 directeur de recherche, 2 professeurs,
5 maîtres de conférence, 1 chargé de recherche)

• 5 PhD students

• 1 research engineer
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Research themes

• Store, query, update, integrate heterogeneous data...
→ relational databases, graph databases, RDF, hybrid formats,

etc.

• that can be linked and constrained...
→ schema mappings, integrity constraints, ontologies, etc.

• that is potentially voluminous...
→ “big data”, streaming algorithms, usage of RDBMS for graphs,

etc.

• and can also contain uncertainty
→ databases with missing values, probabilistic databases
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The Shapley value



Cooperative games

Notion from cooperative game theory. Let X be a set of players
and G ∶ 2X → R be a function defined on subsets of X (G will be
called a game on X ). We wish to assign to every player p ∈ X a
contribution sX (G,p). Some reasonnable axioms:

1. Null player: A player p is null if G(S ∪ {x}) = G(S) for
every S ⊆ X . For every null player we have sX (G, x) = 0

2. Symmetry: For every game G on X and players p1,p2 ∈ X , if
we have G(S ∪ {p1}) = G(S ∪ {p2}) for every S ⊆ X ∖ {p1,p2},
then sX (G,p1) = sX (G,p2)

3. Linearity: For every a,b ∈ R, games G1,G2 on X and player p
we have sX (aG1 + bG2,p) = a ⋅ sX (G1,p) + b ⋅ sX (G2,p)

4. Efficiency: For every game G on X we
have ∑p∈X sX (G,p) = G(X )
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The Shapley value

Theorem [Shapley, 1953]

There is a unique function sX (⋅, ⋅) that satisfies all four axioms.

ShapleyX (G,p)
def= ∑

S⊆X∖{p}

∣S ∣!(∣X ∣ − ∣S ∣ − 1)!
∣X ∣! (G(S ∪ {p}) − G(S))
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Shapley values in databases:
explaining query results



Shapley values for databases

• Framework introduced by Livshits, Bertossi, Kimelfeld, and
Sebag [LBKS’20]

• Let D be a relational database, that we see as a set of facts of
the form R(a1, ..., ak), and q be a Boolean query that takes as
input a database D and outputs q(D) ∈ {0,1}.

• We want to define the “contribution” of every fact f ∈ D for
the (non-)satisfaction of q. We use the Shapley value where
the players are the facts of D and the game maps S ⊆ D to
q(S) ∈ {0,1}

Shapley(q,D, f ) def=

∑
S⊆D∖{f }

∣S ∣!(∣D ∣ − ∣S ∣ − 1)!
∣D ∣!

(q(S ∪ {f }) − q(S)).
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Complexity?

When can it be computed efficiently?

Definition: problem Shapley(q)
Input: A database D and a fact f ∈ D
Output: The value Shapley(q,D, f )

We consider the data complexity (query q is fixed)

Theorem [LBKS’20]
Let q be a self-join–free conjunctive query. If q is hierarchical
then Shapley(q) is PTIME, otherwise it is FP#P-hard
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Link to probabilistic databases?

Theorem [LBKS’20]
Let q be a self-join–free conjunctive query. If q is hierarchical
then Shapley(q) is PTIME, otherwise it is FP#P-hard

This is the same dichotomy as for probabilistic query evaluation...
Is there a more general connection?

Answer: yes, we show that Shapley(q) reduces to probabilistic
query evaluation, for every Boolean query q
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Probabilistic databases

Tuple-independent probabilistic database (TID)

Pr(D ′) = (1 − 0.9) × 0.5 × (1 − 0.7) × 0.2

q = « there are two people who
work at the same institution »
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PQE(q) and Shapley(q)

Definition: problem PQE(q)
Input: A tuple-independent database (D, π)
Output: The probability Pr((D, π) ⊧ q) that (D, π) satisfies q

Theorem (ours)

For every Boolean query q, Shapley(q) reduces in PTIME to
PQE(q)

→ In particular, this implies that Shapley(q) is PTIME
whenever PQE(q) is PTIME (and we know a lot about this)

Next: proof of this result
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Reduction from Shapley(q) to PQE(q) (1/4)

We wish to compute Shapley(q,D, f ) def=

∑
S⊆D∖{f }

∣S ∣!(∣D ∣ − ∣S ∣ − 1)!
∣D ∣!

(q(S ∪ {f }) − q(S)).

For an integer k ∈ {0, . . . , ∣D ∣}, define

#Slices(q,D, k) def= ∣{S ⊆ D ∣ ∣S ∣ = k and q(S) = 1}∣.

Regroup the terms by size to obtain SHAP(q,D, f ) =

∣D ∣−1

∑
k=0

k!(∣D ∣ − k − 1)
∣D ∣ ( #Slices(q+f ,D ∖ {f }, k)

−#Slices(q−f ,D ∖ {f }, k)).

In other words, Shapley(q) reduces to the problem of computing
#Slices(q), so it suffices to reduce #Slices(q) to PQE(q)
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Reduction from Shapley(q) to PQE(q) (2/4)

We wish to compute #Slices(q,D, k) def=

∣{S ⊆ D ∣ ∣S ∣ = k and q(S) = 1}∣.

For z ∈ Q, we define a TID database (Dz , πz) as follows: Dz

contains all the facts of D, and for a fact f of D we
define πz(f ) def= z

1+z . Then:

Pr(q, (Dz , πz)) def= ∑
S⊆Dz s.t. q(S)=1

Pr(S)

=
n
def
= ∣D ∣

∑
i=0

∑
S⊆S s.t.

∣S ∣=i and q(S)=1

Pr(S)
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Reduction from Shapley(q) to PQE(q) (3/4)

Pr(q, (Dz , πz)) =
n

∑
i=0

∑
S⊆D s.t.

∣S ∣=i and q(S)=1

Pr(S)

=
n

∑
i=0

∑
S⊆S s.t.

∣S ∣=i and q(S)=1

( z

1 + z
)i(1 − z

1 + z
)n−i

=
n

∑
i=0
( z

1 + z
)i( 1

1 + z
)n−i ∑

S⊆S s.t.
∣S ∣=i and q(S)=1

1

= 1
(1 + z)n

n

∑
i=0

z i#Slices(q,D, i).
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Reduction from Shapley(q) to PQE(q) (3/4)

Hence we have

(1 + z)n Pr(q, (Dz , πz)) =
n

∑
i=0

z i #Slices(q,D, i).

This suffices to conclude. Indeed, we now call an oracle to PQE(q)
on n + 1 databases Dz0 , . . . ,Dzn for n + 1 arbitrary distinct
values z0, . . . , zn, forming a system of linear equations as given by
the relation above. Since the corresponding matrix is a
Vandermonde with distinct coefficients, it is invertible, so we can
compute in polynomial time the value #Slices(q,D, k).

So Shapley(q) reduces in PTIME to PQE(q).
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Open problem

Do we have the other direction? We don’t know

Open problem

For every Boolean query q, is it the case that PQE(q) reduces in
PTIME to Shapley(q)?
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Using provenance and knowledge compilation to solve
Shapley(q) (1/2)

• An approach to probabilistic query evaluation: compute the
provenance of the query q on the database D in a formalism
from knowledge compilation, and then use this representation
to compute the probability.

→ We can do the same for computing Shapley values

Proposition (ours)
Given as input a deterministic and decomposable circuit C
representing the provenance, we can compute in time
O(∣C ∣ ⋅ ∣Dn∣2) the value SHAP(q,Dn,Dx, f ).
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Using provenance and knowledge compilation to solve
Shapley(q) (2/2)

Implementation, experiments on TPC-H and IMDB datasets.
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The End

• Thanks for your attention!

• (Contact us for research internships)
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