
Which Sets Can be Expressed as Disjoint
Union and Subset Complement Without

Möbius Cancellations?

Antoine Amarilli
https://a3nm.net/

a3nm@a3nm.net

Louis Jachiet
https://louis.jachiet.com/

louis@jachiet.com

Mikaël Monet
http://mikael-monet.net/

mikael.monet@imfd.cl

This note presents a combinatorial problem on the Boolean lattice asking
about which sets of subsets (called configurations) can be achieved from
the monotone subsets with only one minimal element (called cones) using
the operations of disjoint union and subset complement without so-called
Möbius cancellations, i.e., while ensuring that the Möbius functions of the
configurations being combined do not lead to cancellations.

The problem is motivated by the so-called intensional-extensional conjec-
ture on query evaluation on probabilistic tuple-independent databases, and
whether unions of conjunctive queries that are tractable for this problem ad-
mit lineage representations in a tractable circuit class: see [Monet, 2020] for
details. We believe that solving the problem presented in this note would
imply a solution to this conjecture. However, this note only presents the com-
binatorial problem: it does not present the connection to this conjecture, and
assumes no familiarity with database theory or circuit classes.

1 Preliminaries

For k ą 0, we write rks the set t0, . . . , k ´ 1u. For a set S we write 2S its powerset.
For a set S and two functions f, g : S Ñ Z, we write f ` g (resp., f ´ g) the function
defined by pf ` gqpsq “ fpsq ` gpsq (resp., pf ´ gqpsq “ fpsq ´ gpsq) for all s P S. For a
function f : S Ñ Z over a finite set S, we write |f | to denote the L1-norm of f , that is,

|f |
def
“

ř

sPS |fpsq|.

1

https://a3nm.net/
https://louis.jachiet.com/
http://mikael-monet.net/

H: 0

0: 1 1: 1 2: 0 3: 0

01: ´1 02: ´1 03: 0 12: 0 13: 0 23: 0

012: 0 013: 0 023: 0 123: 0

0123: 0

Figure 1: Visual representation of the configuration s from Example 2.1 and of its asso-
ciated Möbius function µs. For simplicity, we write, e.g., “01 : ´1” to mean
that µspt0, 1uq “ ´1. Here, s consists of all the colored nodes.

2 Problem Statement

In this section we fix k P N.

Configurations and Möbius functions. A configuration is a subset of 2rks. Given a
configuration s Ď 2rks, its associated Möbius function µs : 2rks Ñ Z is defined by bottom-
up induction as follows:

µspnq
def
“

#

1´
ř

n1Ĺn µspn
1q if n P s

´
ř

n1Ĺn µspn
1q if n R s

.

In particular, the value µspHq is 1 if H P s, and 0 if H R s.

Example 2.1. Let k “ 4, and s be the configuration tt0u, t1u, t0, 1u, t0, 3u, t1, 2u, t1, 3u,
t0, 1, 3u, t1, 2, 3uu. We have depicted in Figure 2 this configuration and its associated
Möbius function.

Remark 2.2. Let µ : 2rks Ñ Z. Then µ is the Möbius function of some configuration
if and only if the following holds: for all n P 2rks, we have

ř

n1Ďn µpn
1q P t0, 1u. The

associated configuration is then simply tn P 2rks |
ř

n1Ďn µpn
1q “ 1u.

Disjoint unions and differences. Let s1, s2 be two configurations. When s1X s2 “ H,

we define the disjoint union of s1 and s2 by s1 ‘ s2
def
“ s1 Y s2. When s2 Ď s1, we

define the subset complement of s1 and s2 by s1 a s2
def
“ s1zs2. From now on, when we

write s1‘s2 (resp., s1as2), we will always assume that s1Xs2 “ H (resp., that s2 Ď s1),
i.e., that the operation is well-defined.

2

H: 0

0: 0 1: 1 2: 0 3: 0

01: ´1 02: 0 03: 0 12: 0 13: 0 23: 0

012: 0 013: 0 023: 0 123: 0

0123: 0

Figure 2: The configuration s1 from Example 2.4 and its associated Möbius function µs1 .

Lemma 2.3. Let s1, s2 be two configurations such that s1 ‘ s2 (resp., s1 a s2) is well-
defined, and let s be the resulting configuration. Then we have µs “ µs1 ` µs2 (resp.,
µs “ µs1 ´ µs2).

Proof. It is routine to show by bottom-up induction that for all n P 2rks we indeed have
µspnq “ µs1pnq ` µs2pnq (resp., µspnq “ µs1pnq ´ µs2pnq).

Example 2.4. Consider the configuration s from Example 2.1 and let s1 be the configu-
ration tt1u, t1, 2u, t1, 3u, t1, 2, 3uu and s2 be the configuration tt0u, t0, 1u, t0, 3u, t0, 1, 3uu
(depicted in Figures 2 and 3). Then we have s “ s1 ‘ s2. Moreover, one can check that
we indeed have µs “ µs1 ` µs2.

Cancellation-freeness. We now impose another restriction on how we can combine
configurations using ‘ and a:

Definition 2.5. Let s1, s2 be two configurations. We say that the operation s1 ‘ s2
(resp., s1as2) is cancellation-free when the operation is well-defined (i.e., it is a disjoint
union or subset complement) and when, letting s be the resulting configuration, we have
|µs| “ |µs1 | ` |µs2 |.

Note that Lemma 2.3 and the triangle inequality already implied that we have |µs| ď
|µs1 | ` |µs2 | when the operation is well-defined. Moreover, observe that this definition
is equivalent to saying that, for all n P 2rks, we have |µspnq| “ |µs1pnq| ` |µs2pnq|, or
equivalently that µs1pnq and µs2pnq have the same sign (or at least one of them is 0);
hence the name cancellation-free.

Example 2.6. Continuing Example 2.4, one can check that s1‘ s2 is cancellation-free.

3

H: 0

0: 1 1: 0 2: 0 3: 0

01: 0 02: ´1 03: 0 12: 0 13: 0 23: 0

012: 0 013: 0 023: 0 123: 0

0123: 0

Figure 3: The configuration s2 from Example 2.4 and its associated Möbius function µs2 .

Cones and reachability. Our goal is to understand which configurations can be con-
structed using by cancellation-free ‘ and a operations, from some basic configurations
that we call cones. For each n P 2rks, the cone Cn spanned by n is simply the configu-

ration of all supersets of n, that is, Cn
def
“ tn1 P 2rks|n Ď n1u.

Remark 2.7. Observe that the Möbius function of a cone Cn is simply µCnpnq “ 1
and µCnpn

1q “ 0 for all n1 ‰ n. So |µCn | “ 1, and in fact cones are precisely the
configurations whose Möbius function has norm equal to 1.

The set Rk of reachable configurations is then defined as the set of all configurations
that can be achieved by cancellation-free ‘ and a operations from cones. Formally, it
is the (unique) set of configurations which is minimal by inclusion, contains the empty
configuration and all cones, and is closed under cancellation-free ‘ and a, i.e., if s1
and s2 are in Rk and if s1 ‘ s2 (resp., s1 a s2) is cancellation-free then the resulting
configuration is in Rk.

Example 2.8. Continuing Example 2.6, one can easily check that s1 “ Ct2u aCt0,1u is
cancellation-free, and that s1 “ Ct0u a Ct0,2u is also cancellation-free; hence s1 and s2
are reachable. Since s1 ‘ s2 is also cancellation-free, we have that s “ s1 ‘ s2 is also
reachable.

Problem statement. Our goal is to characterize which configurations are reachable in
this sense. As we will see, this is in fact not the case of all configurations. Specifically,
we want to show that all monotone configurations are reachable. A configuration s is
monotone when for all n, n1 P 2rks, if n P s and n Ď n1 then n1 P s.

Conjecture 2.9. All monotone configurations are reachable.

4

Cone-reachability. A related problem, leading to a stronger conjecture on monotone
functions, concerns cone-reachability. Intuitively, the set R1k of cone-reachable configu-
rations is the set of configurations that can be reached when imposing that the second
operand to an operation is always a cone. Formally, it contains the empty configuration,
contains all cones, and whenever s P R1k then for any cone Cn, if s‘Cn is cancellation-free
then it belongs to R1k, and the same holds for sa Cn.

A stronger conjecture than the above is:

Conjecture 2.10. All monotone configurations are cone-reachable.

We point out here that a variant this problem on arbitrary partial orders (instead of
simply the Boolean powerset) has been presented in https://cstheory.stackexchange.

com/q/45679/38111, where a generalization of Conjecture 2.10 has been stated for join
semi-lattices.

3 Alternative Problem Statements

Let us consider the Boolean lattice over Boolean events E1, . . . , En, and let us consider
an event S “

Ť

j Cj , where each Cj is a basic conjunction, i.e., a conjunction of some of
the events Ei.

An alternative way to phrase our problem is to ask whether S can be expressed as
a function of basic conjunctions (not necessarily the ones used in the definition of S)
using only the disjoint union operator (T “ T1 Y T2 where T1 and T2 are disjoint) and
the subset complement operator (T “ T1zT2 where T2 Ď T1).

In general, it is always possible to built S with disjoint union and subset complement
by applying recursively the inclusion-exclusion principle on the definition of S. So the
question that we ask is whether we can express S in the sense above but satisfying a
minimality requirement : each basic conjunction Cj must be used exactly as specified by
its coefficient in the Möbius function associated to the configuration corresponding to S,
i.e., with the number of times indicated by the absolute value, and the polarity indicated
by the sign of the Möbius function. This means in particular that conjunctions with
Möbius coefficient zero cannot be used: these are the conjunctions that can be canceled
out in the inclusion-exclusion formula.

An equivalent way to see this is to take the expression of S as a function of basic
conjunctions given by the inclusion-exclusion formula, apply cancellations across terms
so that the coefficient of each basic conjunction is its value in the Möbius function, and
ask about whether these terms can be ordered such that additions correspond to disjoint
unions and subtractions correspond to subset complements.

Alternatively, we ask whether S, seen as a monotone DNF Boolean function, can be
expressed as a function of basic conjunctions (monotone conjunctions of variables) using
disjoint union and negation, i.e., as a d-D circuit, as a function of basic conjunctions, each
of which being used with the right polarity and cardinality. This connects back to the
motivation of our problem, i.e., the intensional-extensional conjecture on probabilistic
databases [Monet, 2020].

5

https://cstheory.stackexchange.com/q/45679/38111
https://cstheory.stackexchange.com/q/45679/38111

4 Current Results

4.1 Facts known by bruteforce

In this section, we discuss some preliminary results obtained experimentally by imple-
menting several ways of solving the problem by bruteforce. We have put the necessary
code publicly online https://gitlab.com/Gruyere/mobius-unions-differences. The
code is very rough, and of course there could be errors affecting the results presented
here. The code is not documented, but don’t hesitate to ask if you have questions.

Values k ď 3. For small values of k, we can reach all configurations, even with the
stronger notion of cone-reachability:

Proposition 4.1. For k P t1, 2u, all configurations (in 2rks) are cone-reachable.

Proof. By bruteforce:
g++ -ocones1 -DN=1 -DONLY_CONES=1 -O2 bottom_up.cpp; ./cones1

g++ -ocones2 -DN=2 -DONLY_CONES=1 -O2 bottom_up.cpp; ./cones2

For k “ 3, we start to see that some configurations are not cone-reachable, but all
monotone configurations are still cone-reachable, and all configurations are reachable:

Proposition 4.2. For k “ 3, all configurations (in 2r3s) are reachable, and all configu-
rations are cone-reachable except tH, t0, 1, 2uu and its complement.

Proof. By bruteforce:
g++ -oall3 -DN=3 -O2 bottom_up.cpp; ./all3

g++ -ocones3 -DN=3 -DONLY_CONES=1 -O2 bottom_up.cpp; ./cones3.

Value k “ 4. For k “ 4, we start to see that some configurations are not reachable,
but all monotone configurations are still cone-reachable.

To present these results, we first introduce the notion of equivalence. We say that two
configurations s and s1 are equivalent if there exists a permutation σ of rks such that,
writing σpnq “ tσpiq | i P nu for all n P 2rks, then tσpnq | n P su “ s1. This is clearly
an equivalence relation. As our problem is invariant under permutations of rks, when
considering sets of configurations, it always suffices to study them up to equivalence.

Second, we introduce the notion of irreducibility. We say that a configuration s is
reducible if it can be expressed as a cancellation-free sum s1‘s2 or difference s1as2 for
some configurations s1, s2 which are not the empty configuration. A configuration that is
not reducible is said to be irreducible. We define cone-irreducibility in the expected way.
Observe that the empty configuration and all cones are irreducible and in particular cone-
irreducible. Moreover, all irreducible configurations that are not the empty configuration
or a cone are not reachable. Intuitively, an irreducible configuration is a minimal kind
of unreachable configuration, but as we will see there are some configurations that are
reducible but not reachable.

We can now claim our result:

6

https://gitlab.com/Gruyere/mobius-unions-differences

H: 0

0: 0 1: 0 2: 1 3: 1

01: 1 02: ´1 03: 0 12: 0 13: ´1 23: ´1

012: 0 013: 0 023: 0 123: 0

0123: 0

Figure 4: The configuration s3 from Proposition 4.3 and its associated Möbius func-
tion µs3 .

Proposition 4.3. For k “ 4, out of the 22
4
“ 65536 configurations that exist, there

are exactly 24 configurations that are not reachable, and none of them are monotone.
There are 12 of these configurations that are irreducible, and they are all equivalent to
the configuration s3 depicted in Figure 4.1. The other 12 are not irreducible and are all
equivalent to the complement of s3.

Moreover, there are exactly 2748 configurations that are not cone-reachable (248 up to
equivalence), none of which are monotone, and 910 of which are irreducible (90 up to
equivalence).

Proof. Bruteforce:
g++ -oall4 -DN=4 -O2 bottom_up.cpp; ./all4

g++ -ocones4 -DN=4 -DONLY_CONES=1 -O2 bottom_up.cpp; ./cones4

and variants with TEST_IRRED and ONLY_MINIMAL

Value k “ 5 and up. For k “ 5, there are 22
5

configurations, so around 4 billion, and
we can no longer afford to test all of them. However, testing specifically the monotone
configurations, we can show

Proposition 4.4. For k P t1, . . . , 5u all monotone configurations are cone-reachable.

Proof. For k P t1, . . . , 5u this follows from what precedes. Bruteforce for k “ 5:
g++ -omonotone_cones5 -DN=5 -DALL=1 -DONLY_MONOTONE=1 -DEXPLAIN=0 \

-DEXPLAIN=0 -DONLY_CONES=1 -O2 top_down.cpp && ./monotone_cones5

We nevertheless managed to test irreducibility for all these configurations:

Proposition 4.5. For k “ 5, there are exactly 38 irreducible configurations (up to
equivalence).

7

Proof. Bruteforce:
g++ -o all5reach -DN=5 -DALL=1 -DSTEP=1000000 -DONLY_MONOTONE=0 \

-DONLY_MINIMAL=1 -DEXPLAIN=0 -O2 top_down.cpp && ./all5reach

The bruteforce considered 37333248 minimal functions, as per sequence 1405 of the
Sloane handbook.

Proposition 4.6. For k P t1, . . . , 6u all monotone configurations are reachable.

Proof. For k P t1, . . . , 6u this follows by what precedes. Bruteforce for k “ 6 (this
concludes extremely fast, with very little backtracking):
g++ -omonotone6 -DN=5 -DALL=1 -DONLY_MONOTONE=1 -DEXPLAIN=0 \

-DEXPLAIN=0 -O2 top_down.cpp && ./monotone6

We do not know if all monotone configurations are cone-reachable for k “ 6, as the
execution of our program is too slow to conclude in that case.

For standard reachability, for k “ 7, there are several hundred million monotone
Boolean functions even up to symmetry, so it has not been possible so far to test all of
them, but all tested functions were reachable (and the computation was instantaneous).

For larger values of k, the program is sometimes too slow to conclude to the reachability
or even reducibility of some monotone functions, but we do not know whether this
because it is inefficient or whether it could be a counterexample to the conjecture.

4.2 Facts that hold in all generality

In this section, we present some miscellaneous facts that we obtained.

Connection with the notion of Euler characteristic. The following can be seen as an
alternative way of defining the Möbius function of a configuration:

Proposition 4.7. Let s Ď 2rks be a configuration, for some k ą 1. Then, for all n P 2rks,
we have that

µspnq “
ÿ

n1Ďn
n1Ps

p´1q|nzn
1|.

Proof. Direct application of Möbius inversion formula on the poset 2rks.

It is related to the notion of Euler characteristic of a Boolean function. To establish
the connection, observe that a configuration s Ď 2rks can be seen as a Boolean function

over variables rks. The Euler characteristic of s is epsq
def
“

ř

nP2rks

nPs

p´1q|n| [Roune and

Sáenz-de Cabezón, 2013, Stanley, 2011]. Hence, µspnq is the Euler characteristic of the
sub-configuration below n, multiplied by p´1q|n|.

8

Constructing unreachable configurations from simpler unreachable configurations.

Definition 4.8. Let k ą 1, s Ď 2rks be a configuration in 2rks and s1 P 2rk`1s be a
configuration in 2rk`1s. We say that s1 contains s as a lower-subconfiguration when there
exists j P rk` 1s and a bijection σ : rks Ñ rk` 1sztju such that we have s1X 2rk`1sztju “
σpsq.

Here is a simple way to take an unreachable configuration for k and obtain unreachable
configurations for k ` 1:

Lemma 4.9. Let k ą 1, s Ď 2rks be an unreachable configuration for k, and s1 Ď 2rk`1s

be a configuration for k` 1. Then, if s1 contains s as a lower-subconfiguration then s1 is
unreachable as well (in 2rk`1s).

Proof. Up to permutations, we can assume without loss of generality that j is k and
that σ : rks Ñ rks is the identity in Definition 4.8. Assume by way of contradiction
that s1 is reachable in 2rk`1s, and let T 1 be a parse tree of one of its decomposition; that
is, a rooted ordered binary tree, whose leaves are labeled by cones and whose internal
nodes are labeled by ‘ or a. For a node i of T let us write s1i the corresponding
configuration (so that s1r is s1 for r the root of T 1). For a configuration s1 Ď 2rk`1s,

let us write qs1 Ď 2rks the configuration of 2rks defined by qs1
def
“ s1 X 2rks. Now, let T

be the rooted ordered binary tree obtained from T 1 by replacing every cone Cn by |Cn,
and considering that the operations are done in 2rks. One can easily check that T is a
valid parse tree (meaning that all the operations are well-defined and cancellation-free).
Furthermore it is easy to check that, letting si be the configuration corresponding to
node i of T , we have si “ qs1i for all nodes i. Hence s “ qs1 “ qs1r “ sr is reachable (in 2rks),
a contradiction.

Degeneracy.

Definition 4.10. Let k ą 1, s Ď 2rks be a configuration and j P rks. We say that s
does not depend on j if for all n P 2rks the following holds: we have n P s if and only
if n Y tju P s. We call s degenerate if there exists j P rks such that s does not depend
on j, and nondegenerate otherwise.

Lemma 4.11. Let s Ď 2rks be a configuration that does not depend on j P rks. Then,
for every n P 2rks such that j P n, we have that µspnq “ 0.

Proof. Direct by bottom-up induction on tn P 2rks | j P nu.

The following lemma tells us intuitively that an unreachable configuration s1 of 2rk`1s

either contains an unreachable configuration of 2rks as a lower-subconfiguration (in which
case Lemma 4.9 “explains” why s1 is unreachable), or it must be nondegenerate:

Lemma 4.12. Let k ą 1, and let s1 Ď 2rk`1s be a configuration that is not reachable.
Then one of the following it true (it could be both):

9

1. there exists a configuration s Ď 2rks such that s R Rk and such that s1 contains s
as a lower-subconfiguration;

2. s is nondegenerate (that is, s1 depends on all j P rk ` 1s).

Proof. Assume by way of contradiction that both 1 and 2 are false. Since s1 is degenerate,
and up to permutation of rk ` 1s, we can assume without loss of generality that s1 does

not depend on k. Let s
def
“ s1 X 2rks. Clearly, s1 contains s as a lower-subconfiguration.

Because we assumed 2 to be false, s must then be reachable (in 2rks). Let T be a parse tree
of a decomposition of s. For a configuration s2 Ď 2rks, let us write ps2 the configuration

of 2rk`1s defined by ps2
def
“ s2 Y tnY tku | n P ps2u. Now, let T 1 be the parse tree obtained

from T by replacing every cone Cn Ď 2rks at a leaf of T by the cone xCn Ď 2rk`1s, and
considering that the operations are done in 2rk`1s. For a node i, we write si (resp., s1i)
the configuration corresponding to node i in T (resp., in T 1). Then, one can show by
bottom-up induction on T that for all nodes i the following holds:

• the operation at that node in T 1 is well-defined and cancellation-free (this uses in
particular Lemma 4.12);

• we have that s1i “ psi.

But then this implies that s1 “ ps is reachable, a contradiction.

References

[Monet, 2020] Monet, M. (2020). Solving a special case of the intensional vs extensional
conjecture in probabilistic databases. arXiv preprint arXiv:1912.11864.

[Roune and Sáenz-de Cabezón, 2013] Roune, B. H. and Sáenz-de Cabezón, E. (2013).
Complexity and algorithms for Euler characteristic of simplicial complexes. Journal
of Symbolic Computation, 50:170–196.

[Stanley, 2011] Stanley, R. P. (2011). Enumerative Combinatorics: Volume 1. 2nd
edition.

10

https://arxiv.org/abs/1912.11864
https://arxiv.org/abs/1912.11864
https://arxiv.org/pdf/1112.4523.pdf
http://www-math.mit.edu/~rstan/ec/ec1.pdf

	Preliminaries
	Problem Statement
	Alternative Problem Statements
	Current Results
	Facts known by bruteforce
	Facts that hold in all generality

