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ABSTRACT

Though data uncertainty naturally appears in many real-life
situations, traditional database theory and systems tend to
assume that the data is reliable and complete. The reason is
that of complexity and performance: on arbitrary relational
database instances annotated with probabilities, perform-
ing exact probabilistic query evaluation is hard. However,
a criterion on the shape of the database has been shown
in recent work to be sufficient and in some sense necessary
to the tractability of this task. Databases whose trecwidth
is bounded by a constant k are exactly those that can be
tractably queried, with respect to quantitative uncertainty
estimation. But this is a data complexity result, that does
not take into account the cost in terms of the query or of k
— in many cases, this cost is too high for real-world applica-
tions. The aim of our PhD research is to study in which
circumstances the overall complexity of probabilistic query
evaluation can become tractable, aiming at both theoretical
and practical results.

1. PROBLEM

Uncertainty in data can come in various forms. For in-
stance, when information is automatically extracted from
arbitrary web pages, uncertainty can be introduced due to
the inherent uncertainty of natural language processing or
because the source cannot be trusted. In road monitoring
systems, uncertainty may come from lack of recent informa-
tion about traffic [18]: Is the road congested? Is there a
diversion? Due to hardware limitations, in the field of ex-
perimental sciences, measurement errors also occur in many
databases [6]. Querying these databases without considering
this uncertainty can lead to incorrect answers.

A natural way to capture database uncertainty is to rep-
resent explicitly all possible states of the data (called the
possible worlds) and associate to each world a probability
value. The probability that a tuple belongs in the answer to
a query is then the sum of the probabilities of the possible
worlds for which this tuple is in the answer. The problem
with this approach is that there can be exponentially many
such possible worlds, so that it is not feasible in practice to
represent the data and query it in this way. Nevertheless,
we can efficiently represent uncertain data if we make some
independence assumptions: each tuple has a probability to
be present or absent independently of the other tuples. This
is the tuple-independent (or TID [21, 13]) framework. More

elaborate probabilistic representation systems [7, 24, 17, 19,
27] also exist.

Now that we can concisely represent probabilistic data-
bases, can we efficiently query it? Unfortunately, in general,
the answer is no. For instance, consider the following simple
conjunctive query gnard : 3zy R(z) A S(z,y) A T(y). It is
#P-hard to compute its probability on arbitrary TID in-
stances [13]. Recall that #P is the complexity class of count-
ing problems whose answer can be expressed as the number
of accepting paths of a nondeterministic polynomial-time
Turing machine; a typical #P-complete problem is #SAT,
that of counting the number of satisfying assignments of a
propositional formula [29].

To address the intractability of query evaluation on proba-
bilistic databases, three general approaches have been pro-
posed:

e Approximate probability computation. It is al-
ways possible to resort to Monte-Carlo sampling [15,
23, 20], which provides an additive approzimation of
the query probability. This is of limited use, however,
when probabilities are very low: the running time of
Monte-Carlo sampling is quadratic in the desired preci-
sion, so we cannot use it in cases where we want a high
precision.

e Restricting the queries. It is possible to restrict
to queries for which probabilistic query evaluation is
in PTIME. In fact, we already know a complete char-
acterization [14] of the unions of conjunctive queries
whose probability is tractable to evaluate on TID in-
stances. However, as it turns out, many simple queries
are already hard to evaluate, such as gnara above.

e Restricting the shape of the instances. Recent
work from our group [3] has shown that, when the
TID instances are taken to be of bounded treewidth,
then we can evaluate in linear time (up to the cost
of arithmetic operations) the probability of any fixed
Monadic Second Order (MSO) query g. MSO is an
extension of first-order logic where quantification over
sets of elements is allowed. Notice that this is a fized-
parameter data complezity result: both the size |q| of
the query ¢ and the upper bound k on the treewidth
of the instances are considered to be constant. The
resulting algorithm may thus involve a constant factor
that is arbitrarily high in |¢| and k.



Our PhD research aims at combining the best of these three
approaches in order to obtain tractable combined complexity
of a large class of queries on a large class of data, or in more
practical terms to provide the machinery and systems to
support real-life applications of probabilistic query evaluation
on real-world, large-scale, datasets.

Section 2 discusses in more detail the state of the art in
probabilistic databases, and, specifically, the known results
about restricting to bounded-treewidth instances. We then
present in Section 3 some preliminary results about imple-
menting the theoretical tools from [3] to obtain more efficient
probabilistic query evaluation, demonstrating the potential
of the approach. This leads us to Section 4 where we present
our methodology to go beyond the state of the art.

2. STATE OF THE ART

Here we first discuss the representation of probabilistic
databases, then we describe the techniques for query evalua-
tion on bounded-treewidth instances.

2.1 Probabilistic Databases

As previously discussed, it is not a good idea to represent
uncertain relational databases by explicitly describing all of
their possible states. One general way to represent them
is to use the formalism of pc-instances [17]. A pc-instance
is a normal relational instance where tuples are annotated
by propositional formulas over a set X of Boolean events.
A valuation of those events then defines a unique possible
world consisting of all tuples whose annotations evaluate to
true. By giving independent probabilities to the events in X,
we define the probabilistic distribution of the possible worlds
of our data.

A simpler formalism is that of tuple-independent instances
(TID [21, 13]), that we mentioned in the introduction. A
TID instance is like a pc-instance but where each tuple is di-
rectly annotated by the probability that the tuple is present,
independently of the other tuples. Of course the TID for-
malism is less expressive than pc-instances, because there
are some probability distributions that can be represented
by the latter but not by the former. For instance a TID
instance cannot express that two tuples are mutually exclu-
sive. However, probabilistic query evaluation is already hard
on TID instances. As this implies that query evaluation is
already challenging on that formalism, we will focus on it for
the time being, but note that the techniques on [3] extend to
pc-instances, given appropriate definitions for their treewidth
[2, Section 4.3.1].

An example of TID instance is given in Table 1, describing
who likes which dessert. A possible world of this instance
would be that Mary likes apple cake, Tom likes meringue and
the other facts are absent. This possible world has probability
(1-0.9)%x(1-0.2)x0.5%0.6=0.024. An interesting query
on such an instance would be: what is the probability that
there exist two different people liking the same dessert? This
can be expressed as the probability of the conjunctive query
with disequalities Ip1pa2d Likes(p1, d) A Likes(p2,d) A p1 # p2.
The answer is the sum of the probabilities of the possible
worlds in which the query is true, which can easily seen to
be 0.9 x 0.2 = 0.18.

A number of probabilistic database management systems
have been developed [1, 20, 19, 26]. In our experiments,
we will compare to MayBMS [19], a readily available sys-

Table 1: Dessert preferences

Name Likes Prob.
Bob tiramisu 0.9
Mary tiramisu 0.2
Mary  apple cake 0.5
Tom meringue 0.6

tem' that is still maintained, and supports both TIDs and
arbitrary pc-tables. MayBMS is implemented as an exten-
sion of PostgreSQL and provides techniques for exact and
approximate probabilistic inference.

Which queries are such that exact probability computa-
tion is tractable on arbitrary TID instances? For unions of
conjunctive queries (UCQs), a dichotomy result is provided
by the work of Dalvi and Suciu [14]: the data complexity
of a given UCQ is either #P-hard (the query is then said
unsafe, like gnara) or it is in PTIME (the query is safe).

2.2 Restricting the Treewidth

We now present related work on the efficient evaluation of
expressive queries on treelike instances. Treelike instances are
instances with low treewidth, where treewidth is a measure
used to quantify how far a graph is from being a tree. For
example a tree has treewidth 1, a cycle has treewidth 2, and
a k-clique has treewidth k£ — 1. One way of defining treewidth
is by using the notion of ¢ree decomposition of a graph. A
tree decomposition is a tree labeled by sets of vertices of
the graph with some additional properties being satisfied.
Formally in the case of graphs, letting 2V be the powerset
of V:

DEFINITION 1. Let G = (V, E) be a finite graph with ver-
tex set V and edge set E. A tree-decomposition T'dec = (T, \)
of G is a tree T with labeling function X : T — 2V such that:

1. For every edge (a,b) € E there exists a node n € T for
which {a,b} C A(n).

2. For every vertexv € V, the set T, ={n € T | v € A(n)}
is a subtree of T.

The width of a tree-decomposition is the size of its largest
bag w(Tdec) = max [A(n)| — 1. Finally, the treewidth of G
n

1s the minimal width of a tree-decomposition of G.

Treewidth generalizes quite easily to any relational in-
stance: the treewidth of a relational instance I is that of its
primal graph, whose nodes are the elements of the domain of
I and where there is an edge between elements a and b if and
only if there is a fact R(Z) of I in which a and b co-occur
(a,b €x).

While the definition of treewidth may seem complex, it is
a well-known natural criterion to ensure the tractability of
many problems that are NP-hard on arbitrary instances. An
intuitive way to understand tree-decompositions is that they
provide a way to decompose the instance in such a way as
to be able to use divide and conquer algorithms.

Courcelle showed in 1990 [12, 16] that evaluating an ar-
bitrary MSO query on bounded-treewidth instances can be
done in time linear in the instance. To do so, the query ¢

!See http://maybms.sourceforge.net/.
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Figure 1: Obtaining the provenance circuit

is compiled into a tree automaton A, independently from
the data but depending on the treewidth parameter k. The
instance I of treewidth < k is then transformed up to iso-
morphism into what we call a tree-encoding T, which is just
a tree-decomposition encoded with a finite alphabet so as to
be processable by a tree automaton. Then T is accepted by
A iff ¢ holds on I (written I = q).

From this, [3] showed that we can compute, always in
linear time in the instance, a circuit C' that contains more
information on why the query is true or false: the provenance
circuit of the query ¢ on the instance 1.

DEFINITION 2. The provenance circuit Cq 1 of a query q
on instance I is a boolean circuit whose input gates are the
facts of I and such that for every valuation v : I — {0,1},
Cyq,1 evaluates to 1 under v if and only if v(I) = q, where
v(I) consists in the subinstance {t € I | v(t) = 1}.

Thus, the provenance circuit allows us to know the output
of the query on any subinstance of I. Thanks to this ability
and because the computed circuit is itself treelike, it can be
used to compute the probability that g holds on I, still in
linear time (modulo the cost of arithmetic operations). The
global picture can be seen in Figure 1.

There are two major drawbacks to this method:

e We need to know the treewidth k of the instance in
order to transform it into a tree-encoding. Sadly, de-
termining the treewidth of an arbitrary instance is an
NP-hard problem [5]. However the treewidth can be
approximated by lower- and upper-bound heuristics
that usually give adequate results, especially when the
treewidth is low [8, 9, 30].

e The data complexity may be linear, but the complexity
of computing the automaton is non-elementary in the
query [28] and exponential in the treewidth [12].

As a followup to [3] and in a very recent work [4], it has been
shown that bounded-treewidth is essentially the only relevant
notion for instance-based tractability of probabilistic query
evaluation: if a family of instances does not have bounded
treewidth, then there exists a query (actually independent of
the family) such that probabilistic evaluation on this family
is intractable (this has been shown in arity two and when
such families allow efficient construction of instances).

3. PRELIMINARY RESULTS

Our first direction was to investigate whether the automaton-
based techniques relying on bounded-treewidth instances
from [3] have potential for application, despite their draw-
backs.

We have implemented a framework using these techniques,
and have compared it with MayBMS on randomly generated
probabilistic graphs of low treewidth for 4 different queries.
To generate graphs of low treewidth, we generate trees whose
edges are annotated by a relation name € {R,S,T} and a
probability. This gives us a database on a signature con-
taining only three binary relation symbols, with treewidth 1.
To increase the treewidth we add a few more edges between
some nodes that are not already connected.

We rely on an external library [30], which, from a graph,
can compute its treewidth and a tree-decomposition, or at
least (using heuristics) an upper-bound on the treewidth and
a tree-decomposition of non-minimal width. The timings to
get the tree-decompositions are decent when the treewidth
is low. From the tree-decompositions we compute the tree-
encodings in linear time. We point out that the tree-encoding
is not specific to the query, so the step needs to be performed
only once per instance.

We used another library [10] to represent tree automata.
We have not implemented an algorithm to compute the
automaton from the query, and we have so far compiled
queries to automata by hand. We optimized the algorithms
of [3] to make them faster and to produce smaller provenance
circuits. One of the optimizations is to compute automaton
states, not before building the provenance circuit, but at the
same time it is built. That way we compute only the rules
of the automaton that are needed by the instance, because
the whole automaton can be huge.

The first three queries that we compiled can be expressed as
simple SQL SELECT-FROM-WHERE queries and we have bench-
marked our method by computing their probabilities on the
generated instances. We use MayBMS as a baseline imple-
mentation against which we compare the performance of our
method. We take one of these queries, g3, as representative
of the results. On Figure 2 we compare the time needed
to evaluate the probability of g3 as a function of the num-
ber of facts of some instances by our implementation with
that of MayBMS (approximate computations only, the ex-
act computations all resulted on a timeout on this query).
The instances all have treewidth between 2 and 7. The
timing for our method includes obtaining the tree-encoding,
building the circuit and the automaton, and computing the
probability. Because the instances do not all have the same
treewidth, there are irregularities in the graph (the time
needed to obtain the tree-encoding is highly dependent on
the treewidth). In MayBMS, the approximate computation
operator aconf(z,y) gives the value at +x with probability
> (1 —y). We set a timer to stop the computations at 30s,
the missing values in Figure 2 are cases in which these 30s
were exceeded.

The query is

g3 = JxTy, x # y A (isInR(x) A isInS(x))
A (isInR(y) A isInS(y))
where isInR(z) = 3z, R(x, z) V R(z, z) and similarly for IsInS.

Such a query asks if there exist two different elements

that are concerned by the relations R and S. We see that

our method obtains better results in almost all cases. This
happens because in this case there are a lot of matches
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Figure 2: Timing comparison on query ¢s between
MayBMS approximate computation and our tree-
decomposition technique

and many correlations between these matches. We take
advantage of the data being treelike, while MayBMS has to
go through some exponential steps to factorize the numerous
correlations.

The fourth query, which expresses connectivity, cannot
be handled by MayBMS because MayBMS only supports
first-order queries, and is reasonably efficiently executed by
our approach. We must add that MayBMS is written in C
and is quite optimized while we coded in Java and with less
care of details.

These preliminary experiments suggest that there are in-
deed cases when query evaluation on probabilistic databases
can be made faster by decomposing instances. However, two
important limitations remain:

e in general, we do not have an efficient way to obtain
the tree automaton for the query;

e the approach is only applicable to low-treewidth data
instances.

‘We now report on work in progress that aims at overcoming
these limitations.

4. WORK IN PROGRESS

We present in this section two of the possible directions
that we intend to follow during our PhD, both of which
aim at showing that the treewidth approach can be used for
realistic applications.

4.1 Lowering the Combined Complexity

The goal here would be to overcome the non-elementary
complexity in the query to build the automaton. Indeed
if we want to automatically compute the automaton, such
a complexity seems to be a problem for efficiency, even if
the query is small. Our general idea to work around this
issue is to compile queries to more expressive automata for-
malisms. Indeed, in the standard presentation of Courcelle’s
results, the automata used are bottom-up automata, that is,
automata which process the tree-encoding from the leaves to
the root. We are currently investigating how much we could
gain by using different kinds of automata, for example tree
automata that can go in every direction, namely two-way
tree automata [11].

Indeed it is known that some regular languages on words
are recognized by deterministic automata that can be expo-
nentially bigger if they read the word in the wrong direction.

Consider for instance the language on the alphabet {a, b}
of the words whose n-th symbol from the end is a b; if the
automaton reads the word from left to right then we need
roughly 2" states [25], but if it reads it from right to left
then we only need n states. We are currently trying to deter-
mine which query languages can be tractably compiled into
automata, with the hope of achieving polynomial or even
linear complexity in the query. Our goal is still to create
provenance circuit for treelike instances, by a generalization
of the bounded-treewidth methods to more expressive tree
automata classes. Our work appears to lead to provenance
circuits with cycles, which to our knowledge would be a
novelty in the world of provenance.

4.2 Real-World Applications

Thanks to our implementation, we know that the treewidth
approach is suitable for databases that are of low treewidth.
Therefore, the first step towards the implementation of a real-
life application would be to identify which real databases meet
this criterion. We therefore aim at computing the treewidth
of various kinds of networks, such as transportation networks,
large genealogical trees (which are actually not trees), graphs
from social networks, etc. We suspect that transportation
networks of star-shaped cities are good candidates. The
heuristics to obtain the tree-encoding have to be tested on
these various databases.

Moreover, we are also investigating two new ideas to make
bounded-treewidth methods more widely applicable, the first
being to tree-decompose the instance for a given query. Imag-
ine for example that a query does not mention a relation R,
then we can remove R before tree-decomposing the instance,
which may make the treewidth lower. More generally, we
hope to rely on the fact that for some particular classes
of UCQs, in particular the inversion-free UCQs of [14], it
was shown in [4] that any instance can be rewritten to a
bounded-treewidth instance without modifying the prove-
nance circuit. This connects the safe queries approach to the
treewidth-based one, in the sense that such a safe query “sees”
TID instances as being of bounded treewidth. We intend to
generalize this approach and characterize, for each specific
query, the instances that can be equivalently rewritten (in a
lineage-preserving way) to bounded-treewidth instances.

The second idea is to combine the treewidth and automata
approach with approximation methods. For an instance that
is not easily tree-decomposable, we would try to tree-encode
only the parts that are treelike (that we call the tentacles)
and then combine this with some approximation techniques
on what remains (the core). This idea was applied in [22] to
a simpler decomposition technique (SPQR-trees) and for a
specific family of queries (source-to-target queries in a graph).
One possible technique would be to rewrite the query on
the core to be able to use the provenance circuits that come
from the tentacles. However, this seems challenging: when
using the approximation techniques on the core, we would
need to sample efficiently what is needed. For instance, in
the case of a reachability query, rewriting the query to the
core can be tricky given that a query match may go from
one tentacle to another while passing through the core. Also,
can we notice cases where the query will often by satisfied
by the core alone, or by a tentacle alone, and optimize for
such cases?

Furthermore, we can combine these ideas with those of



Section 4.1, so that the automata that will handle the treelike
tentacles can be built as efficiently as possible.

5. CONCLUSION

We gave an overview of the world of probabilistic databases,
and of the different approaches that have been proposed
to lower the complexity of probabilistic query evaluation:
approximate the probabilities, restrict the class of queries,
and restrict the shape of instances. So far, we have shown that
the treewidth and automata techniques can be practically
suitable for exact probability computation in cases where the
data has low treewidth, which was not a given.

We then described the intended direction of our PhD work:
combining the best of the three approaches to obtain theo-
retical and practical results in view of realistic applications.
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