
Counting Incomplete Databases
Marcelo Arenas, Pablo Barceló, Mikaël Monet

Millennium Institute for Foundational Research on Data

Incomplete databases

I Most common way of dealing with missing values in relational databases:

Room allocation

Marcelo NULL 07-08-19
Jorge 1003 08-08-19
Isabella 502 07-08-19
Pablo NULL 07-08-19
Sof́ıa 502 NULL

...

Room view

100 Parking
502 Sea
1004 Sea
1005 Parking

...

→ In general, it is hard to reason about uncertain values because these might
define an exponential number of possible complete databases

I Decision problems have been studied already (certainty, possibility, etc.)

→ What if we want quantitative information?

Our problems

I Relational databases with named nulls, and finite domains for each null [1]

D =

S
a b

NULL1 a
a NULL2

+
dom(NULL1) = {a, b, c}
dom(NULL2) = {a, b}

I A valuation ν of D assigns a constant ν(NULLi) ∈ dom(NULLi) to
every null. Each valuation ν defines a completion of D, written ν(D):

ν(NULL1), ν(NULL2) (a, a) (a, b) (b, a) (b, b) (c, a) (c, b)
ν(D)

S
a b
a a

S
a b
a a

S
a b
b a
a a

S
a b
b a

S
a b
c a
a a

S
a b
c a

I Let q be a Boolean query, i.e., a query that a complete database can either
satisfy or violate

I We consider the following two counting problems:

1. CountVals(q): INPUT: an incomplete database D. OUTPUT: the
number of valuations ν of D such that ν(D) satisfies q

2. CountVals(q): INPUT: an incomplete database D. OUTPUT: the
number of completions of D that satisfy q

I Example: let q be the Boolean conjunctive query q = ∃x S(x, x).
Given as input the incomplete database above, CountVals(q) answers 4
and CountCompl(q) answers 3.

Objectives

Study the data complexity of CountVals(q) and CountCompl(q) for
diverse classes of Boolean queries (self-join–free CQs, CQs, UCQs, FO, SO,
etc.). When is it tractable? When is it not? When can we approximate?

Relevant complexity classes and results

I Class FP: function problems that can be solved in polynomial time
I Class #P: count the number of accepting computation paths of a

nondeterministic Turing machine running in polynomial time
I Class Span-P: count the number of distinct outputs of a nondeterministic

transducer running in polynomial time
I Class Span-L: count the number of distinct outputs of an NL transducer
I Fully Polynomial-time Randomized Approximation Scheme (FPRAS): a

randomized algorithm to efficiently approximate a counting problem

→ Theorem: every function in Span-L admits a FPRAS [2]
→ Theorem: counting the number of independent sets in a graph (#IS)

has no FPRAS unless NP=RP [3]

First observations

1. If there are a bounded number of nulls, then CountVals(q) and
CountCompl(q) are PTIME equivalent to the model checking problem
for q (written MC(q))

2. If MC(q) is in P then CountVals(q) is in #P

3. If MC(q) is in NP then both CountVals(q) and CountCompl(q)
are in Span-P

4. If q is monotone, has the bounded models property, and MC(q) is in
nondeterministic linear space, then CountVals(q) is in Span-L

→ Proposition: CountVals(q) is in Span-L (hence has a FPRAS) for
any UCQ

Some results

I A dichotomy of CountVals(q) when q is a self-join–free conjunctive
query:

→ Proposition: if there is a variable that occurs at least twice in q then
CountVals(q) is #P-complete. Otherwise CountVals(q) is in FP

. The simplest hard queries: ∃x R(x, x) and ∃x R(x),S(x)
I Counting the number completions is harder than counting valuations!

→ Proposition: counting the number of completions of a unary table is
#P-hard, and has no FPRAS unless NP=RP

. Parsimonious reduction from #IS
I A query for which our problems are Span-P–complete:

→ Proposition: there exists a query q with MC(q) in NP such that
CountVals(q) and CountCompl(q) are Span-P–complete

. Reduction from counting the number of Hamiltonian subgraphs of a graph

Work in progress

I Dichotomies for CQs? (This is usually much harder to obtain)
I A query q with MC(q) in P such that CountCompl(q) is

Span-P–complete?
I Study uniform variants of our problems, where all the nulls share the same

domain

→ For instance, here counting the completions of a unary table is in FP!

Related problems

I Decision problems for incomplete databases (membership, possibility,
certainty, etc.) [1]

I Block-independent probabilistic databases [4]
I Counting database repairs under primary keys [5]

References

[1] Tomasz Imieliński and Witold Lipski, Jr.
Incomplete Information in Relational Databases.
J. ACM, 31(4):761–791, 1984.

[2] Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros.
Efficient Logspace Classes for Enumeration, Counting, and Uniform Generation.
In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, pages 59–73. ACM, 2019.

[3] Martin Dyer, Alan Frieze, and Mark Jerrum.
On counting independent sets in sparse graphs.
SIAM Journal on Computing, 31(5):1527–1541, 2002.

[4] Nilesh Dalvi, Christopher Re, and Dan Suciu.
Queries and materialized views on probabilistic databases.
Journal of Computer and System Sciences, 77(3):473–490, 2011.

[5] Dany Maslowski and Jef Wijsen.
Counting Database Repairs that Satisfy Conjunctive Queries with Self-Joins.
In ICDT, pages 155–164, 2014.

http://www.mikael-monet.net mikael.monet@imfd.cl

https://imfd.cl/en/
https://cs.uwaterloo.ca/~david/cs848s14/il84.pdf
https://arxiv.org/abs/1906.09226
http://yaroslavvb.com/papers/dyer-on.pdf
https://www-cs.stanford.edu/~chrismre/papers/jcss-probdb.pdf
http://www.openproceedings.org/ICDT/2014/paper_17.pdf

